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Abstract

In addition to evolving eusocial lifestyles, two equally fascinating aspects of termite biology are their mutualistic
relationships with gut symbionts and their use of lignocellulose as a primary nutrition source. Termites are also considered
excellent model systems for studying the production of bioethanol and renewable bioenergy from 2nd generation (non-
food) feedstocks. While the idea that gut symbionts are the sole contributors to termite lignocellulose digestion has
remained popular and compelling, in recent years host contributions to the digestion process have become increasingly
apparent. However, the degree to which host and symbiont, and host enzymes, collaborate in lignocellulose digestion
remain poorly understood. Also, how digestive enzymes specifically collaborate (i.e., in additive or synergistic ways) is largely
unknown. In the present study we undertook translational-genomic studies to gain unprecedented insights into digestion
by the lower termite Reticulitermes flavipes and its symbiotic gut flora. We used a combination of native gut tissue
preparations and recombinant enzymes derived from the host gut transcriptome to identify synergistic collaborations
between host and symbiont, and also among enzymes produced exclusively by the host termite. Our findings provide
important new evidence of synergistic collaboration among enzymes in the release of fermentable monosaccharides from
wood lignocellulose. These monosaccharides (glucose and pentoses) are highly relevant to 2nd-generation bioethanol
production. We also show that, although significant digestion capabilities occur in host termite tissues, catalytic tradeoffs
exist that apparently favor mutualism with symbiotic lignocellulose-digesting microbes. These findings contribute
important new insights towards the development of termite-derived biofuel processing biotechnologies and shed new light
on selective forces that likely favored symbiosis and, subsequently, group living in primitive termites and their cockroach
ancestors.

Citation: Scharf ME, Karl ZJ, Sethi A, Boucias DG (2011) Multiple Levels of Synergistic Collaboration in Termite Lignocellulose Digestion. PLoS ONE 6(7): e21709.
doi:10.1371/journal.pone.0021709

Editor: Pedro Lagerblad Oliveira, Universidade Federal do Rio de Janeiro, Brazil

Received February 23, 2011; Accepted June 6, 2011; Published July 1, 2011

Copyright: � 2011 Scharf et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Funding was provided by The Consortium for Plant Biotechnology Research Inc. (http://www.cpbr.org/) and the Department of Energy (DOE) (http://
www.energy.gov/) prime agreement no. DE-FG36-02GO12026 to MES and DGB, the United States Department of Agriculture-National Institute of Food and
Agriculture-Agriculture and Food Research Initiative (http://www.nifa.usda.gov/funding/rfas/afri.html) grant no. 2009-05245 to MES and DGB, and Phase I and II
DOE-Small Business Innovation Research (http://www.energy.gov/) grant nos. DE-FG02-08ER85063 and DE-85538 S08-II to Chesapeake-PERL Inc. (Savage, MD) and
MES. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Support of this research does not
constitute an endorsement by the DOE or by The Consortium for Plant Biotechnology Research, Inc. of the views expressed in this publication. Chesapeake-PERL
Inc. played a role in recombinant protein production, preparation, and purification but has voluntarily declined co-authorship.

Competing Interests: The authors have read the journal’s policy and have the following conflicts: This study was partly funded by The Consortium for Plant
Biotechnology Research Inc. The authors have the following pending US patent application: 61/168,275 International patent application WO 2010/117843 A2.
There are no further products in development or marketed products to declare. Chesapeake-PERL Inc. played a role in recombinant protein production,
preparation, and purification. This does not alter the authors’ adherence to all the PLoS ONE policies on sharing data and materials, as detailed online in the guide
for authors.

* E-mail: mscharf@purdue.edu

¤ Current address: Department of Entomology, Purdue University, West Lafayette, Indiana, United States of America

Introduction

Termites (order Isoptera) are well-known for their roles in

nutrient cycling in natural ecosystems, as pests of human crops and

structures, and as models for renewable energy systems. The order

Isoptera is divided into lower and higher termites based mostly on

the presence or absence of protozoan gut symbionts [1-3].

However, both higher and lower termites harbor diverse

collections of prokaryotic symbionts [2-7]. Recent metagenomic

and metatranscriptomic studies have corroborated long-standing

hypotheses [3-7] of gut symbionts playing important roles in

lignocellulose digestion in higher [8] and lower [9] termites.

