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Geometry symmetry-free and higher-order optical
bound states in the continuum
Qingjia Zhou1,2, Yangyang Fu 3✉, Lujun Huang 4, Qiannan Wu5, Andrey Miroshnichenko 4,

Lei Gao 1,2✉ & Yadong Xu 1,2,6✉

Geometrical symmetry plays a significant role in implementing robust, symmetry-protected,

bound states in the continuum (BICs). However, this benefit is only theoretical in many cases

since fabricated samples’ unavoidable imperfections may easily break the stringent geome-

trical requirements. Here we propose an approach by introducing the concept of geometrical-

symmetry-free but symmetry-protected BICs, realized using the static-like environment

induced by a zero-index metamaterial (ZIM). We find that robust BICs exist and are pro-

tected from the disordered distribution of multiple objects inside the ZIM host by its physical

symmetries rather than geometrical ones. The geometric-symmetry-free BICs are robust,

regardless of the objects’ external shapes and material parameters in the ZIM host. We

further show theoretically and numerically that the existence of those higher-order BICs

depends only on the number of objects. By practically designing a structural ZIM waveguide,

the existence of BICs is numerically confirmed, as well as their independence on the presence

of geometrical symmetry. Our findings provide a way of realizing higher-order BICs and link

their properties to the disorder of photonic systems.
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Recently, bound states in the continuum (BICs) have
attracted a growing interest in the optics community1–7,
owing to their fundamental properties and their practical

applications, such as strong resonances8–10 and high-quality
optical lasing11–13. BICs are unique waves that lie in the con-
tinuum but remain entirely confined without any radiation. BICs
also features a resonance with an infinite quality (Q) factor in a
spectrum, i.e., they are dark modes. Photonic BICs originating
from various mechanisms have been found in a number of optical
systems, such as photonic crystal slabs3,14, dielectric gratings15,16,
spheres/rod arrays17,18, waveguides19,20, and others21. In parti-
cular, geometrical symmetries play a significant role in the study
of photonic BICs, resulting in the so-called symmetry-protected
BICs that may be found in several systems14,19,22. A simple
example is provided by a two-dimensional (2D) waveguide
structure loaded with two identical objects placed symmetrically
in space, see Fig. 1a. Owing to reflection symmetry, the coupling
of the discrete bound state of one symmetry class (i.e., odd
symmetry) to the other symmetry class’s continuous spectrum
(i.e., even symmetry) is forbidden, thus leading to the existence of
symmetry-protected BICs. Physically, electromagnetic (EM)
guide modes supported by the waveguide may be described by the
scalar wave function ψmðx; yÞ, which obeys the Helmholtz equa-
tion: Ĥψmðx; yÞ ¼ ðω2

m=c
2Þψmðx; yÞ, where Ĥ ¼ ∇2 þ ½n2ðx; yÞ þ

1�ω2
m=c

2 is the Hamiltonian, nðx; yÞ is the spatially dependent
refractive index profile, ω is the frequency and c is the light speed.
The symmetry-protected BICs are ensured by the commutation
relation ½Py; Ĥ� ¼ 0, where the parity operator Py is defined by
the transformation y ! �y, and the equality nðx; yÞ ¼ nðx;�yÞ
is guaranteed by the reflection symmetry.

The advantage of geometrical-symmetry-protected BICs is
their robustness. However, this advantage often comes at a cost:
the geometry of the system should be precisely controlled to
ensure the symmetry of continuous waves and bound states in the
system. A slight deviation from the required geometric structure
may break the symmetry, leading to ½Py; Ĥ�≠ 0 and, in turn, to
the loss of robustness. In practice, deviations from the exact
symmetry are unavoidable, due to imperfections in the fabrica-
tion technology. This is true in particular at higher operating
frequencies, such as THz or in the visible spectrum. As a result,

the advantage of robustness due to geometrical symmetry is easily
lost and it is only of theoretical significance. It is thus very rele-
vant to investigate any mechanism leading to symmetry-protected
BICs that are insensitive to the system’s geometry. Although
topological photonic crystals have been previously proposed to
realize topological Fano resonances (i.e., quasi-BICs) robust to
geometrical imperfections23, the topological photonic crystals
themselves are governed by the symmetry of geometric lattice,
leading to similar control problems on the system’s geometry.
Therefore, it is significant to achieve robust BICs beyond the limit
of geometrical symmetry and how to achieve robust BICs in a
disordered system is still an open question.

