
fphar-09-01053 September 26, 2018 Time: 15:19 # 1

ORIGINAL RESEARCH
published: 26 September 2018
doi: 10.3389/fphar.2018.01053

Edited by:
Viktória Jeney,

University of Debrecen, Hungary

Reviewed by:
Teun J. De Vries,

VU University Amsterdam,
Netherlands

David M. Findlay,
University of Adelaide, Australia

*Correspondence:
Weiqi Yan

wyan@zju.edu.cn
Shigui Yan

zrjwsj@zju.edu.cn
Haobo Wu

2505014@zju.edu.cn

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to
Experimental Pharmacology

and Drug Discovery,
a section of the journal

Frontiers in Pharmacology

Received: 26 June 2018
Accepted: 31 August 2018

Published: 26 September 2018

Citation:
Meng J, Zhou C, Hu B, Luo M,

Yang Y, Wang Y, Wang W, Jiang G,
Hong J, Li S, Wu H, Yan S and Yan W

(2018) Stevioside Prevents Wear
Particle-Induced Osteolysis by
Inhibiting Osteoclastogenesis

and Inflammatory Response via
the Suppression of TAK1 Activation.

Front. Pharmacol. 9:1053.
doi: 10.3389/fphar.2018.01053

Stevioside Prevents Wear
Particle-Induced Osteolysis by
Inhibiting Osteoclastogenesis and
Inflammatory Response via the
Suppression of TAK1 Activation
Jiahong Meng1,2†, Chenhe Zhou1,2†, Bin Hu1,2†, Mengmeng Luo3, Yute Yang1,2,
Yangxin Wang1,2, Wei Wang1,2, Guangyao Jiang1,2, Jianqiao Hong1,2, Sihao Li1,2,
Haobo Wu1,2* , Shigui Yan1,2* and Weiqi Yan1,2*

1 Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou,
China, 2 Orthopedic Research Institute of Zhejiang University, Hangzhou, China, 3 Department of Plastic Surgery, The First
Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China

Aseptic loosening and periprosthetic osteolysis are the leading causes of total joint
arthroplasty failure, which occurs as a result of chronic inflammatory response and
enhanced osteoclast activity. Here we showed that stevioside, a natural compound
isolated from Stevia rebaudiana, exhibited preventative effects on titanium particle-
induced osteolysis in a mouse calvarial model. Further histological assessment
and real-time PCR analysis indicated that stevioside prevented titanium particle-
induced osteolysis by inhibiting osteoclast formation and inflammatory cytokine
expression in vivo. In vitro, we found that stevioside could suppress RANKL-
induced osteoclastogenesis and titanium particle-induced inflammatory response in
a dose-dependent manner. Mechanistically, stevioside achieved these effects by
disrupting the phosphorylation of TAK1 and subsequent activation of NF-κB/MAPKs
signaling pathways. Collectively, our data suggest that stevioside effectively suppresses
osteoclastogenesis and inflammatory response both in vitro and in vivo, and it might be
a potential therapy for particle-induced osteolysis and other osteolytic diseases.

Keywords: aseptic loosening, osteoclast, NF-κB – nuclear factor-kappa B, MAPK, TAK1

INTRODUCTION

Total joint arthroplasty (TJA) is considered a successful surgical procedure for end-stage joint
diseases, such as osteoarthritis and rheumatoid arthritis. As reported, approximately 1.2 million
TJA procedures are performed annually in the United States, and that number is expected to
increase to 3.8 million by the year 2030 (Teeny et al., 2003; Parvizi et al., 2017). Although
progress has been made in the efficacy of TJA, periprosthetic osteolysis and subsequent aseptic
loosening continue to be one of the leading causes of arthroplasty failure (Bozic et al., 2009).
Production of titanium (Ti), ultra-high molecular weight polyethylene (UHMWPE), or cement
wear debris following TJA is deemed to play a critical role in the process of osteolysis
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(Noordin and Masri, 2012). Considerable studies have shown that
chronic inflammatory response and increased osteoclast-related
bone resorption, which occur in response to implant-derived
wear debris, might be responsible for osteolysis (Masui et al.,
2005; Holding et al., 2006; Abu-Amer et al., 2007; Nam et al.,
2017).

Generally, wear debris generated from the prosthetic joint
articular surface causes the recruitment of cells, including
macrophages, fibroblasts, lymphocytes, and osteoclasts.
These cells, especially macrophages, are stimulated to secrete
proinflammatory cytokines, such as tumor necrosis factor
(TNF)-α, interleukin (IL)-1β, IL-6, IL-11, nitric oxide (NO),
and prostaglandin E2 (PGE2), into periprosthetic tissues,
exacerbating the inflammatory response. These cytokines
impair osteoblast activity and cause the overexpression of
receptor activator of nuclear factor-κB ligand (RANKL) in
osteoblasts (Pioletti and Kottelat, 2004; Lee et al., 2012).
RANKL mediates osteoclast differentiation and function
via activating a series of signaling cascades, such as nuclear
factor-kappa B (NF-κB) and mitogen-activated protein
kinase (MAPK) signaling pathways (Feng, 2005). The
elevated RANKL expression induces excessive osteoclast
formation and bone resorption, which ultimately result in
periprosthetic osteolysis (Purdue et al., 2007). Therefore,
drugs that suppress inflammatory response and/or RANKL-
induced signaling pathways have great potential to prevent
wear particle-induced osteolysis and other osteolytic
diseases.

