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Evaluation of aliphatic acid
metabolism in bladder cancer
with the goal of guiding
therapeutic treatment

Tianbao Song1†, Kaixiang He1†, Jinzhuo Ning1†, Wei Li2,
Tao Xu3, Weimin Yu1, Ting Rao1*‡ and Fan Cheng1*‡

1Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China, 2Department of
Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China, 3Department of Urology,
Huanggang Central Hospital, Huanggang, China
Urothelial bladder cancer (BLCA) is a common internal malignancy with a poor

prognosis. The re-programming of lipid metabolism is necessary for cancer cell

growth, proliferation, angiogenesis and invasion. However, the role of aliphatic

acid metabolism genes in bladder cancer patients has not been explored. The

samples’ gene expression and clinicopathological data were obtained from the

Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO).

Univariate, multivariate, and LASSO Cox regression were used to develop a

BLCA prognostic model. GSVA was used to assess function, whereas

pRRophetic was used to assess chemotherapeutic drug sensitivity. The

twelve-gene signature may define the tumor immune milieu, according to

the risk scoremodel. We compared the expression of aliphatic acidmetabolism

genes in malignant and non-cancerous tissues and chose 90 with a false

discovery rate of 0.05 for The Cancer Genome Atlas cohort. The prognostic risk

score model can effectively predict BLCA OS. A nomogram including age,

clinical T stage, gender, grade, pathological stage, and clinical M stage was

developed as an independent BLCA prognostic predictor. The halfmaximal

inhibitory concentration (IC50) was used to assess chemotherapeutic

medication response. Sorafenib and Pyrimethamine were used to treat

patients with low risk scores more sensitively than patients with high risk

scores. Immunotherapy candidates with CMS1 exhibited higher risk ratings.

The aliphatic acid prognostic risk score model can assess metabolic trends.

Clinical stage and molecular subtype may be used to categorize individuals

using the risk score.With this new paradigm, future cancer treatment and

immunotherapy may be tailored to the patient’s exact requirements.
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Introduction

Bladder cancer is the tenth most frequent kind of cancer

globally, with an expected 549 393 new cases and 199 922 deaths

from bladder cancer in 2018 (1). The majority of bladder cancers

are urothelial carcinomas and are classified as per their

therapeutic implications as non-muscle invasive bladder

cancers (NMIBC) or muscle invasive bladder cancers (MIBC)

(2). Tobacco use and occupational exposures (e.g. arylamines)

are the primary risk factors for developing urothelial bladder

cancer in the United States of America, and they also enhance

the likelihood of recurrence (3). Transurethral resection of the

bladder tumor (TURBT) is commonly advised in individuals

with superficial bladder cancer, with or without intravesical

therapy (3). The primarystay of therapy for muscle-invasive

bladder cancer is radical cystectomy (RC) (4). The degree of

bladder wall invasion is strongly linked with the clinical therapy

of bladder cancers (5) Around 75% of individuals initially

diagnosed with bladder cancer have NMIBC, with around 10%

progressing to MIBC or metastatic bladder cancer (6). The

expenditures of bladder cancer therapy, monitoring, and

managing treatment-related side effects are significant (7).

Despite advancements in early detection and systematic

treatment of bladder cancer, some people continue to have

recurrence or metastatic bladder cancer illness. As a result, it

is critical to determine early diagnostic along with prognostic

indicators of BLCA proliferation, as well as to develop novel

ways for BLCA diagnosis and treatment, in order to optimize

therapeutic results.