Due to their static-like field distribution, zero-index metama-
terials (ZIMs) make it possible to implement numerous optical
phenomena24,25, such as squeezing wave energy26,27, tailoring
wavefront28–30, total transmission and reflection31,32 and a few
others33–35. In particular, the concept of photonic doping36 has
been proposed to tailor the effective material parameters of a 2D
ZIM host doped with macroscopic dielectric objects. In fact, the
effective permeability μeff of the doped ZIM may be significantly
modified, while maintaining its effective permittivity unchanged
(i.e., εeff ffi 0) for traverse magnetic (TM) waves. Regardless of
the location, size, and number of the doping objects, the com-
posite structure is equivalent to a uniform system with a constant
index profile (i.e., C ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

εeffμeff
p

). Therefore, although a doped
ZIM may have no geometric symmetry, the condition ½Py; Ĥ� ¼ 0
may be valid because of Ĥ ¼ ∇2 þ ðC þ 1Þω2

m=c
2. In other words,

the reflection symmetry is preserved by the physical ZIM
homogenization at the macroscopic scale. Given N identical
objects immersed in a ZIM, the reflection symmetry holds even if
they are placed at arbitrary random locations. This fact provides
the basis to design a system with BIC based on physical symmetry
rather than geometric one.

In this work, we introduce the concept of geometric-symmetry-
free but physical-symmetry-protected BICs, i.e., a ZIM host
embedded with N ≥ 2 objects, which support radiative monopole
modes with non-zero magnetic flux. In particular, we demon-
strate the existence of robust geometric-symmetry-free BICs,
which could be realized regardless of the specific positions,
external shapes, and material parameters of the objects in the
ZIM host, owing to the nontrivial zero value of the total effective
magnetic flux in the N objects. In addition, we find that using N
doping objects enables higher-order BICs, and derive an analy-
tical formula for the N-dependent Q factor. Specifically, the N
objects can produce (N-1)-fold degenerate BICs. These results are
very different from those reported previously for ZIM-based
optical systems37–39, where the BICs (embedded eigenstates) are
induced by the non-radiative higher-order cavities modes (e.g.,
dipole mode) with zero magnetic flux in each object. Our results
break the conventional wisdom of a ZIM-based BIC excluded
from monopole modes40, and pave a way to study the higher-
order BICs and the associated physics.

Results
Models and theory. We start our discussion from a typical 2D
waveguide system (Fig. 1a). The upper and lower boundaries of
the waveguide are perfect electrical conductors (PECs). For TM
polarization (the magnetic field is along the z-direction), the
waveguide supports two continuous waves (guide modes), with
even and odd symmetry with respect to the axis of symmetry of
the waveguide (the dash dot line). Those odd modes have a cutoff
frequency. If we introduce two identical objects with reflection
symmetry, we obtain two bound modes localized near the objects,
showing even and odd symmetry, respectively. The odd bound
mode is embedded in even guided mode continuum, which
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Fig. 1 Geometric-symmetry-free and higher-order BICs induced by zero-
index media (ZIM) in a waveguide. a A two-dimensional (2D) waveguide
structure with reflection symmetry for symmetry-protected BICs, where
two identical objects (blue circle with solid boundary) are placed
symmetrically in space. If one object is shifted (the blue circle with a
dashed boundary), the BIC disappears. b After filling ZIM in the waveguide,
the system supports a BIC which is independent of the location of objects. c
The geometric-symmetry-free BIC is insensitive to the doping objects’
shapes, materials, and distributions. d Higher-order BICs are implemented
by embedding multiple objects in ZIM.
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guarantees a robust BIC mode1. However, when one of the object
is spatially shifted (the circle with dashed boundary in Fig. 1a),
the system’s reflection symmetry is lost, leading to the dis-
appearance of the robust BIC mode. In the following, we will
show that such BIC mode could be preserved by introducing the
background medium of ZIM for the two objects (see Fig. 1b),
even if the external shapes, materials, and number of these objects
are arbitrarily changed (see Fig. 1c, d). Let us assume that N
objects of arbitrary shape are randomly placed in a ZIM host
(Fig. 1d), and that they are non-magnetic dielectrics with per-
mittivity εd. To uncover the underlying physics of BICs in this
kind of systems, impedance-matched is assumed in the ZIM, i.e.,
ε1 ¼ μ1 ! 0. We consider a TM wave with an amplitude of 1 A
m−1 normally incident from the left. Following ref. 32, we have
that the transmission coefficient of the ZIM waveguide system is
given by