Stevioside, a diterpene glycoside isolated from Stevia
rebaudiana (commonly known as sugar leaf), has shown a wide
range of pharmacological effects, including anti-inflammatory
(Yingkun et al., 2013), immunomodulatory (Boonkaewwan
and Burodom, 2013), anti-diabetic (Wang et al., 2012), and
cardioprotective (Ragone et al., 2017) properties. Researchers
have shown that stevioside can inhibit pro-inflammatory
cytokine secretion from LPS-induced rat peripheral blood
mononuclear cells (Noosud et al., 2017). In addition, stevioside
has been demonstrated to suppress the release of inflammatory
cytokines by interfering with NF-κB and MAPK signaling
pathways in LPS-stimulated RAW264.7 cells (Fengyang
et al., 2012). However, little is known about the effects of
stevioside on osteoclasts and osteolytic diseases. Given the
importance of inflammatory cascades and NF-κB/MAPK
signaling pathways in the process of osteoclast-related osteolysis,
as well as the suppressive effect of stevioside on LPS-induced
inflammatory response through these pathways, we hypothesized
that stevioside might be a novel candidate for treatment of
particle-induce osteolysis by inhibiting osteoclastogenesis and
inflammatory response.

In this study, we showed that stevioside prevented particle-
induced osteolysis by inhibiting osteoclast formation and
inflammatory cytokine expression in vivo. Further in vitro
study confirmed that stevioside attenuated RANKL-induced
osteoclastogenesis and Ti particle-induced inflammatory
response by disrupting the phosphorylation of TGF-β-activated
kinase 1 (TAK1) and subsequent activation of NF-κB/MAPK
signaling pathways.

RESULTS

Administration of Stevioside Prevents Ti
Particle-Induced Osteolysis in a Mouse
Calvarial Model
To investigate the potential preventative effect of stevioside
on pathological osteolysis, we established a Ti particle-
induced murine calvarial osteolysis model. Ti particles were
embedded under the periosteum at the middle suture of
the calvaria in 6-week-old C57BL/6 mice treated without or
with stevioside (10 mg·kg−1

·day−1 and 30 mg·kg−1
·day−1).

After 14 days, calvaria were collected and analyzed by micro-
computed tomography (CT) and histology. Micro-CT with
3D reconstruction revealed that mice in the vehicle group
suffered from extensive bone erosion on the calvaria compared
with the sham group. In contrast, the administration of
stevioside attenuated Ti particle-induced osteolysis in a dose-
dependent manner (Figure 1A). Quantitative analysis of
bone parameters presented as bone volume-tissue volume
ratio (BV/TV, %), the number of porosity and percentage
of porosity, confirmed that the treatment of stevioside
significantly reduced the bone loss induced by Ti particles
(Figure 1B).

Likewise, histological assessment further confirmed the
therapeutic effect of stevioside on osteolysis. Hematoxylin and
eosin (H&E) staining showed that Ti particles induced severe
osteolytic changes in the vehicle group, whereas stevioside
treatment effectively prevented osteolysis (Figure 1C). Consistent
with the micro-CT quantitation, histomorphometric analysis
showed that high dose of stevioside significantly reduced the
extent of bone erosion induced by the Ti particles, characterized
by the reversed quantitative value of BV/TV and erosion area
(Figure 1D). These data demonstrated that stevioside prevents
Ti particle-induced osteolytic bone loss in vivo.

Administration of Stevioside Suppresses
Osteoclast Activity and Inflammatory
Response in vivo
As chronic inflammatory response and excessive osteoclast
activity play a crucial role in wear particle-induced
osteolysis, we next investigated the effects of stevioside on
them in vivo. Tartrate-resistant acid phosphatase (TRAP)
staining was performed to detect osteoclast activity. As
shown in Figure 2A, numerous TRAP-positive osteoclasts
accumulated along the eroded bone surface in the vehicle
group in comparison with the sham group, while decreased
numbers of osteoclasts were observed in the stevioside
treatment groups. Histomorphometric analysis revealed
that the number of TRAP-positive cells and the percentage of
osteoclast surface per bone surface (OcS/BS, %) were shown
to be obviously increased in the vehicle group. In contrast,
stevioside treatment led to a decrease in both the number of
TRAP-positive cells and OcS/BS in a dose-dependent manner
(Figure 2B).

We next investigate the effect of stevioside on the expression
of inflammatory genes by real-time (RT)-PCR analysis. We found
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FIGURE 1 | Stevioside prevents Ti particle-induced osteolysis in a mouse calvarial model. (A) Representative micro-CT reconstruction images from each group.
Scale bars = 1 mm. (B) Bone volume against tissue volume (BV/TV, %), number of porosity and the percentage of porosity (%) of each sample. (C) Representative
H&E staining of calvarial bone sections from sham, vehicle, low and high dose stevioside-treated groups. Scale bars = 200 µm. (D) Histomorphometric analysis of
BV/TV and erosion area for each sample. Low dose, 10 mg·kg−1

·day−1; high dose, 30 mg·kg−1
·day−1. Data are presented as mean ± SD, n = 5. ∗P < 0.05,

∗∗P < 0.01, NS, not significant, compared with the vehicle group.
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FIGURE 2 | Stevioside prevents Ti particle-induced bone loss by regulating inflammatory response and osteoclast activity. (A) Representative TRAP staining of
calvarial bone sections from sham, vehicle, low and high dose stevioside-treated groups. Scale bars = 50 µm. (B) The number of TRAP-positive osteoclasts, and the
percentage of osteoclast surface per bone surface (OcS/BS, %) were assessed. (C) The mRNA levels of TNF-α, IL-1β, and IL-6 in calvarial bones were analyzed by
real-time PCR. (D) The protein levels of TNF-α, IL-1β, and IL-6 in the supernatants of cultured calvaria were measured by ELISA. Low dose, 10 mg·kg−1

·day−1; high
dose, 30 mg·kg−1

·day−1. Data are presented as mean ± SD, n = 5. ∗P < 0.05, ∗∗P < 0.01, NS, not significant, compared with the vehicle group.

increased TNF-α, IL-1β, and IL-6 expression in the parietal bones
of the vehicle group compared with that in the sham group
(Figure 2C). However, the expression levels of TNF-α, IL-1β,
and IL-6 were significantly inhibited by stevioside treatment.
Meanwhile, the protein levels of TNF-α, IL-1β, and IL-6 in
the medium of cultured calvaria were also examined by ELISA
(Figure 2D). As expected, the increased protein levels of TNF-α,
IL-1β, and IL-6 induced by Ti particles were markedly suppressed
by stevioside, which was consistent with the mRNA expression
levels.