However, there is also strong transcriptomic evidence to show that

termites themselves produce a battery of cellulases, hemicellulases,

and lignases that contribute significantly to lignocellulose digestion

[9-13]. Some genome sequencing efforts have focused on bacterial

endosymboints of protozoan symbionts from lower termites, but

found no evidence of lignocellulose digestion capabilities [14,15].

Similarly, proteomic investigations of the lumen contents of higher

termite hindguts revealed limited protein-level evidence of

prokaryotic symbiont-assisted digestion relative to that suggested

by earlier transcriptomic studies [8,16].

In an effort to better understand collaborative host and symbiont

digestion [13] in the lower termite Reticulitermes flavipes, we

previously identified ca. 200 candidate lignocellulase-coding genes

through separate host and symbiont transcriptome sequencing

efforts [9,13]. In the present study, we developed novel

monosaccharide detection assays and conducted functional and
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translational studies with termite host gut and symbiont prepara-

tions, as well as recombinant enzymes (two cellulases and a

candidate lignase [17-19]) derived from the R. flavipes host gut

transcriptome. Our specific goals were to quantify the degrees of

biochemical mutualism between (i) host and symbiont, and (ii)

among host enzymes during termite lignocellulose digestion. Our

findings reveal the first examples of biochemical synergy in glucose

liberation from wood lignocellulose among host termites and their

symbionts, and among host enzymes expressed in symbiont-free

salivary gland tissue. These findings provide novel and timely

evidence that contributes to bioenergy technology development.

Moreover, these findings further reveal catalytic tradeoffs that

support previously untestable hypotheses relating to the evolution

of termite mutualism and sociality.

Results and Discussion

Overview
Softwood lignocellulose is composed mostly of glucose and

pentose polymers [20] that are important in termite nutrition [13].

We developed novel approaches that used colorimetric glucose

and pentose detection reagents to enable direct and specific

quantification of monosaccharide release from pine wood

lignocellulose and other cellulosic substrates. In initial validations

of these assays, the glucose assay was highly specific to glucose, the

pentose assay to xylose and arabinose, and no interference

occurred from mono- and disaccharides which can potentially

be present in gut homogenates (Fig. S1). To investigate host-

symbiont collaboration, we dissected termite guts into host and

symbiont fractions and tested them alone or in combination. The

host fraction consisted of the salivary gland, foregut and midgut

tissues (Fig. 1A, B), while the symbiont fraction consisted of the

hindgut and its rich microbial flora (Fig. 1B, C). It is well-

established that gut symbionts of lower termites like R. flavipes do

not reside outside of the hindgut paunch region [2,3,7,13]

primarily because of unfavorable oxygen concentrations

[13,19,21]. In the second half of this study, to determine the

contributions of individual host enzymes without competition from

co-expressed host and symbiont enzymes, we tested two

recombinant cellulases and a laccase that were identified

previously and extensively characterized [12,17-19].

Assays with Native Gut Tissue and Symbiont Fractions
Wood lignocelluloses, which are considered the main nutritional

source of R. flavipes, are composed approximately of 40% cellulose,

25% hemicellulose, and 20% lignin. The cellulose fraction is

composed of 100% glucose polymers, and the hemicellulose

fraction mostly of pentose polymers with ,10% glucose content

[7,13,20]. Thus, glucose can be liberated from both cellulose and

hemicellulose, whereas pentoses can only be liberated from

hemicellulose. Using pinewood sawdust as a substrate with native

gut enzyme preparations, significant glucose liberation was

observed in both gut fractions (Fig. 2A; Table S1) indicating

significant host and symbiont capabilities in glucose liberation.

While pentose release was also observed in host and symbiont

fractions (Fig. 2A; Table S2), it was only released at ,0.25x levels

relative to glucose. The glucose and pentose release levels

represent ,85% and ,70% release of available monosaccharides,

respectively; thus, not all available glucose and pentose were released and

our results do not simply reflect differences between the levels of these two sugars

in pine wood. We therefore conclude that significantly more glucose

than pentose release from lignocellulose occurs in the R. flavipes

gut, suggesting a greater importance for glucose as metabolic

currency in both termite and symbiont. These results also

correspond strongly with previous transcriptomic findings showing

1.7-fold greater numbers of expressed glucanase/cellulase genes

(n = 77) than hemicellulase genes (n = 45) in the R. flavipes gut [9].