T ¼ 1

1� ðiω=2wH1Þ ∑
N

i¼1

H
∂Ci

Ai � dl
ð1Þ

where Ai is the magnetic potential at the boundary ∂Ci of the i-th
objects, w is the width of ZIM, H1 is a local magnetic field in the
ZIM, ω ¼ 2πf is the angular frequency of the incident wave, and f
is the working frequency. The term

H
∂Ci

Ai � dl represents the
magnetic flux inside the i-th object. For the sake of simplicity, let
us consider a cylindrical shape first (Fig. 1b). Then the magnetic
flux inside the i-th cylinder can be expressed as

φi ¼
I

∂Ci

Ai � dl ¼
2πH1

ω

J1ðkdRiÞRi

J0ðkdRiÞ
ffiffiffiffi
εd

p ð2Þ

Here kd ¼
ffiffiffiffi
εd

p
ω=c is the wave vector in the objects and Ri is

the i-th cylinder’s radius. From Eqs. (1) and (2), we see that the
transmission coefficient depends on the properties of the object,
but it is independent of the objects’ location in the ZIM.

Geometry symmetry-free BICs. We first consider the simple case
of two cylindrical objects in the ZIM (Fig. 1b). Figure 2a shows

the analytical results for the transmission coefficient as a function
of εd and α, where α ¼ ðR2 � R1Þ=R1 is the asymmetry parameter.
In the analysis, we fix the working frequency at 15.0 GHz by
considering a narrow bandwidth of the ZIM and also keep the
size of one object (R1 ¼ 8mm), only change the permittivity of
objects and the asymmetry parameter to observe the proposed
BICs conveniently. As it is apparent from Fig. 2a, for a fixed α, a
transmission resonance emerges as εd changes. In particular, for
α ! 0, such transmission peak becomes very sharp, and the
corresponding quality factor diverges Q ! 1. However, at α ¼ 0
the transmission peak turns into a dip. This is a typical signature
of a BIC mode, i.e., a resonance with zero linewidth. Moreover,
Fig. 2b shows the transmission spectrum for α ¼ �0:01, corre-
sponding to a quasi-BIC mode. An electromagnetically induced
transparency (EIT)-like behavior appears, with a peak occurring
at εd ¼ 4:86, and two valleys at εd ¼ 4:82 and εd ¼ 4:92,
respectively. The typical feature of our system different from
others is that our revealed quasi-BIC shares EIT-like lineshape,
which is a special type of Fano resonance41. We validate our
results by numerical simulations with objects at different loca-
tions, see red and yellow balls in Fig. 2b. The numerical results
agree with the analytical ones, and the EIT-like behavior is pre-
served regardless of the two dielectric rods’ locations. In simu-
lations, the real part of the magnetic field is 1 Am−1 for incident
wave arriving at the left boundary of ZIM. The imaginary (real)
part of magnetic field in the objects is dominant for the case of
total reflection (total transmission). To clearly reveal the field
enhancement and the phase relationship in the objects, the cor-
responding imaginary/real part of the magnetic field in the ZIM
region of Fig. 1b is shown in Fig. 2c, d. Physically, these two
valleys are stemming from monopole mode resonance occurring
in either the object with R1 (the left patterns in Fig. 2c, d) or the
object with R2 (the right patterns in Fig. 2c, d). Monopole mode
resonances coincide for the two objects for the transmission peak,
yet out of phase (the middle patterns in Fig. 2c, d). Note that such
quasi-BIC mode leads to great field enhancement inside two
objects: the EM field in the center is increased by >100 times
compared to the incident field. Hence, the revealed (quasi)-BIC