Fatty acids (FAs), a broad class of molecules made up of

hydrocarbon chains with various lengths and degrees of

desaturation, are the starting point for the synthesis of many

lipids. FAs make up the hydrophobic tails of phospholipids,

glycolipids, and cholesterol, which together make up a

significant portion of biological membranes. In addition,

second messengers that are produced in response to external

stimuli, such as diacylglycerol (DAG) and phosphatidylinositol-

3,4,5-trisphosphate (PIP3), are also produced by membrane

lipids. FAs may also be combined to form triacylglycerides

(TAGs), nonpolar lipids that are produced and stored during

periods of high nutritional availability and that, when broken

down, release a significant amount of energy. In the majority of

cancers, the tumor microenvironment is mostly composed of

tumor cells and a variety of tumor stromal cells, cytokines and

chemokines, immune cells, along with their mediators (8). Not

only cytogenetics is involved in the tumor microenvironment,

but also a knowledge of tumor activity in the surrounding milieu

(9). Controlling tumor development and spread requires

changing tumor cells and their microenvironment (10). The

tumor microenvironment (TME) is pivotal for cancer

prevention and immune suppression (11). Low oxygen levels

in TME caused by an irregular tumor blood supply, high
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metabolic demand of the tumor, and even inflammation cause

cells in the TME to switch to anaerobic metabolism (12). In the

TME, tumor cells rely heavily on glucose metabolism for energy

generation (13). For example, typical cells use glycolysis to

convert the majority of glucose to pyruvate, and glycolysis in

concert with oxidative phosphorylation in the mitochondria

generates a large amount of energy. Nonetheless, since cancer

cells catabolize glucose into lactate and produce inadequate

energy, they need a greater glucose concentration for growth

(14). The reprogramming of lipid metabolism in the TME is

required for the formation of solid tumors (15). Recent research

has shown a link between alterations in lipid metabolism and

bladder cancer. Overexpression of aliphatic acid synthase

(FASN) has been associated with a negative relationship

between OS and recurrence. Additionally, blocking the AKT/

mTOR signaling pathway resulted in a substantial reduction in

BLCA cell proliferation and invasion when FASN expression

was lowered. FASN may have a role in chemotherapeutic

resistance development (16–21).

The genetic data from 414 BLCA samples were analyzed to

provide a comprehensive knowledge of the aliphatic acid

metabolic pattern and to create a prediction risk score model

for aliphatic acids. The predictive risk score model accurately

estimated the survival outcome of BLCA patients independently

and effectively distinguished patients with BLCA who were

resistant to several chemotherapeutic treatments. Furthermore,

we investigated the relationship of the prognostic risk score

model with the TME cell-infiltrating properties. The prognostic

risk score model accurately classified BLCA patients as

immunotherapy candidates, demonstrating that aliphatic acid

me tabo l i sm i s c ruc i a l f o r c r ea t ing un ique TME

characterizations. These findings may provide fresh insight on

the metabolic mechanism of BLCA and its treatment.
Materials and procedures

Data processing

The TCGA database’s raw RNA sequencing (RNA-seq) data

patterns (https://www.cancer.gov/about-nci/organization/ccg/

research/structural-genomics/tcga) were abstracted using the

High Throughput Sequencing (HTSeq)-fragments per kilobase

of transcript per million mapped reads (FPKM) workflow type,

which included 414 BLCA and 19 normal bladder tissue

samples. Additionally, we utilized the TCGA database to

collect clinical data on 414 BLCA samples, consisting of

gender, AJCC TNM stage, age, prognostic information along

with pathological stage. GEO: Microarray data profiles for

GSE13507 based on platform GPL6102 were abstracted from

the GEO data resource (https://www.ncbi.nlm.nih.gov/geo/). We

converted the Entrez Gene IDs of every sample into their
frontiersin.org
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respective gene symbols via the annotation platform. When

several probes were used to target the same Entrez Gene ID,

the mean value was utilized. Additionally, clinical data were

gathered from the GEO database for each sample in GEO:

GSE13507. Previously, 310 genes involved in aliphatic acid

metabolism were identified. 310 common genes were picked

from these genes in the TCGA, as well as GEO cohorts.
DEG enrichment analyses in normal and
cancerous tissue

The “limma” R package was adopted to discover

differentially expressed genes involved in aliphatic acid

metabolism between normal and malignant tissue samples.