Taken together, our results suggested that stevioside exerted
a strong preventative effect on Ti particle-induced osteolysis
by regulating inflammatory response and osteoclast activity.

Therefore, following experiments focused on the role of
stevioside in osteoclastogenesis and inflammatory response
in vitro.

Stevioside Suppresses RANKL-Induced
Osteoclast Formation in vitro With
Negligible Cytotoxicity
A cell viability assay was performed to determine the potential
cytotoxic effect of stevioside on bone marrow-derived
macrophages (BMMs) for 2 or 4 days. Our results showed
that stevioside had no cytotoxic effect at concentrations up to
400 µM on BMMs (Figure 3A).
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FIGURE 3 | Stevioside inhibits RANKL-induced osteoclastogenesis without cytotoxicity in vitro. (A) Viability of BMMs exposed to stevioside was measured by
CCK-8 assay at 48 and 96 h. (B) BMMs were stimulated with M-CSF and RANKL in the presence of the indicated stevioside concentrations for 6 days. Cells were
then fixed and stained for TRAP activity. Scale bars = 200 µm. (C) The number and area of TRAP-positive cells were analyzed. (D) Trap, Ctsk, and Dc-stamp
expression in BMMs treated with the indicated stevioside concentrations for 6 days. (E) Trap, Ctsk, and Dc-stamp expression in BMMs treated with 200 µM
stevioside for 0, 2, 4, and 6 days. (F) BMMs were stimulated with M-CSF and RANKL for 6 days, and 200 µM stevioside was added at the indicated days. Cells
were fixed and stained for TRAP activity. Scale bars = 200 µm. (G,H) The number and area of TRAP-positive cells were analyzed. Data are presented as
mean ± SD. ∗P < 0.05, ∗∗P < 0.01, compared with the controls.

To investigate the effect of stevioside on osteoclastogenesis,
BMMs were treated with M-CSF, RANKL, and different
concentrations of stevioside (0, 50, 100, and 200 µM) for 6
days. A large number of mature TRAP-positive multinucleated
osteoclasts formed in the control group (Figure 3B). In contrast,
the number and area of osteoclasts were significantly decreased
by treatment with stevioside in a dose-dependent manner
(Figure 3C). RT-PCR further confirmed that stevioside treatment
inhibited the expression levels of osteoclast-specific genes,

including Trap, cathepsin K (Ctsk), and Dc-stamp, in a dose-
dependent (Figure 3D) and time-dependent manner (Figure 3E).

To further investigate at which stage of osteoclastogenesis
stevioside exerted its inhibitory effect, cells were treated with
200 µM stevioside at day 1–day 2 (early stage), day 3–
day 4 (middle stage), day 5–day 6 (late stage), day 1–
day 6 (whole stage), and one day before differentiation
(pretreatment). As shown in Figures 3F–H, the number and
size of osteoclasts were dramatically decreased with early-stage
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administration of stevioside and slightly decreased with middle-
stage administration. A small but significant reduction in the area
of osteoclasts was observed with late-stage stevioside treatment,
but no difference was observed in the number of osteoclasts.
Collectively, these data confirmed the suppressive effects of
stevioside on osteoclast formation, especially at the early stage of
osteoclast differentiation.

Stevioside Attenuates the Formation of
F-Actin Ring and Bone Resorption
in vitro
Since stevioside had shown the effect of inhibiting osteoclast
formation, we further detected its effects on osteoclast functions.
Mature osteoclasts were plated onto bovine bone slices and
treated with different concentrations of stevioside in the presence
of osteoclastogenic medium. Bone resorption pits were detected
by a scanning electron microscope (SEM). As show in Figure 4A,
extensively resorbed bone pits were observed in the control
group, while a decreased number of resorptive bone pits was
observed in the stevioside-treated groups. Bone resorption area
and the size per pit were efficiently reduced after the treatment
with 50 and 100 µM stevioside, and rare resorption pits were
observed on the bone slices treated with 200 µM stevioside
(Figure 4B).

We also examined the effect of stevioside on F-actin ring
formation, which is a discernible and observable characteristic of
mature osteoclasts and an essential prerequisite for osteoclastic
bone resorption (Akisaka et al., 2001; Feng et al., 2009).
Characteristic F-actin ring structures were observed under
fluorescence microscopy in the control group, while stevioside
partly inhibited the formation of F-actin ring (Figure 4C).
Statistically, the area and the size of F-actin ring were significantly
decreased in the presence of stevioside (Figure 4D). Collectively,
these findings suggested that stevioside attenuates osteoclastic
bone resorption and F-actin ring formation in vitro.