Fig. 2 BIC illustrations. a 2D map of the transmission coefficient as a function of the permittivity εd and the asymmetry parameter α. An ideal BIC occurs at
α ¼ 0 and εd ¼ 4:82 (the white dash circle). b Transmission spectrum for α ¼ �0:01. The solid blue curve denotes the analytical results. The red and
yellow balls represent the simulated results for the two different distributions. The simulated magnetic field in the ZIM region for distribution 1 and
distribution 2 is shown respectively in panels (c) and (d). N, M, and P correspond to the two transmission dips and the peak, respectively. In the numerical
simulations, the incident magnetic field is 1 A m−1, and the parameters of ZIM are ε1 ¼ μ1 ¼ 10�4. The other relevant parameters are: R1 ¼ 8mm,
w ¼ 44mm, l ¼ 60mm, and the working frequency is 15.0 GHz.
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mode provides an alternative way to enhance the optical non-
linear response42,43.

To reveal the underlying physical mechanism, responsible for
BIC modes’ appearance, we define a normalized magnetic flux for
each objects, i.e., Φi ¼ φiω=ð2πH1Þ, where the normalized factor
ω=2πH1 is the same for all the objects. Figure 3a shows Φi as a
function of εd for the two objects. For each object, the induced Φi
changes with εd, featuring a strong resonance. The induced
magnetic flux is pointing in opposite directions before and after
this resonance, marked by the symbols “+” and “−” in the plot.
Due to the different radii of two objects, their peaks do not
overlap and are located at εd ¼ 4:82 and εd ¼ 4:92, respectively.
These two values are consistent with the two transmission valleys
in Fig. 2b. Between these two resonances, there is an intermediate
region (the yellow area), in which the induced magnetic fluxes of
these two objects have opposite directions. In particular, when the
amplitudes of two magnetic fluxes are equal (i.e., at the crossing
point), the total magnetic flux is zero, i.e., ∑Φi ¼ 0 while Φi ≠ 0.
The permittivity corresponding to this crossing point is exactly
the same as that for the transmission peak in Fig. 2b. For
vanishing asymmetry parameter (α ! 0), the two resonance
peaks tend to overlap and the middle region shrinks. Yet, the total
magnetic flux is always zero, thus ensuring the occurrence of the
transmission peak. One may conjecture that for α ¼ 0 the two
resonance peaks are going to coincide exactly at εd ¼ 4:82, and
that there are two-fold degenerate states in the two objects, i.e.,
one state with infinite total flux and the other one with zero total
flux. In particular, the state with zero total flux is a dark mode,
leading to ideal BIC. Thus, the BIC mode discussed above is
physically related to the nontrivial zeros of the total magnetic
flux, i.e., ∑Φi ¼ 0 while Φi ≠ 0, which distinguishes from the
common situation of ∑Φi ¼ 0 with Φi ¼ 040. In fact, ∑Φi ¼ 0 is
general condition for BICs in the doped ZIM system and applies
to two different situations, i.e., radiative monopole modes related
to Φi ≠ 0, and higher-order cavities modes caused by zero
magnetic flux in each object (Φi ¼ 0). In addition, it is noted
that similar to the conventional symmetry-protected BIC, the
proposed BIC can exist at any permittivity for the objects with a
fixed size, as long as its shifted working frequency is still located
in the frequency window of ZIM (see Supplementary Fig. 1).

In order to validate this picture, we analyze the eigenmodes of
the doped ZIM numerically and analytically (see Supplementary
Note 1). For α ¼ 0, there are two eigenmodes at the eigenfre-
quency 15 GHz, and Fig. 3b shows the corresponding field
distributions, where the color contour is the out-of-plane
magnetic field, and the black cones denote the directions of the
in-plane electric field. Note that we cannot define exactly the

symmetry of the two eigenmodes due to the absence of any
geometric symmetry. However, suppose we focus on the magnetic
field distributions in the two objects. In that case, we can see that
one of these two eigenmodes exhibits symmetry-like features, e.g.
in-phase magnetic field profiles in the two objects, and vortex-like
electric fields in the two objects having the same rotation
directions. The other one is the anti-symmetric-like mode, as
indicated by the out-phase magnetic field profiles in two objects,
and by the electric fields’ opposite rotation directions. Intuitively,
these two-fold degenerate eigenmodes result from the inter-
ference of the fields inside the ZIM background radiated from
monopole modes in the two objects, as they have identical
resonant frequency and easily couple with each other. The anti-
symmetry mode with zero total flux corresponds to a BIC mode
(dark mode), which has a zero linewidth and is totally decoupled
with external incidence, as reflected by the zero magnetic fields in
the ZIM background (see Fig. 3b). As a result, the expected total
transmission from the condition of zero total flux in Eq. (1)
cannot appear (but it is accessible for a quasi-BIC mode with
narrow linewidth as it is can couple with external incidence).
Instead, the symmetry state (bright mode) with a non-zero
background field (see Fig. 3b) is coupled with the external
incidence, which leads to the zero transmission (see Fig. 2a)
owning to its infinite total flux. Thanks to the quasi-static feature
and constant field in the ZIM, these eigenmodes can usually exist
independently of their specific distribution.