Genes having an FDR of 0.05 were regarded statistically

significant. After that, the R package “org.Hs.eg.db” was

adopted to transform the symbol gene for each DEG to an

Entrez Gene ID. The study of GO and KEGG pathway

enrichment on DEGs was performed using the R package

“clusterProfiler” in order to determine the major biological

features along with the cell function pathways. A difference

that is statistically significant was regarded as having a p value (q

value) of 0.05. Finally, we employed the R packages “enrichplot”

and “ggplot2” to illustrate the results of the enrichment study.
Devised and verified an approach for
assessing prognostic risk

The training set included samples from the TCGA cohort,

while the test set included samples from GEO: GSE13507. Using

the samples’ unique identity, the expression levels of

differentially expressed aliphatic acid metabolism-linked genes

were first merged with the appropriate predicted outcomes.

Genes associated with prognosis were identified from

differentially expressed aliphatic acid metabolism-linked genes

using univariate Cox regression assessment on the training set.

We picked genes with a 0.05 p value. The “maftools” R package

was adopted to determine gene mutations and correlations in

BLCA samples from the training set. LASSO Cox regression was

done to further analyze the genes related with prognosis in order

to create a predictive risk score model for estimating OS in

BLCA samples using the “glmnet” R package. A tenfold cross-

verification was used to assess the model’s penalty parameter (l).
The approach outlined below was adopted to determine the risk

score for every sample.Risk Score =oi
1(Coefi ∗ ExpGenei).

The “Coef” column includes non-zero regression coefficients

determined via the LASSO Cox approach, and the “ExpGene”

column provides the expression levels of genes included in the

predictive risk score model. To classify all samples into low-, as

well as high-risk score categories, the median value of risk scores

was employed. Kaplan-Meier approach along with the log-rank
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test was adopted to compare the OS of low-risk and high-risk

score groups. To assess the predictive accuracy of the predictive

risk score model, a time-dependent receiver operating

characteristic (ROC) curve was generated using the R package

“survivalROC”. Finally, the test set was adopted to examine the

prognostic risk score model’s reliability and applicability.
Principal component analysis (PCA) was
compared before to and during the
construction of a prognostic risk score

The limma R package was adopted to perform PCA on gene

expression profiles before to and after the training set’s predictive

risk score model in order to grasp the significant difference

between low and high-risk score groups. PCA was first used to

analyze the expression patterns of all differentially expressed genes

linked with aliphatic acid metabolism. PCA was then employed to

assess the expression patterns of genes in the predictive risk score

model. Finally, utilizing two-dimensional diagrams structured

around the first two fundamental components, the ggplot2 tool

was utilized to illustrate the PCA results.
Comparative analysis of risk scores and
clinical features

Using the R tool “CMScaller,” all samples in the TCGA cohort

were categorised into CMSs on the basis of their features. The risk

score for every sample was merged with the related clinical features

using the sample ID. The limma R software was used to examine

the relationship of the risk scores with clinical data, consisting of

gender, pathological stages, CMS, age, as well as AJCC TNM stages.

Additionally, the TCGA database was utilized to ascertain the level

of immunological checkpoint expression (PD-1, PD-L1, and

CTLA4). The levels of expression of immunological checkpoints

were then compared between groups with low and high-risk scores.

Clinical data on CRC from the GEO cohort were evaluated to

determine the relationship between risk scores and clinical features.