To investigate if cellulose and hemicellulose digestion occur via

additive (i.e., collaborative) or greater-than-additive (i.e., synergis-

tic) processing between host and symbiont, we compared observed

vs. expected glucose and pentose released from the different gut

fractions (Fig. 2B; Table S3, S4). For this comparison, ‘‘observed’’

results represent monosaccharides released from the whole gut,

whereas, ‘‘expected’’ results represent the sum of monosaccharides

released from the combined host and symbiont fractions.

Observed glucose liberation was significantly greater than

expected (about 1.6-fold, p,0.0001), while observed and expected

pentose released were not different (p = 0.0881). Previously,

Cleveland [3-5] and Hungate [6], based on the earliest

experimental evidence of its kind, developed the first hypotheses

that host and symbiont may collaborate in termite lignocellulose

digestion. While our experimental design cannot account for host-

derived enzymes being present in the symbiont (hindgut) fraction,

the vastly different oxygen levels in situ [21], gene expression

Figure 1. The R. flavipes worker-caste digestive tract and
common protist gut symbionts. (A) Photograph showing host
and symbiont fractions used in the current research. (B) Drawing of the
R. flavipes worker digestive tract showing the esophagus (E), salivary
glands (SG), foregut (FG), midgut (MG), Malpighian tubules (MT), and
hindgut (HG) with the paunch that houses microbial symbionts. Gut
regions that served as host and symbiont fractions in the current study
are indicated. (C) Common protozoan hindgut symbionts of R. flavipes:
Dinenympha (Din.), Pyrsonympha (Pyrs.), Trichonympha (Tricho.), Spiro-
trichonympha (Spiro.), and Holomastigotes (Holo.). Termite gut photo by
J.A. Smith.
doi:10.1371/journal.pone.0021709.g001
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profiles [9,12,17-19], and activity differences (Fig. 2) do not suggest

host enzymes contribute significantly to observed activity in the

symbiont fraction or vice versa. These findings therefore provide the

first direct mechanistic evidence of digestive synergy between host

and symbiont as proposed by Hungate and Cleveland [3-6], but

only with respect to glucose liberation (i.e., pentose liberation is

additive between host and symbiont fractions, not synergistic).

Assays with Recombinant Host Enzymes
To further resolve host digestion capabilities as revealed by

native tissue assays, and to determine the contributions of

individual host enzymes without interference from competing

host and symbiont enzymes, we tested three recombinant host

enzymes that included a glycohydrolase family (GHF) 1 b-

glucosidase (b-glu) [17], a GHF9 endoglucanase (Cell-1) [18],

and a phenol-oxidizing laccase involved in lignin degradation

(LacA) [19]. All three enzymes have secretory signal peptides and

highest expression in symbiont-free salivary gland tissue, and they

catalyze cellulase or phenoloxidase activities [17-19], including

lignin modification in the case of LacA [19]. The pH optima,

temperature stability, and cofactor requirements for Cell-1 and b-

glu were determined previously [17,18]. Preliminary investigations

on the recombinant laccase enzyme revealed optimal activity at

pH 7, as well as sodium azide stimulation and EDTA inhibition

(Fig. S2). Sodium azide and the cofactor hydrogen peroxide [19]

could not be used in sawdust assays here because they were found

to interfere with the glucose detection assay (results not shown).

Quite unexpectedly, when combined, recombinant Cell-1 and

b-glu showed .300-fold and .70-fold increases in amounts of

glucose released from pine sawdust and beechwood xylan,

respectively, relative to each enzyme alone (Fig. 3A, 3B). It was

also noteworthy that the three-enzyme combination of Lac-6 +
Cell-1 + b-glu released a smaller amount of glucose from pine

sawdust than the two-enzyme combination of Cell-1 + b-glu

(Fig. 3A), likely through the process of end-product inhibition of b-

glu by liberated glucose (Fig. 4A) [22]. In subsequent kinetic

analyses, reductions in b-glu Km and Vmax values in the presence

of glucose suggest that glucose un-competitively inhibits b-glu by

binding enzyme-substrate complex [23] (Fig. 4B). Additional time-

course assays further corroborated the reduced activity for the

Cell-1+ b-glu+LacA combination over the two enzyme (Cell-1+ b-

glu) combination, as well as provided evidence showing that the

two- and three enzyme cocktails remain active for at least 24 hr at

37uC (Fig. 4C).