Stevioside Suppresses RANKL-Induced
Osteoclastogenesis by Inhibiting the
Phosphorylation of TAK1
To illustrate the underlying mechanisms through which
stevioside inhibited osteoclast formation and function, we
investigated the main signaling pathways involved in osteoclast
differentiation. Previous studies revealed that the activation
of TAK1 and subsequent signaling pathways including NF-κB
and MAPK are the indispensable early signaling event in
RANKL-induced osteoclast formation (Feng, 2005; Huang
et al., 2006; Yamashita et al., 2007). As shown in Figure 5A, the
phosphorylation of TAK1 was observed 5 min after RANKL
stimulation and peaked at 20 min. However, in the presence of
200 µM stevioside, RANKL-induced TAK1 phosphorylation was
significantly decreased. Quantitative analysis also confirmed our
observations (Figure 5B). In addition, our data showed that the
phosphorylation of IκBα and p65 peaked at 10 min after RANKL
stimulation, while the phosphorylation levels were suppressed by
stevioside treatment (Figure 5C). For MAPK signaling pathways,
three major subfamilies of MAPK pathways (ERK, JNK, and

p38) were maximally phosphorylated within 30 min of RANKL
stimulation, while pretreatment with stevioside significantly
attenuated RANKL-induced phosphorylation of these pathways
(Figure 5C). Quantitative analysis confirmed these observations
(Figure 5D).

c-Fos and NFATc1 are considered the master long-term
signaling regulators of osteoclastogenesis (Gohda et al., 2005).
Our results showed that the mRNA and protein levels of
c-Fos and NFATc1 were elevated by RANKL stimulation in a
time-dependent manner. However, administration of stevioside
strongly suppressed the levels of c-Fos and NFATc1 in a time-
dependent and dose-dependent manner (Figures 5E–G).These
data, taken together, demonstrated that stevioside inhibits
RANKL-induced osteoclastogenesis by suppressing TAK1
phosphorylation, thus mediating the downstream signaling
pathways involved in osteoclastogenesis (Figure 5H).

Stevioside Suppresses Ti
Particle-Induced Inflammatory Response
in vitro
To explore the effects of stevioside on Ti particle-induced
inflammatory response, we investigated the expression of
inflammatory mediators (NO and PGE2) and proinflammatory
cytokines (TNF-α, IL-1β, and IL-6) in Ti particle-induced BMMs.
As shown in Figure 6A, the production of NO and PGE2 was
increased by Ti particles stimulation, while stevioside successfully
inhibited their production in a dose-dependent manner. Previous
studies have demonstrated that iNOS and COX-2 are the key
enzymes inducing the production of NO and PGE2 (Caughey
et al., 2001; Chauhan et al., 2003). Hence, we further analyzed
the expression of COX-2 and iNOS. Our results showed that
Ti particles potently elevated the mRNA and protein expression
levels of COX-2 and iNOS, and these effects were markedly
attenuated by stevioside treatment in a dose-dependent manner
(Figures 6B–D).

Meanwhile, the effects of stevioside on the release of Ti
particle-induced pro-inflammatory cytokines, such as TNF-α,
IL-1β, and IL-6, were explored by RT-PCR and ELISA. The
mRNA and protein expression of TNF-α, IL-6, and IL-1β were
induced by Ti particles and markedly suppressed by stevioside in
a concentration-dependent manner (Figures 6E,F). Collectively,
our data demonstrated that stevioside exhibited great effects
on suppressing inflammatory response in Ti particle-induced
BMMs, which was consistent with the in vivo results.

Stevioside Suppresses Ti
Particle-Induced NF-κB and MAPK
Signaling Pathways Through the
Inhibition of TAK1 Phosphorylation
Previous studies have demonstrated that the activation of TAK1
and subsequent signaling cascades (NF-κB and MAPK pathways)
play a crucial role in Ti particle-induced inflammatory response
in macrophages, and targeted suppression of TAK1 strongly
impairs these pathways, thereby reducing the production of pro-
inflammatory cytokines (Cheng et al., 2010; Landgraeber et al.,
2014). Due to the remarkable suppressive effects of stevioside on
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FIGURE 4 | Stevioside inhibits bone resorptive activity of mature osteoclasts. An equal number of BMM-derived mature osteoclasts were seed onto bovine bone
slices and treated with indicated concentrations of stevioside for another 2 days. (A) Representative scanning electron microscopy (SEM) images of bone resorption
pits. Scale bars = 200 µm. (B) The resorption area of bone discs was measured using ImageJ. (C) Representative fluorescence images of F-actin staining with
rhodamine-phalloidin. Scale bars = 200 µm. (D) The area of F-actin rings was measured using ImageJ. Data are presented as mean ± SD. ∗P < 0.05, ∗∗P < 0.01,
compared with the controls.

RANKL-induced TAK1 phosphorylation, we hypothesized that
stevioside could also inhibit Ti particle-induced phosphorylation
of TAK1 and subsequent signaling cascades. As expected, the
phosphorylation of TAK1 was observed 5 min after Ti particles
stimulation and peaked at 30 min. In contrast, the administration
of stevioside effectively inhibited the phosphorylation of TAK1
induced by Ti particles (Figure 7A), and quantitative analysis
confirmed our observation (Figure 7B).

In addition, the signaling cascades following TAK1 activation
were also detected. As shown in Figure 7C, both NF-κB
(IκBα and p65) and MAPK (ERK, JNK, and p38) were
phosphorylated by the stimulation of Ti particles, while
the phosphorylation levels were significantly suppressed by
stevioside treatment. Quantitative analysis also confirmed these
observations (Figure 7D). To summarize our results, stevioside
had a remarkable effect on inhibiting Ti particle-induced NF-
κB and MAPK pathways by targeting TAK1 phosphorylation
(Figure 7E).

DISCUSSION

TJA is widely utilized for the treatment of end-stage joint disease.
However, arthroplasty failure increases with time because of
wear particle-induced periprosthetic osteolysis and subsequent
aseptic loosening (Bozic et al., 2009; Beck et al., 2012). Although
bisphosphonates and teriparatide have been reported to inhibit
wear particle-induced osteolysis in animal models, the side
effects, such as fever, gastrointestinal toxicity, osteonecrosis of
the jaw, osteosarcoma et al. and high cost limit their clinical
application (Millett et al., 2002; Wedemeyer et al., 2005; Bi
et al., 2015). Here we report for the first time that stevioside,
a natural component from Stevia rebaudiana, protected against
wear particle-induced osteolysis.