This included the presence of TP53, TTN, KMT2D, MUC16,

ARID1A and KDM6A mutations. To explore disparities in risk

scores across samples, they were separated into two groups on the

basis of their clinical features. The Wilcoxon rank-sum along with

the Kruskal-Wallis (K-W) tests were utilized to compare two

groups and more than two groups. A p value of 0.05 was judged

statistically significant.
GSVA

The “GSVA” R tool was adopted to compare biological

processes between low- and high-risk score groups. GSVA is a

non-parametric along with unsupervised technique for
frontiersin.org
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analyzing changes in biological pathways or processes using an

expression matrix sample. The reference gene sets were

generated from the molecular signatures data resource’s

“c2.cp.kegg.v7.1.symbols” gene sets (https://www.gsea-msigdb.

org/gsea/msigdb). FDR0.05 signified a statistically remarkable

enrichment cascade. The IC50 of 5-FU was estimated in each

sample using a typical comparison of the low- with the high-risk

score groups using the pRRophetic R program. The IC50

number indicates a substance’s capacity to inhibit certain

biological or metabolic processes. To determine the extent of

immune-linked invasion in every sample from the TCGA

cohort, ssGSEA was carried out in the R packages “GSEABase”

along with “GSVA”. The gene sets were compiled in order to

evaluate immune-linked aspects in TME from prior research,

and they covered a diverse range of human immune cell sub-

types, as well as immune-linked behaviors, for instance CD8+ T

cell, B cell, and T cell co-stimulation (Table S1). The ssGSEA

method calculated enrichment scores based on the relative

frequency of expression of each immune-linked characteristic

in every sample. The enrichment scores of people with low- and

high-risk scores were compared. Additionally, the link between

genes associated with prognosis and immune cells was

investigated. A p value of 0.05 signified statistically significant.
PPI network

We began by examining the RNA-seq data patterns of low-

along with high-risk score groups using the limma R tool. DEGs

were classified as genes having a 0.05 corrected p-value. The

DEGs were evaluated using the STRING online data resource

(version 11.0; https://string-db.org/), which yielded PPI network

data with a median confidence level of more than 0.40. (Table

S2). Following that, Cytoscape was utilized to do further analysis

and visualization of the PPI network data (v3.7.2). The

Cytoscape plugin cytoHubba (v0.1) was adopted to search for

hub genes across all DEGs using topological approaches.

Following that, the genes that were differently expressed

between normal and BLCA colorectum tissue were discovered.

The R clusterProfiler resource was adopted to analyze the genes

for GO and KEGG enrichment. Finally, on the bsais of the

median expression level of the hub genes, all samples were

stratified into low-, as well as high-expression groups. To

assess whether there was a difference in survival between the

two groups, Kaplan-Meier assessment was utilized. Immune cell

invasion into hub genes linked to prognosis were compared.
A nomogram has been designed for the
purpose of estimating OS

A nomogram for BLCA OS prediction was created using the

R package “rms” with the TCGA cohort. It included age,
Frontiers in Oncology 04
pathological stage, gender, as well as predictive risk score.

Using time-dependent calibration curves, the nomogram’s

accuracy was projected. Additionally, multivariate Cox

regression assessment was adopted to investigate if the

predictive risk score model could be used as an independent

predictor of OS in colorectal cancer patients. The AUC was then

determined via the online ROC curves to determine the

nomogram’s prognostic value.
HPA dataset

The Human Protein Atlas (HPA), a data resource that offers

immunohistochemistry-based expression data for around 20

most prevalent kinds of malignancies, 12 individual tumors in

each cancer type, was utilized to assess the protein contents of

the 5 hub genes in human healthy and BLCA tissues (22).
Conducts statistical analysis