Converse to pine sawdust assays, the three-enzyme combination

of Lac-6 + Cell-1 + b-glu released greater glucose from beechwood

xylan than the Cell-1 + b-glu combination (Fig.3B), indicating that

Lac-6 significantly enhances glucose release from hemicellulose by

host cellulases. Thus, the two host cellulases show a high degree of

synergistic collaboration in cellulose and hemicellulose digestion,

and additionally host laccase action can enhance glucose release

from hemicellulose by host endoglucanases and b-glucosidases,

apparently by enabling hemicellulose disassociation from lignin or

esterified mono-lignols [13]. When using highly insoluble

Figure 2. Monosaccharides released from pine lignocellulose
by R. flavipes host (SG/FG/MG), symbiont (hindgut), and whole
gut fractions. (A) Glucose and pentose released in 10-hr assays. Bars
with different letters (a,b,c or x,y,z) are significantly different by Tukey’s
HSD test (p,0.05). P-values above the bars indicate significant
differences in glucose and pentose released within the different gut
fractions. (B) Comparison of expected and observed glucose and
pentose released. Expected values were determined by adding host and
symbiont fraction results from (A) above, while observed values are the
whole gut results from (A) above. P-values above bars indicate
significant differences for expected and observed monosaccharide
release. See Tables S1, S2, S3, and S4 for ANOVA summaries. Bars in
both panels indicate average 6 std. error determined from three
colonies with triplicate determinations each.
doi:10.1371/journal.pone.0021709.g002

Figure 3. Glucose released from pine lignocellulose and
beechwood xylan by three recombinant enzymes that repre-
sent genes sampled from the R. flavipes host gut transcriptome.
(A) Pine wood contains a combination of cellulose, hemicellulose and
lignin; whereas (B) beechwood xylan contains only hemicellulose and
lignin. The three recombinant enzymes tested were (1) the Cell-1
endoglucanase, (2) the b-glu beta-glucosidase, and (3) the LacA laccase
(see text for details). Each enzyme was tested alone and in two- and
three-way combinations. As shown in (A), .300-fold synergy in glucose
release occurred when combining Cell-1 and b-glu, but output was
reduced in the presence of LacA, likely via end-product inhibition. As
shown in (B), Cell-1 and b-glu attained .70-fold synergy when
combined, and the addition of LacA resulted in greater glucose output,
presumably via lignin-hemicellulose dissociation. Bars within graphs
with the same letters are not significantly different by Tukey’s HSD test
(p,0.05). Whole-model ANOVA results indicating significance are
shown.
doi:10.1371/journal.pone.0021709.g003
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microcrystalline cellulose as a substrate, results were nearly

identical to those obtained with pine sawdust (Fig. S3A). However,

the synthetically modified model substrate carboxymethylcellulose,

which is amorphous, lignin-free, and frequently used in animal

cellulase research, provided very different results suggesting

artificially elevated activity (Fig. S3B). Finally, virtually no pentose

release was observed from pine sawdust when using the various

combinations of recombinant enzymes (Fig. S4), indicating that

Cell-1 and b-glu are specific to b-1,4 glycosidic bonds residing

between glucose residues.

Mechanistic and Evolutionary Implications
While unexpected, the findings presented here are highly

important. Our results show: (i) greater glucose rather than

pentose released from pine lignocellulose (the same food source

used to provision termite lab colonies) by native termite gut tissues;

(ii) significant synergy between host and symbiont in glucose, but

not pentose, released; and (iii) significant glucose release

capabilities from various forms of cellulose and lignocellulose by

three recombinant host enzymes. As noted above, glucose-pentose

release ratios observed here are in strong agreement with ratios of

expressed cellulase and hemicellulase genes identified through

previous R. flavipes transcriptome analysis [9], and there is no

evidence to suggest upstream-acting host enzymes contribute

significantly to the observed activity in our symbiont preparations,

or vice-versa.