Wear particle-induced osteolysis is a complex
pathophysiological process that involves various cell types
and inflammatory cytokines. Generally, increased inflammatory
response and elevated numbers of osteoclasts may be responsible
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FIGURE 5 | Stevioside inhibits osteoclast differentiation by specifically impairing RANKL-induced phosphorylation of TAK1 and subsequent activation of
NF-κB/MAPK signaling pathways. (A,C) BMMs were pretreated with or without 200 µM stevioside for 4 h and then treated with 50 ng·mL−1 RANKL for the
indicated periods. Cell lysates were analyzed using western blotting. (B) The gray level of phosphorylated TAK1 was normalized relative to total TAK1. (D) The gray
levels of phosphorylated p65, ERK, JNK, and p38 were quantified and normalized relative to total p65, ERK, JNK, and p38. The gray levels of phosphorylated IκBα

and IκBα were normalized to β-tubulin. (E) The protein expression levels of NFATc1 and c-Fos in BMMs treated with stevioside for 0, 2, 4, or 6 days. (F,G) The mRNA
expression levels of NFATc1 and c-Fos in BMMs treated with the indicated stevioside concentrations for 0, 2, 4, or 6 days. RNA expression levels were normalized
relative to the expression of GAPDH. (H) Schematic representation of the experiments presented in this figure. Data are presented as mean ± SD. ∗P < 0.05,
∗∗P < 0.01, compared with RANKL alone.
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FIGURE 6 | Stevioside inhibits Ti particle-induced inflammatory response in vitro. (A) BMMs were incubated with Ti particles and the indicated concentrations of
stevioside for 24 h. Supernatant was collected, and the production of NO and PGE2 was measured. (B) BMMs were incubated with Ti particles and the indicated
concentrations of stevioside for 6 h. The mRNA expression of iNOS and COX-2 was measured. (C) BMMs were incubated with Ti particles and the indicated
concentrations of stevioside for 24 h. The protein levels of iNOS and COX-2 was explored using western blotting. (D) The gray levels of iNOS and COX-2 were
normalized relative to β-tubulin using ImageJ. (E,F) BMMs were incubated with Ti particles and the indicated concentrations of stevioside for 6 or 24 h. The mRNA
and protein levels of TNF-α, IL-1β, and IL-6 in BMMs were measured at 6 h for mRNA and 24 h for protein. Data are presented as mean ± SD. ∗P < 0.05,
∗∗P < 0.01, compared with Ti particles alone.

for the periprosthetic bone loss (Greenfield et al., 2002; Hirayama
et al., 2002; Helfrich, 2005). In this study, we developed Ti
particle-induced osteolysis in a mouse calvarial model. The
presence of Ti particles induced severe erosion of calvarial
bone, as indicated by extensive bone resorption observed using
micro-CT and 3D reconstruction. In contrast, stevioside-treated
mice showed dose-dependent suppression of particle-induced
osteolysis. Histological analysis of sections stained with H&E
and TRAP showed that stevioside inhibited Ti particle-induced
bone erosion and osteoclast formation. In addition, we also
demonstrated that stevioside inhibited Ti particle-induced
inflammatory response by evaluating the mRNA and protein
levels of inflammatory genes in parietal bones. The suppressive
effects of stevioside on osteoclastogenesis and inflammatory
response were also confirmed in vitro. Our in vitro results
showed that stevioside inhibited the differentiation of BMMs
into mature osteoclasts and attenuated the bone resorption of

mature osteoclasts. Moreover, the proinflammatory cytokines
and inflammatory mediators increased by Ti particles were
significantly suppressed by stevioside treatment. Mechanistically,
stevioside inhibited the phosphorylation of TAK1 and subsequent
activation of NF-κB/MAPK signaling pathways in RANKL- or
Ti-induced signaling cascades in BMMs. Taken together, our
findings suggest that stevioside may be a novel drug applied
for the prevention or treatment of periprosthetic osteolysis and
other osteolytic diseases.

In the osteoclast differentiation of mammalian cells, the
activation of TAK1 is an important signaling event in RANKL
signaling pathway (Huang et al., 2006; Sumiya et al., 2015).
Generally, binding of RANKL to its receptor RANK promotes
the recruitment of tumor necrosis factor receptor-associated
factor 6 (TRAF6) and then forms a signaling complex containing
RANK and TAK1-binding protein (TAB)2, resulting in TAK1
phosphorylation. Activated TAK1 is able to phosphorylate both
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FIGURE 7 | (A,C) BMMs were pretreated with or without 200 µM stevioside for 4 h and then treated with 0.1 mg·mL−1 Ti particles for the indicated periods. Cell
lysates were analyzed using western blotting. (B) The gray level of phosphorylated TAK1 was normalized relative to TAK1. (D) The gray levels of phosphorylated p65,
ERK, JNK, and p38 were quantified and normalized relative to total p65, ERK, JNK, and p38. The gray levels of phosphorylated IκBα and IκBα were normalized to
β-tubulin. (E) Schematic representation of the experiments presented in this figure. Data are presented as mean ± SD. ∗P < 0.05, ∗∗P < 0.01, compared with Ti
particles alone.