Moreover, as the BICs result from the nontrivial zeros of the
total magnetic flux in the objects, it offers great flexibility for the
material parameter and geometric shape of all the objects in ZIM
(see Fig. 1c). To demonstrate these features, we numerically
studied several cases of dielectric objects with square, triangle,
arbitrary external shapes and different filling materials. In all
cases, similar BICs are found, always coming from the nontrivial
zero of the total flux in the two objects with the anti-symmetry-
like mode state, which are displayed respectively in Supplemen-
tary Figs. 4–7. In particular, even in a more general model of two
objects consisting of a rectangular object with εd ¼ 9 and a
cylinder with εd ¼ 4:82, the proposed BIC is revealed analytically
and numerically (see Supplementary Note 2 and Supplementary
Fig. 8), which well confirms the existence of the proposed BIC
independent of the material parameter and geometric shape of
these objects in ZIM.

Higher-order BICs. Following the results obtained with two
objects, we turn attention to the general case, i.e., a ZIM with an
arbitrary number of objects (N groups of objects). Interestingly,
we find that the presence of N objects leads to (N-1)-th order

Fig. 3 Normalized magnetic flux and eigenmode analysis. a Normalized magnetic flux in each object as a function of εd, “+” and “−” denote the direction
of magnetic flux. b Eigenmode analysis for a ZIM environment with two identical objects with R1 ¼ R2 ¼ 8mm and εd ¼ 4:82. Filling contours are out-of-
plane magnetic field, and black cones represent the in-plane electric field.
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BIC. For simplicity, as shown in Fig. 1d, let us consider the case
N= 3 to illustrate the phenomenon. The analytical and numerical
results for transmission spectrum are shown in Supplementary
Fig. 9, where the radius of the first object is fixed R1 ¼ 8mm, and
the other ones have slightly different radii, i.e., R2 ¼ 7:92mm and
R3 ¼ 8:08mm. As apparent from the plot, two EITs may be seen
in the transmission spectrum, stemming from the zero total
magnetic flux in the three objects, i.e., ∑Φi ¼ 0. Figure 4a shows
Φi as a function of εd for the three objects. There are three
resonant peaks, which divide the whole range into four areas.
There are two intermediate regions (colored regions in the plot),
and there is a point where ∑Φi ¼ 0 in each region. This means
there are two quasi-BIC modes in the N= 3 case. As α2 ! 0 and
α3 ! 0, these two quasi-BIC modes coincide, leading to a high-
order BIC mode. Further, the ZIM background’s eigenmodes with
three identical objects (corresponding to αi ¼ 0) have been ana-
lyzed, and their corresponding field distributions are shown in
Fig. 4b: three eigenmodes appear at the eigenfrequency 15 GHz.
Unlike the N= 2 case, the symmetry of eigenmodes in this
situation cannot be exactly defined, because the magnetic field
distributions in three objects are irregular. Instead, these three
modes can be distinguished by the intensity of the magnetic field
in ZIM, i.e., one bright mode with a non-zero magnetic field in
the ZIM, and two dark modes with zero magnetic field in the
ZIM. In particular, both dark modes fully decouple from the
external excitation and enable two-fold degenerate BIC. Strictly
speaking, the symmetry of BICs in a general configuration cannot
be defined, except for the case of N= 2. Accordingly, for N
objects in ZIM, there are N-1 groups of EITs and N-1 groups of
quasi-BIC modes (linked to the condition ∑Φi ¼ 0). Conse-
quently, N identical objects in the ZIM induce (N-1)-fold
degenerate BICs.