Most notably, these results show that the host-derived Cell-1

and b-glu enzymes are capable of an unprecedented high degree

of synergy in glucose liberation. However, when adding the lignin-

phenolic degrading LacA enzyme, glucose liberation by Cell-1 and

b-glu was significantly reduced, apparently by end-product

inhibition (Fig. 4), or potentially through the process of b-glu-

dependent transglucosylation that leads to glucose polymerization

and/or conjugation to phenolic compounds [24,25]. Therefore, our

findings reveal important catalytic costs to lignin dissociation/degradation (e.g.,

end-product inhibition) that could be a core evolutionary factor favoring termite-

symbiont mutualism. In this respect, hosting a diverse suite of hindgut

symbionts that produce synergistic cellulases to overcome end-

product inhibition [9,13] clearly offers an important fitness

advantage. Another advantage of hosting cellulose-digesting

symbionts is that laccases can act on phenolic precursors of insect

cuticle (e.g., tyrosine and dopamine [19]); thus, the over-production

of host laccases can potentially disrupt cuticle melanization, a

process important in the formation of the intima lining the foregut

and hindgut [26]. Lignin degradation also generates free radicals

and other metabolites that may be toxic to microbial symbionts

[7]. Thus, lignin modifying/degrading capabilities, while enhanc-

ing availability of fermentable monosaccharides, could potentially

limit the ability of the host termites to maintain its gut physiology

and gut microenvironment.

Our data therefore suggest that host gut laccase/lignase/

phenoloxidase capabilities should exist in fine balance and

dynamic equilibrium with symbiont and other host digestion

capabilities. Alternatively, maintenance of host digestive machin-

ery would also be evolutionarily favored not only because it

maximizes digestive outputs, but also because symbionts are lost

Figure 4. Evidence of end-product inhibition that limits host digestive capabilities. (A) Glucose inhibition of beta-glucosidase activity by
the recombinant b-glu enzyme. Results show decreasing turnover of the model substrate p-nitrophenyl-b-D-glucopyranoside (pNPG) in the presence
of increasing concentrations of free glucose. (B) Lineweaver-Burk double-reciprocal plot showing impacts of 10 mM glucose on pNPG activity by the
recombinant b-glu enzyme across a range of pNPG concentrations. Results show a shift in both km and Vmax, suggesting that glucose un-
competitively inhibits b-glu via interaction with the enzyme-substrate complex. (C) Results of time-course assays comparing the two enzyme
combination of Cell-1+b-glu to the three enzyme combination of Cell-1+ b-glu+LacA. Results show continual glucose output through the 24-hr
assays, as well as reduced activity for the three-enzyme combination. Reduced activity for the three enzyme combination presumably occurs through
end-product inhibition of b-glu as shown in (A) and (B). Combined results from (A), (B) and (C) suggest a host catalytic deficiency that is offset by
symbiont cellulose and hemicellulose digestive capabilities.
doi:10.1371/journal.pone.0021709.g004
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during molting (i.e., symbionts must be replenished by colony

mates after each molt, which is facilitated by a social lifestyle).

From a socio-evolutionary perspective, our findings provide some

of the first mechanistic evidence supporting the hypothesis that,

because it favored group living, utilization of a nutritionally poor

food source like lignocellulose was a driving force in the social

evolution of termites and their pre-social cockroach ancestors [27–

29].

Conclusions
Despite early evidence suggesting that termite lignocellulose

digestion occurs as a collaboration between host and symbionts

[3–6], the idea that this process is mediated exclusively by hindgut

symbionts has proliferated and remained popular [2,4,8]. Our

findings provide important new evidence showing that digestion

capabilities of the host termites are significant, and also that host

and symbiont synergistically contribute to release of the ferment-

able monosaccharide glucose from lignocellulose in the termite

gut. These findings provide unique and novel glimpses into termite

digestion and host-symbiont mutualism, and they are highly

relevant from basic and applied perspectives. Whether host

termites acquired their intrinsic capabilities of lignocellulose

digestion after adapting to a eusocial lifestyle and/or successful

establishment of symbiosis is a tantalizing question that will remain

unresolved until further molecular evolutionary analysis of their

symbiosis.