IκB kinase (IKK) and MAPK kinases (MKKs) to initiate NF-
κB and MAPK signaling pathways, which are important and
indispensable for osteoclastogenesis (Gohda et al., 2005; Idris
et al., 2010; Stevenson et al., 2011). In our study, we observed
that stevioside suppressed the NF-κB signaling pathway induced
by RANKL through the inhibition of the phosphorylation of
IκBα and p65 as well as the proteasomal degradation of IκBα.
In addition, stevioside inhibited the phosphorylation of all three
MAPK pathways (ERK, JNK, and p38) in BMMs stimulated with
RANKL. Li et al. reported that stevioside inhibited the release
of LPS-induced pro-inflammatory cytokines by interfering with

both NF-κB and MAPK signaling pathways (Fengyang et al.,
2012). Although there are considerable differences between
LPS and RANKL in their receptors and intracellular signaling
pathways, the activation of TAK1 plays a crucial role in both
LPS-induced and RANKL-induced signaling cascades (Irie et al.,
2000; Huang et al., 2006). Based on our observations and previous
research by Li et al., we further investigated the effect of stevioside
on TAK1 phosphorylation. As expected, stevioside significantly
suppressed the phosphorylation of TAK1, which was a probable
reason for its inhibition effects on NF-κB and MAPK signaling
pathways.
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Ti particle is a common type of wear debris in TJA
that induces macrophages to produce inflammatory mediators
and inflammatory cytokines such as TNF-α, IL-1β, IL-6,
NO, and PGE2 (Suzuki et al., 2007; Bechtel et al., 2016).
Previous studies have reported that TLR4/Myd88 plays an
important role in titanium particle-induced inflammation and
osteolysis (Takagi et al., 2007; Obando-Pereda et al., 2014).
A previous study demonstrated that Ti particles can activate
TAK1-NF-κB/MAPK signaling pathway in RAW264.7 cells,
and targeted suppression of TAK1 strongly impairs these
pathways, thereby reducing the production of pro-inflammatory
cytokines (Cheng et al., 2010). Our results showed that
stevioside suppressed the phosphorylation of TAK1 in Ti
particle-induced BMMs as well as the subsequent activation
of NF-κB and MAPK pathways. In addition, stevioside
significantly inhibited the secretion of TNF-α, IL-6, IL-1β,
NO, and PGE2 and the intracellular expression of iNOS and
COX2 in a dose-dependent manner, suggesting that stevioside
could prevent Ti particle-induced osteolysis by inhibiting
localized release of inflammatory mediators and inflammatory
cytokines.

Nevertheless, there are several limitations of this study. First,
UHMWPE wear particles are a more common cause of TJA
failure than metal particles (Hirakawa et al., 1996). However,
metal particles are still an important factor contributing to
osteolysis, and both metal and UHMWPE particles could induce
osteolysis in vivo (Wooley et al., 2002; von Knoch et al., 2004).
Therefore, it is reasonable to establish the osteolytic animal
model using Ti particles, even though UHMWPE particles
would be more closely related to the clinical findings. Second,
wear particle-induced osteolysis in vivo is a complex process
involving many types of cells, especially macrophages, osteoclasts
and osteoblasts (Purdue et al., 2007). Here, we investigated
the effects and mechanisms of stevioside on macrophages and
osteoclasts, and further studies are needed to address its effect on
osteoblasts.

In conclusion, our results showed that stevioside inhibits
inflammatory response and osteoclastogenesis both in vitro
and in vivo. The suppressive effects are achieved through the
inhibition of TAK1 phosphorylation and subsequent activation
of NF-κB/MAPK signaling pathways. Therefore, our data suggest
that stevioside is a potential drug for the prevention or treatment
of periprosthetic osteolysis and other osteolytic diseases.

MATERIALS AND METHODS

Media and Reagents
Stevioside (purity >98%, Supplementary Figure S1) was
purchased from Sigma-Aldrich (St. Louis, MO, United States).
Alpha modification of Eagle’s medium (α-MEM), Dulbecco’s
modified Eagle’s medium (DMEM), fetal bovine serum (FBS),
and penicillin/streptomycin were purchased from Gibco-BRL
(Gaithersburg, MD, United States). The cell counting kit-8
(CCK-8) was obtained from Dojindo Molecular Technology
(Kumamoto, Japan). Recombinant mouse macrophage colony-
stimulating factor (M-CSF) and RANKL were obtained from

R&D Systems (Minneapolis, MN, United States). Specific
antibodies against p38 (#9212), phospho-p38 (Thr180/Tyr182)
(#4511), ERK (#4695), phospho-ERK (Thr202/Tyr204) (#4370),
JNK 1/2 (#9252), phospho-JNK (Thr183/Tyr185) (#4668),
IκBα (#4814), phospho-IκBα (Ser32) (#2859), p65 (#8242),
phospho-p65 (Ser536) (#3033), TAK-1 (#5206), phosphop-
TAK1 (Thr184/187) (#4508), c-Fos (#2250), nuclear factor
of activated T cells c1 (NFATc1) (#8032), and β-tubulin
(#2146) were obtained from Cell Signaling Technology
(Danvers, MA, United States). Specific antibodies against
inducible nitric oxide synthase (iNOS) (sc-7271) and
cyclooxygenase-2 (COX-2) (sc-166475) were obtained from
Santa Cruz Biotechnology (Santa Cruz, CA, United States).
Commercial enzyme-linked immunosorbent-based assay
(ELISA) kits for TNF-α, IL-1β, and IL-6 detection were
obtained from R&D Systems. TRAP staining kit, and other
reagents were purchased from Sigma-Aldrich unless otherwise
noted.

Ti Particle-Induced Murine Calvarial
Osteolysis Model
All experimental procedures were performed in accordance with
the principles and procedures of the National Institutes of Health
(NIH) Guide for the Care and Use of Laboratory Animals, and
the Guide of the Animal Care Committee of Zhejiang University.
Sixty healthy 6-week-old male C57BL/6 mice weighing 18–22 g
were obtained from the Experimental Animal Center of Zhejiang
University. All animals were housed in a room at 22 ± 2◦C, 60%
humidity and 12: 12 h light-dark cycle with free access to food
and water, with five animals per cage.