The presence of higher-order BIC is further confirmed by
looking at the Q factor for N objects’ case. For simplicity, we
assume that the N objects consist of (N-1) identical objects with
fixed radius Ra ¼ 8mm and one object with a variable radius Rb.

After some calculations (see Supplementary Note 3), the Q factor
of the quasi-BIC is derived as,

Q ¼ 2πk0R
2
bffiffiffi

3
p

ws2v

N
α2

ð3Þ

where sv is the v-th solution of J0ðxÞ ¼ 0 and α ¼ ðRb � RaÞ=Ra is
the asymmetry parameter. For the current case (Ra ¼ 8mm and
f= 15.0 GHz), the second solution (v= 2) corresponds to the
object’s monopole resonance, marked as TM02 mode. Clearly, Q
factor is proportional to N and inversely proportional to α2. This
is a universal behavior for the Q factor of a quasi-BIC as a
function of the asymmetry parameter44. Figure 4c shows the
relation between Q and α for different N (red, yellow, and blue
curves refer to the cases of N= 2, 3, and 5, respectively). The
analytical results are calculated using Eq. (3), and the numerical
ones are obtained from COMSOL. Both analytical and numerical
results agree with each other, with the slight deviation seen for
large N caused by the theoretical analysis’s approximations. In
particular, the condition α ¼ 0 leads to an infinite Q, which
proves the existence of the BICs theoretically. For α deviating
from zero, the quasi-BICs may occur with a finite and high Q
factor. For a fixed α≠ 0, the Q factor may be increased mainly by
adding objects with Ra, leading to further enhancement of EM
fields confined inside the objects (see Fig. 4d). This result is
further confirmed by eigenmode analysis (see Supplementary
Note 1 and Supplementary Fig. 3). This finding provides a feasible
way to enhance optical structures’ dielectric sensitivity to external
perturbations by simply incorporating multiple objects of the
same size.

The frequency response of BICs. It is known that the frequency
response of a ZIM is usually narrowband, i.e., ZIM-based devices
only work at a single frequency. In spite of this, the BIC
discussed above can still be found in the spectrum because the
BIC with an extreme Q factor has a narrower bandwidth response

Fig. 4 Higher-order optical BICs. a Normalized magnetic flux as a function of εd for a ZIM with three objects having R1 ¼ 8mm, R2 ¼ 7:92mm and
R3 ¼ 8:08mm. b The eigenmodes for a ZIM host with three identical objects (R1 ¼ R2 ¼ R3 ¼ 8mm and εd ¼ 4:82) at 15.0 GHz. c Q factor as a function of
the asymmetry parameter for different values of N (the number of objects). The solid curves and circles denote the analytical and numerical results,
respectively. The inset shows the same results in log scale. d Out-of-plane magnetic field at total transmission for α ¼ �0:01. Higher-order quasi-BICs are
observed.
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compared to that of the ZIMs. To illustrate this point, we assume
the ZIM to be a Drude-like material with parameters
ε1 ¼ μ1 ¼ 1� ω2

p=½ωðωþ iγÞ�, where ωp is plasma frequency and
γ is the damping. To make the discussion simpler, we set ωp ¼
2π ´ 15 ´ 109 rad=s and ignore the damping, i.e., set γ ¼ 0.
Figure 5a shows the corresponding dispersion relationship, in
which for 0:98≤ω=ωp ≤ 1:02, the material features a near-zero
profile, ranging from −0.02 to 0.02. With this dispersion, Fig. 5b
shows the calculated transmission coefficient as a function of ω
and α for N= 2 case. We can clearly observe BIC features similar
to those in Fig. 2a. For a fixed α, a transmission resonance of
quasi-BIC emerges in the spectrum close to ω=ωp ¼ 1, and as
α ! 0, it becomes shaper and eventually disappears (see Fig. 5c).
These results further confirm that the case α ¼ 0 is associated
with an ideal BIC. This form of BIC actually provides a
mechanism to slow the speed of light, thus enhancing the inter-
action between light and matter. Fig. 5d shows the calculated
transmission phase shift ϕðωÞ (blue curve) and the delay time (the
red curve) by using the relation45 τ ¼ ∂ϕðωÞ=∂ω for a quasi-BIC
mode with α ¼ �0:01. A noticeable delay is seen at ω=ωp � 1. As
α ! 0, the phase shift gets steeper and steeper, and when α ¼ 0
corresponding to an ideal BIC, the phase shift abruptly change at
ω=ωp � 1, just like a step function, which means an infinite delay
time, at least theoretically.