From the basic perspective of termite social evolution, by

revealing catalytic and nutritional tradeoffs, these findings provide

new support of previously untestable hypotheses on termite and

cockroach social living and host-symbiont mutualism [27–29].

From an applied perspective, by revealing synergistic enzyme

combinations and synergistic outputs, our findings contribute

important new information to assist in the development of novel

biocatalyst technologies and strategies for producing bioethanol

from 2nd generation (non-food) feedstocks [30,31]. In particular, it

will now be possible to test a wide range of recombinant symbiont

cellulases and hemicellulases [9,13] in combination with the host

enzymes reported here as synergistic biocatalyst cocktails for use in

industrial biomass-to-bioethanol operations.

Materials and Methods

Termites
R. flavipes colonies were collected in Gainesville, FL, USA and

maintained in sealed plastic boxes (30624610 cm) in complete

darkness (0:24 L:D), at 22uC and 70%RH. Colonies were

maintained without soil for 1–3 months before use and

provisioned with moist brown paper towels and pine wood shims

(Nelson Wood Shims; Cohasset, MN). The identity of colonies as

R. flavipes was verified by a combination of soldier morphology and

16S-mt-rDNA gene sequences. Only worker termites were used

because of their significant lignocellulose digestion capability

relative to other castes.

Dissections and Native Gut Preparations
Gut dissections were made from worker termites sampled from

three R. flavipes laboratory colonies. Two gut fractions from 25

individual workers per colony were collected: (i) foregut + salivary

gland + midgut ( = host fraction), and (ii) hindgut ( = symbiont

fraction). The gut fractions were pooled separately in phosphate

buffered saline, pH 7.0. Tissues were manually grounded using

1.5 mL Pellet Pestles (Kimble-Kontes; Vineland, NJ), centrifuged

for 15 min at 14,000 xg and 4uC, and the supernatant collected.

To assure consistency, protein content was determined using a

commercial Bradford assay (Bio-Rad; Hercules, CA). Gut

preparations were used at 5 termite equivalents per digestion

assay per replicate. The host and symbiont fractions were

combined in assays at 5 termite equivalents each to provide

whole-gut conditions.

Recombinant Enzymes and Digestion Assays
Three recombinant enzymes were prepared by Chesapeake-

PERL Inc. (Savage, MD, USA) and tested in highly purified form.

These included the b-glu beta-glucosidase [17] (Genbank Acces-

sion No. HM152540), the Cell-1 endoglucanase [18] (Genbank

Accession No. AY572862), and the LacA laccase [19] (Genbank

Accession No. GQ421909). Each enzyme was expressed, purified,

and extensively characterized in preceding studies as cited above.

Cell-1 and b-glu were tested at 8 mg per assay. LacA was tested at

1 mg per assay based on preliminary determinations. Assays

contained 2% w/v substrate in 750 mL sodium acetate buffer

(0.1M, pH 7) containing 0.01 M calcium chloride. Substrates used

were pine sawdust (Nelson Wood Shims; Cohasset, MN), beech-

wood xylan, microcrystalline cellulose, and carboxymethyl cellu-

lose (Sigma-Aldrich). The pH of the various substrate reaction

mixtures, determined using a pH meter and pH indicator paper,

ranged from 6.4–6.6. Assays with either native gut preparations or

recombinant enzymes (see quantities above) were incubated in

vented 1.5-mL tubes at 37uC and 220 rpm for either 10 hr (native

tissue assays) or 18–22 hr (recombinant enzyme assays). Assays

were stopped with 0.2 M EDTA at a ratio of 10 mL per 500 mL

assay buffer volume, to provide a final concentration of 4 mM.

The addition of EDTA in this manner was found to greatly

stabilize color formation after glucose and pentose detection (see

following sections). Reaction tubes were centrifuged 5 min at

16,000 xg, and the resulting supernatant used for glucose and

pentose detection as described below.

Glucose Detection
A commercial glucose-mutarotase (glucose C2) detection

reagent was used for glucose detection (Wako Chemical;

Richmond, VA). Supernatants from digestion assays were

obtained as described above and quantified in 96-well microplates.

Each assay technical replicate was divided into three 50-mL

reaction aliquots, which were each used for glucose detection.