A Ti particle-induced calvarial osteolysis model was
established to determine the effects of stevioside on osteolysis
in vivo. This mouse model has been in use for studying the
pharmacological effects of drugs on particle-induced osteolysis
for some years (Zhang et al., 2001; Tian et al., 2014; Wu et al.,
2015) and is not replaceable with in vitro culture systems.
Commercially available pure Ti particles were obtained from
Johnson Matthey (Ward Hill, MA, United States). Particles
were prepared by baking at 180◦C and subsequent mixed with
70% ethanol for 48 h to remove endotoxin and ensure sterility
(Zhou et al., 2018). After acclimatizing to the laboratory for
1 week, mice were randomly divided into four experimental
groups (n = 15 per group): PBS control (sham), Ti particles
in PBS(vehicle), Ti particles together with low (low dose,
10 mg·kg−1

·day−1) and high (high dose, 30 mg·kg−1
·day−1)

doses of stevioside. The doses of stevioside were determined
according to previous research (Yingkun et al., 2013; Ragone
et al., 2017). After mice were anesthetized with intraperitoneal
sodium pentobarbital (50 mg·kg−1), the cranial periosteum was
separated, and 30 mg of Ti particles in PBS were embedded
under the periosteum at the middle suture of the calvaria in the
vehicle group and stevioside groups, while PBS was injected in
the sham group. One day after implantation, PBS or stevioside
was administrated intragastrically every day for 2 weeks. At the
end of the experiment, the mice were sacrificed with an overdose
of sodium pentobarbital (120 mg·kg−1), and the calvaria were
harvested for subsequent analysis.
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Micro-CT Scanning
The calvaria were analyzed (n = 5 per group) using a high-
resolution micro-CT (Skyscan 1072, Aartselaar, Belgium).
The scanning protocol was set at an isometric resolution of
9 µm and X-ray energy settings of 80 kV and 80 µA. Three-
dimensional (3D) reconstruction was then performed, and
a square region of interest (ROI, 3 mm × 3 mm) around
the midline suture was selected for further qualitative and
quantitative analysis. BV/TV, number of porosity, and
percentage of porosity for each specimen were measured
in the ROI as reported previously (Wedemeyer et al.,
2007).

H&E and TRAP Staining of Tissue
Sections
Calvarial samples (n = 5 per group) were decalcified in 10%
EDTA (pH = 7.4) for 2 weeks and then embedded in paraffin.
Histological sections were prepared for TRAP and H&E staining.
The specimens were examined and photographed under a Nikon
Eclipse TE2000-S microscope (Tokyo, Japan). BV/TV, erosion
area, the number of TRAP-positive osteoclasts, and OcS/BS were
assessed for each sample.

Calvaria Culture
As previously described (Zhai Z. et al., 2014; Shao et al., 2015),
calvaria (n = 5 per group) were harvested after the implantation
with Ti particles for 2 weeks, under sterile conditions, and
each was placed into one well of a 6-well plate containing
2 mL of DMEM with 100 U·mL−1 penicillin and 100 mg·mL−1

streptomycin. Calvaria were incubated at 37◦C with 5% CO2 for
24 h, and then the culture medium was collected and stored at
−80◦C for ELISA.

Cell Culture
Monocyte/macrophage precursors were obtained from femur
and tibia bone marrow of 6-week-old male C57BL/6 mice as
described previously (Wang et al., 2014; Zhai Z.J. et al., 2014)
and then differentiated into BMMs in complete α-MEM (10%
FBS, 100 U·mL−1 penicillin and 100 µg·mL−1 streptomycin)
supplemented with 25 ng·mL−1 M-CSF for 5 days. All cell
cultures were maintained in a humidified environment of 5%
CO2 at 37◦C.

Cell Viability Assay
The effects of stevioside on BMMs viabilities were determined
using a CCK-8 assay. Cells were seeded in a 96-well plate
at a density of 5 × 103 cells per well and cultured in
complete α-MEM medium for 48 h or 96 h in the presence
of increasing concentrations of stevioside (0–400 µM). Next,
10 µL CCK-8 buffer was added to each well, and the
plate was incubated for another 2 h. The optical density
(OD) was measured at a wavelength of 450 nm (650 nm
reference) with an ELX800 absorbance microplate reader (Bio-
Tek, Winooski, VT, United States). The viabilities of BMMs
exposed to stevioside were expressed as a percentage of untreated
cells.

In vitro Osteoclast Differentiation
BMMs were seeded into a 96-well plate at a density of 8 × 103 cells
per well, in complete α-MEM supplemented with 25 ng·mL−1

M-CSF, 50 ng·mL−1 RANKL, and different concentrations of
stevioside (0, 50, 100, and 200 µM). Culture medium was
replaced every 2 days. After 6 days of culture, cells were washed
twice with PBS, fixed with 4% paraformaldehyde (PFA), and
stained for TRAP. TRAP-positive multinucleated cells with more
than five nuclei were counted under a light microscope.

F-Actin Ring Immunofluorescence and
Resorption Pit Assay
To visualize F-actin rings, BMMs were treated with 25 ng·mL−1

M-CSF and 50 ng·mL−1 RANKL for 4 days. An equal
number of BMM-derived osteoclasts were seeded onto bovine
bone slices and allowed to adhere overnight. Cells were then
treated with different concentrations of stevioside (0, 50, 100,
and 200 µM) for another 2 days. Next, cells were fixed
with 4% PFA for 15 min, permeabilized for 5 min with
0.5% Triton X-100, and stained with rhodamine-conjugated
phalloidin (1:200; Invitrogen Life Technologies, Carlsbad, CA,
United States) diluted in 0.2% bovine serum albumin (BSA)–PBS
for 1 h. Fluorescent images were captured with a fluorescence
microscope (EU5888, Leica, Wetzlar, Germany) and analyzed
using ImageJ software (National Institutes of Health, Bethesda,
MD, United States). Then, these bone slices were washed twice
with PBS for the resorption pit assay. Cells that had adhered
to the bone slices were removed by mechanical agitation.
Bone slice images were captured using a scanning electron

TABLE 1 | Primers used for quantitative real-time PCR.