Practical design and demonstration of ZIM-based BICs using a
structural waveguide. Realistic ZIMs are lossy, and this fact may
erase almost all ZIM-based effects. However, the loss of dielectrics

or metals can be negligible at microwave frequencies. There are
also some methods to implement a lossless ZIM, such as the
Dirac-cone-like photonic crystals46. Alternatively, effective ZIMs
with matched impedance may be implemented in waveguide
systems36, consisting of two rectangular waveguides (port 1 and
port 2) and a waveguide junction. By operating at a working
frequency close to the cutoff frequency of each guided mode (e.g.,
TE10 mode), the effective permittivity of the waveguide junction is
that of an epsilon-near-zero (ENZ) medium, and its effective
permeability could be tuned by doping the waveguide junction
with suitable dielectric rods, thus realizing an effective ZIM with
matched impedance (see Fig. 6a). In our design, the height of the
waveguide, i.e., the separation of two parallel metallic plates in the
z-axis, is H ¼ λ0=2, and the operating frequency is f 0 ¼ 2:5GHz,
corresponding to the cutoff frequency of TE10 mode. The cross-
section of the waveguide junction is a square with a side L= 240
mm, and the width of the input (output) waveguide port is W=
42 mm. A dielectric material (Teflon, εt ¼ 2, blue areas in Fig. 6a)
is used to fill in the input and output waveguides, such that TE10
mode above the cutoff frequency is supported. A silicon rod is
inserted in the waveguide junction to tune the effective perme-
ability, and 16 metallic wires with a diameter of 3.18 mm are
placed (equally spaced) around it to form a circle with radius 26.8
mm, which allows it to avoid excitation of other guided modes.
Since the setup is aimed at demonstrating quasi-BIC in this ZIM
environment, at least additional two objects (e.g., two rods) are
required. To this aim, two identical circles (each one made of 16
metallic wires) are also involved in the waveguide junction (see
Fig. 6a).

Fig. 5 BIC frequency response in a dispersive ZIM with two cylindrical objects. a Drude model for ZIM media. b Transmission coefficient as a function of
frequency and α for fixed R1 ¼ 8mm and εd ¼ 4:82. c Transmission coefficient as a function of frequency: quasi-BIC turns to BIC as α ! 0. d The phase
shift in the transmitted light and group delay due to quasi-BIC.
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Based on such a waveguide configuration, we numerically
obtain the transmission spectrum (|S21 | ), which is in Fig. 6b,
where the radius of the silicon rod is set to R0 ¼ 14:087mm.
High transmission, beyond 80%, is found in a narrow band (grey
region) from 2.5 to 2.5002 GHz, caused by the near-zero index
region (εeff � μeff � 0) (see the analytical results in Supplemen-
tary Note 4 and Supplementary Fig. 10). In particular, a unity
transmission occurs at 2.5001 GHz, which means that an effective
ZIM with matched impedance (εeff ¼ μeff ! 0) is obtained as
indicated by Supplementary Fig. 10. Also, the inset in Fig. 6b
shows the corresponding magnetic field pattern in the waveguide
at 2.5001 GHz. Total transmission is observed, and the constant
phase distribution appears in the waveguide junction, also
implying that an effective ZIM with matched impedance is
achieved. Then, we add two dielectric rods (aluminium oxide)
with εd ¼ 9 into the waveguide, as shown in Fig. 6c (distribution
1). By changing the asymmetry α of the two aluminium oxide
rods, the transmission spectra shown in Fig. 6d are obtained (red
curves). For α ! 0, the transmission peak occurring at 2.5001
GHz becomes narrower, which means that a quasi-BIC is
obtained with a higher Q factor. The corresponding magnetic
field distributions in the waveguide junction are shown in the
insets of Fig. 6d, where the corresponding field distribution in two
aluminium oxide rods are out of phase, and their amplitudes are
stronger for α ! 0. Next, we change the locations of R1 and R2
(distribution 2). As can be seen from the yellow dashed curves,

the ultrasharp spectra are almost the same as their counterparts
coming from distribution 1. This confirms that the ZIM-based
BIC is not affected by the structural disorder. These results are
consistent with the ideal ones reported in Fig. 2. For α ¼ 0, the
resonant peak disappears in the transmission spectrum, indicat-
ing the presence of an ideal BIC.