Reagents for the glucose assay were added at 200-mL per well,

followed by orbital shaking for 5 mins. Absorbance was read as an

endpoint at 505 nm relative to a glucose standard curve. Each

assay plate was run in real-time with its own glucose standard

curve. All assays included buffer blanks that contained all reaction

components except protein. Standard curves were prepared as

seven serial dilutions in assay buffer with 4 mM EDTA from

5 mM downward to 0.078125 mM. The 8th well that contained

only buffer served as the blank control.

Several mono- and disaccharides were assayed in standard

curve format to validate the specificity of the glucose assay. The

mono- and disaccharides tested included glucose, mannose,

galactose, xylose, arabinose, rhamnose, glucuronic acid, galac-

turonic acid, cellobiose, sucrose, and trehalose (Sigma-Aldrich; St.

Louis, MO). Serial dilutions (8–12) from 5 mM downward were

tested in the validation assays (Fig. S1). Serial dilutions were made

in assay buffer with 4 mM EDTA. The assay was highly specific to

glucose and showed only minimal mannose interference outside

the linear glucose detection range (Fig. S1A,C).

Pentose Detection
This assay employed the methods of Roe and Price [32] and

Deschaletes and Yu [33]. The initial step was preparation of

Digestive Synergy in a Lower Termite
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bromoaniline detection reagent. All procedures were performed in

a fume hood with appropriate safety precautions. First, in a 15-mL

screw-cap plastic vial, 15-mL glacial acetic acid (Fisher Scientific;

Suwanee, GA) was added to 0.6-g thiourea (Sigma-Aldrich). This

saturated solution was gently inverted several times and centri-

fuged 5 mins at 1,000xg. The supernatant was transferred to a

50 mL screw-cap plastic tube and the thiourea pellet saved for

future re-use. Next, 0.3-g of 4-bromoaniline (Sigma-Aldrich) was

added to the supernatant and gently inverted 3–4x. This created

enough reagent for 75 replicate microplate assay wells. The

reagent had a yellowish color and remained active for over 1

month when kept wrapped in foil at room temperature.

For pentose detection, supernatants from digestion assays were

obtained as described above and transferred to microplate wells.

Three reaction aliquots were quantified per assay technical

replicate using 50-mL per well. Bromoaniline detection reagent

was added at 200-mL per well. The plate was then covered, placed

within a Pyrex baking dish, and heated at 70uC in a drying oven

for 15 min. Next, the plate (still within the Pyrex dish) was covered

with aluminum foil and left to cool to room temperature in a fume

hood for 70 min. Absorbance was read as an endpoint at 520 nm

relative to a xylose standard curve. All assay runs included buffer

blanks that contained all reaction components except protein.

Each assay plate was run in real-time with its own xylose standard

curve. Standard curves were prepared as seven serial dilutions in

assay buffer + 4 mM EDTA from 5 mM downward to

0.078125 mM. An 8th well that contained buffer alone served as

a blank.

The same mono- and disaccharides noted above for glucose

detection were assayed in standard curve format to validate

pentose assay specificity. Twelve serial dilutions from 5 mM

downward were tested in the validation assays. Serial dilutions

were made in assay buffer with 4 mM EDTA. This assay was

highly specific to the pentose sugars xylose and arabinose, with

minimal interference from galactose at 2.5 mM and above (Fig.

S1B,D).

Glucose (End-Product) Inhibition of Beta-glucosidase
Activity

Beta-glucosidase activity assays followed the methods of

Scharf et al. [17], using the model substrate p-nitrophenyl-b-

D-glucopyranoside (pNPG; Sigma-Aldrich). It was not possible

to use natural substrates and glucose detection reagent in these

glucose-inhibition assays because of interference from glucose.

Assays took place in 0.1 M sodium acetate buffer (pH 7), using

1.58-mg (2-mL) of recombinant b-glu [17] in a total reaction

volume of 250-mL. To examine end-product inhibition by

glucose, recombinant protein (2-mL) was pre-incubated with

50-mL buffer plus glucose solution for 5 min at room temp.

Eight serial dilutions of glucose were tested (250, 125, 62.5,

31.25, 15.63, 7.81, 3.91, and 1.95 mM), plus an uninhibited

control. Reactions were initiated by adding 200-mL assay

buffer containing 2.4 mM pNPG to the 50-mL mixtures of

protein + glucose. Assays were read kinetically at 420 nm every

20 sec for 5 min to yield mean velocity data in mOD/min.