Gene Forward (F) and reverse (R) primer sequence (5′–3′)

GAPDH F: ACCCAGAAGACTGTGGATGG

R: CACATTGGGGGTAGGAACAC

CTSK F: CTTCCAATACGTGCAGCAGA

R: TCTTCAGGGCTTTCTCGTTC

TRAP F: CTGGAGTGCACGATGCCAGCGACA

R: TCCGTGCTCGGCGATGGACCAGA

DC-STAMP F: AAAACCCTTGGGCTGTTCTT

R: AATCATGGACGACTCCTTGG

c-Fos F: CCAGTCAAGAGCATCAGCAA

R: AAGTAGTGCAGCCCGGAGTA

NFATc1 F: CCGTTGCTTCCAGAAAATAACA

R: TGTGGGATGTGAACTCGGAA

TNF-α F: CATCTTCTCAAAATTCGAGTGACA

IL-1β R: TGGGAGTAGACAAGGTACAACCC

IL-6 F: TGCCACCTTTTGACAGTGATG

iNOS R: TGATGTGCTGCTGCGAGATT

COX-2 F: TCCAGTTGCCTTCTTGGGAC

R: AGTCTCCTCTCCGGACTTGT

F: CATGCTACTGGAGGTGGGTG

R: CATTGATCTCCGTGACAGCC

F: CCCGGACTGGATTCTATG

R: AACCCAGGTCCTCGCTTATGA
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microscope (SEM; S-4800, Hitachi, Japan) and analyzed using
ImageJ software.

Particle-Induced Inflammatory Response
in vitro
Ti particles were used to induce the inflammatory response in
BMMs. The time points used for our experiments were based on
previous research (Bechtel et al., 2016). BMMs were seeded into
a 6-well plate at a density of 5 × 105 cells per well, in complete
α-MEM supplemented with 25 ng·mL−1 M-CSF and allowed to
adhere overnight. Then, Ti particles (0.1 mg·mL−1) and different
concentrations of stevioside (0, 50, 100, and 200 µM) were added
into the culture medium. After incubation for 6 h, total RNA
from the adherent cells was extracted for RT-PCR analysis. After
incubation for 24 h, the supernatants were collected for ELISA
analysis, and the protein from adhered cells was extracted for
western blotting.

RNA Extraction and Quantitative PCR
Assay
Total RNA from calvaria (n = 5 per group) or cultured cells
was extracted using the Qiagen RNeasy Mini Kit (Qiagen,
Valencia, CA, United States) following the manufacturer’s
protocols. Complementary DNA (cDNA) was synthesized from
1 µg of total RNA using reverse transcriptase (TaKaRa
Biotechnology, Otsu, Japan). Real-time PCR was performed
using the SYBR Premix Ex Tag Kit (TaKaRa Biotechnology)
and the ABI 7500 Sequencing Detection System (Applied
Biosystems, Foster City, CA, United States). Each reaction was
run for 40 cycles at the following conditions: 95◦C for 5 s,
60◦C for 20 s, and 72◦C for 20 s. GAPDH was used as a
housekeeping gene. The mouse primer sequences are shown in
Table 1.

Western Blotting
Western blotting was used to determine the main signaling
pathways affected by stevioside. BMMs were seeded in a 6-
well plate at a density of 8 × 105 cells per well. After
pretreatment with or without 200 µM stevioside for 4 h, cells
were stimulated with 50 ng·mL−1 RANKL or 0.1 mg·mL−1

Ti particles for 0, 5, 10, 20, 30, or 60 min. To examine
the effects of stevioside on c-Fos and NFATc1 expression,
BMMs were plated in a 6-well plate at a density of 1 × 105

cells per well and cultured with 25 ng·mL−1 M-CSF and
50 ng·mL−1 RANKL in the presence or absence of 200 µM
stevioside for 0, 2, 4, or 6 days. To investigate the effects
of stevioside on Ti particle-induced expression of iNOS and
COX-2, BMMs were cultured in 6-well plates at a density
of 8 × 105 cells per well in complete α-MEM containing
25 ng·mL−1 M-CSF and different doses of stevioside (0,
50, 100, and 200 µM) with or without 0.1 mg·mL−1

Ti particles for 24 h. Total protein was extracted from
cultured cells using radioimmunoprecipitation assay (RIPA)
lysis buffer (Sigma-Aldrich). Each protein lysate containing
30 µg protein was separated using 10% sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE) and transferred

to polyvinylidene difluoride membranes (Millipore, Bedford,
MA, United States). After non-specific blocking for 1 h,
membranes were incubated with primary antibodies at 4◦C
overnight. After three washes with TBS-Tween, we subsequently
incubated membranes with the appropriate secondary antibodies
at 4◦C for 2 h. The signals were detected by exposure in a Bio-
Rad XRS chemiluminescence detection system (Hercules, CA,
United States).

Enzyme-Linked Immunosorbent Assay
ELISA was conducted to detect the relative cytokine
levels in cultured calvaria or cultured cells. The culture
medium was collected, centrifuged (2300 × g, 25 min),
passed through a 0.2 µm filter (Millipore), and stored
at −80◦C until use. Mouse ELISA kits were used to
determine TNF-α, IL-1β, and IL-6 concentrations in
accordance with the manufacturer’s instructions. Absorbance
was measured using an ELX800 absorbance microplate
reader at 450 nm. The detection limits of the assay were
7.21 pg·mL−1 for TNF-α, 4.8 pg·mL−1 for IL-1β, 1.8 pg·mL−1

for IL-6.

Statistical Analysis
All data are expressed as mean ± standard deviation (SD).
Each experiment was repeated at least three times separately
and the results were analyzed with Prism 6.01 (GraphPad
Software, La Jolla, CA, United States). A two-tailed, unpaired
Student’s t-test was used for the comparisons between two
groups. One-way ANOVA with post hoc Newman-Keuls test
was used to analyze differences in multiple comparisons.
Values of P < 0.05 were considered statistically significantly
different.
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