Discussion
In conclusion, upon exploiting the static-like environment of ZIM
in 2D waveguide, we have theoretically proposed and numerically
demonstrated the existence of geometric-symmetry-free BICs.
Those BIC modes are determined by the nontrival zero of total
magnetic flux in the objects in the ZIM host, and exist inde-
pendently on the shape, position, and filling material of the
objects, which are unique features compared with previous
results. Remarkably, higher-order BICs may also easily achieved
by doping the ZIM host with more objects. More precisely, N
identical objects have been shown to induce (N-1)-th order BICs,
and this result provides a feasible and straightforward way to
manipulate the Q factor of quasi-BIC mode. Although the exis-
tence of geometric-symmetry-free BICs has been revealed using
ZIMs with matched impedance, similar results may also be
obtained in an ENZ-based host (see Supplementary Note 5 and
Supplementary Fig. 11). In principle, the proposed ZIM-based
BICs may be also extended to higher frequency, such as optical
regime, considering the experimental advance of ZIM from

Fig. 6 Experimental design for ZIM-induced BIC in a metallic rectangular waveguide system. a Schematic diagram of a metallic rectangular waveguide
system with ZIM. The upper parallel metallic plate is hidden to show the internal structure clearly. b Numerically calculated transmission spectrum |S21| of the
designed waveguide system with ZIM. The grey region shows the parameter region of εeff � μeff � 0. The inset shows the magnetic field in the middle plane
(z=H/2) at the resonant transmission. c Schematic diagram of the metallic rectangular waveguide system for observing BIC, where two dielectric rods (aluminium
oxide) are added in the designed waveguide system with ZIM. d Transmission spectrum |S21| for the aluminium oxide rods with different α. The red solid and yellow
dashed curves denote the two different distributions of aluminium oxide rods. The insets show the corresponding magnetic field patterns in the waveguide junction
(square area) with doped rods. Simulation parameters of R1 and R2: α ¼ 6:4 ´ 10�3 (R1 ¼ 16:176mm and R2 ¼ 16:280mm), α ¼ 4:0 ´ 10�3 (R1 ¼ 16:195mm
and R2 ¼ 16:260mm), α ¼ 1:5 ´ 10�3 (R1 ¼ 16:215mm and R2 ¼ 16:240mm), α ¼ 0 (R1 ¼ R2 ¼ 16:227mm). In all simulations, the metals are the perfect
electric conductor (PEC) and the material parameters are εt ¼ 2, εSi ¼ 11:7, εd ¼ 9.
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microwaves46 to communication wavelengths47,48. Still, con-
siderable implementation complexity, such as lossless ZIM,
structural optimization for both ZIM and dielectric obstacles, will
be challenging. Our findings offer a way to implement an optical
BIC mode without stringent requirements on the system’s geo-
metry and enable flexible manipulation of robust, sharp reso-
nances. We foresee promising applications in ultra-fast optical
switches, filters, and sensors.

Methods
Numerical simulations. The data in Figs. 2b, 4c, and 5b–d, and the field patterns
in Figs. 2c, d, 3b, 4b–d, and the insets of Fig. 6b, d were obtained using the finite
element solver COMSOL Multiphysics. For eigenmode analysis, in simulations, we
studied a case of a ZIM background containing two same objects of εd ¼ 4:82
instead. A large ZIM area under a scattering boundary condition replaces the
infinite ZIM. We obtained two eigenfrequencies and corresponding filed pattern, as
shown in Fig. 3b. Similar procedures were applied to the case of three cylinders
with εd ¼ 4:82 and R1 ¼ R2 ¼ R3 ¼ 8mm embedded in the ZIM environment.
Based on numerical calculations, we can easily get each eigenmode’s eigen-
frequency and its corresponding field pattern, as shown in Fig. 4b. In order to save
memory, PEC boundary conditions are used to represent the metal during the
simulation of Fig. 6b, d.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
The code used for the analyses will be made available upon e-mail request to the
corresponding author.
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