Activity was determined based on the p-nitrophenol extinction

coefficient of 0.6605 mM21cm21. Glucose inhibition of beta

glucosidase activity was further tested using a single glucose

concentration of 10 mM across a serial dilution range of

substrate concentrations (6, 3, 1.5, 0.75, 0.372, 0.1875 mM),

with analysis by the Lineweaver-Burk double reciprocal

method [23]. Reported results were averaged from three

independent replicates, each conducted in triplicate. Finally,

time-course assays as shown in Fig. 4C were conducted up to

24 hr using double (Cell-1+ b-glu) and triple (Cell-1+ b-

glu+LacA) recombinant enzyme mixtures, with glucose detec-

tion as described above.

Replication Strategies and Statistical Analyses
Native gut tissue assays were run using three independent

colonies, each with three gut preparations and triplicate

determinations for each. Recombinant enzyme assays were

performed using three independent replicates, each with triplicate

determinations. Statistical analyses consisted of one-way analysis of

variance (ANOVA), followed by mean separation using Tukey’s

HSD test (p,0.05) only when ANOVA model statements were

first determined significant.

Supporting Information

Figure S1 Standard curves. Standard curves used to validate

the specificity of (A, C) glucose and (B, D) pentose detection

reagents. Eight monosaccharides (glucose, mannose, galactose,

xylose, arabinose, rhamnose, glucuronic acid, galacturonic acid)

and three disaccharides (cellobiose, sucrose, trehalose) were tested.

Glucose and xylose were included for reference in C and D.

(DOCX)

Figure S2 Recombinant laccase characterizations. pH

dependence (A), and sodium azide enhancement and EDTA

inhibition (B) for the recombinant Lac6/A laccase against the

model substrate 2,6-dimethoxyphenol (DMP; Coy et al., 2010.

Insect Biochemistry and Molecular Biology 40: 723-732). Sawdust

reaction buffer [0.1 M sodium acetate containing 0.01 M calcium

chloride and 50 mM hydrogen peroxide] was used in both assays.

(A) shows strongly enhanced activity in pH 7 buffer conditions

with 50 mM hydrogen peroxide. (B) Shows activity levels at pH 7

for untreated Lac6/A, sodium azide-enhanced Lac6, and EDTA-

inhibited Lac6/A.

(DOCX)

Figure S3 Glucose release from microcrystalline cellu-
lose and carboxymethyl cellulose by three recombinant
enzymes that represent genes sampled from the R.
flavipes host gut transcriptome. (A) Microcrystalline cellu-

lose is highly insoluble and is a dominant natural form of

lignocellulose; whereas (B) carboxymethyl cellulose is a chemically

modified, highly soluble, synthetic version of cellulose. The three

recombinant enzymes tested were the Cell-1 endoglucanase (1),

the b-glu beta-glucosidase (2), and the LacA laccase (3) (see text

and Fig. 3 for details). Each enzyme was tested alone and in two-

and three-way combinations. As shown in (A), .10-fold synergy in

glucose release occurred when combining Cell-1 and b-glu, but

output was reduced in the presence of LacA. As shown in (B),

much higher activity for individual enzymes was observed with no

evidence suggesting synergy (contrast against A and Fig. 1). Bars

within graphs with the same letters are not significantly different

by Tukey’s HSD test (p,0.05). Whole-model ANOVA results

indicating significance are shown.

(DOCX)

Figure S4 Pentose release from pine lignocellulose by
three recombinant enzymes that represent genes sam-
pled from the R. flavipes host gut transcriptome. Glucose

release (black bars) is shown for reference. See Materials and Methods

and preceding figures for methodological details. Results show

expected degrees of glucose release, but virtually no pentose

release, indicating that Cell-1 and b-glu are highly specific to b-1,4

glucose linkages.

(DOCX)
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Table S1 Glucose ANOVA, native gut fractions.
(DOCX)

Table S2 Pentose ANOVA, native gut fractions.
(DOCX)

Table S3 ANOVA for observed vs. expected glucose
release by native gut fractions.
(DOCX)

Table S4 ANOVA for observed vs. expected pentose
release by native gut fractions.
(DOCX)
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