The two groups were compared via the Wilcoxon rank-sum

test. Three or more groups were compared via the K-W test. The

survival differences between the low- and high-risk score groups

were examined through the Kaplan-Meier approach. The

independent determinants of OS in BLCA were identified

through multivariate Cox regression. To determine the

predictive ability of the prognostic risk score model and

nomogram, receiver operating characteristic curves were

performed. All the statistical analyses were implemented in R

v4.0.0, with p<0.05 signifying statistical significance.
Results

Analysis of normal and malignant tissue
samples for enrichment

The article’s flow chart is given in Figure 1A. We compared

the expression levels of genes participating in aliphatic acid

metabolism in non-tumorous and cancer tissue samples, and 90

genes with an FDR 0.05 were chosen for inclusion in the TCGA

cohort. In cancer tissue samples, 58 genes were elevated and 32

were downregulated. The differentially expressed genes are given

in Figures 1B, C. (DEGs). The DEGs were then analyzed for

Gene Ontology (GO) enrichment. Among the biological

processes, aliphatic acid metabolism, organic acid biosynthetic,

carboxylic acid biosynthetic, and aliphatic acid derivative

metabolic process were substantially enriched GO keywords

(Figure S1A). The findings of an enrichment study using the

KEGG revealed that aliphatic acid metabolism, aliphatic acid

degradation, metabolism of arachidonic acid, tryptophan

metabolism, and were all significantly enriched KEGG
frontiersin.org

https://www.gsea-msigdb.org/gsea/msigdb
https://www.gsea-msigdb.org/gsea/msigdb
https://string-db.org/
https://doi.org/10.3389/fonc.2022.930038
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Song et al. 10.3389/fonc.2022.930038
A

B C

FIGURE 1

Comparing bladder cancer with non-tumorous tissue samples from the TCGA cohort. (A)The article’s flow chart. (B) A heat map of 90
differentially expressed genes involved in aliphatic acid metabolism. (C) The volcano map of 90 differentially expressed genes involved in
aliphatic acid metabolism.
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keywords (Figure S1B). These findings indicate that aliphatic

acid metabolism harbors an indispensable role in the

development of BLCA.
Development of a prognostic risk score
model using the training set

The training set was constructed using TCGA cohort samples.

Univariate Cox regression was used to assess 90 differentially

expressed aliphatic acid metabolism genes. A total of 17 genes

involved with prognosis were identified with a p value of 0.05.

(Figure 2A and Table 1). We began by summarizing the somatic

mutation profile of 17 genes involved in aliphatic acid metabolism

related with poor prognosis. As illustrated in Figure 2B, a total of 55

of 412 BLCA samples had mutations in genes involved in aliphatic

acid metabolism, representing a 13.55% frequency. FASN was

mutated more frequently than SLC27A2. DECR1, on the other

hand, did not exhibit any changes in BLCA samples. Additional

analyses established a correlation between the CYP1B1 and

SLC27A2 mutations, as well as the DHCR24 and ACLY

mutations (Figure 2C). The number of genes was then reduced

using Cox regression analysis with the least absolute shrinkage and

selection operator (LASSO). Finally, twelve genes (CYP1B1, FADS1,

CPT1B, EPHX1, ACSBG2, FASN, ACLY, NUDT19, SCD, PTGIS,

DECR1, and SLC27A2) were used to develop a predictive risk score
Frontiers in Oncology 06
model (CYP1B1, FADS1, CPT1B, EPHX1, ACSBG2, FASN, ACLY,

NUDT19, SCD, PTGIS, DECR1, and SLC27A2) (Figures 2D, E).

The risk score for each sample was calculated as follows: Risk score

= (0.051627765239571) * CYP1B1+(0.069487777237826) * FADS1
A B

D E F G

C

FIGURE 2

Model development for prognostic risk assessment (A) Forrest plot of 17 genes involved in aliphatic acid metabolism associated with prognosis. (B)
Mutation frequency of 17 genes involved in aliphatic acid metabolism in 412 individuals with BLCA from the TCGA cohort. (C) Co-occurrence along
with exclusion analysis of mutations in 17 genes involved in aliphatic acid metabolism. Green indicates co-occurrence; purple indicates exclusion.
(D) LASSO coefficients for the 17 genes involved in aliphatic acid metabolism. (E) Gene discovery with the purpose of developing a predictive risk
score model. (F) Principal component analysis of all BLCA genes involved in aliphatic acid metabolism. (G) Principal component analysis using a risk
score for aliphatic acid metabolism to differentiate cancers from non-malignant tissue samples in the TCGA cohort. The green group designated
high-risk patients, whereas the red group designated low-risk individuals. *p < 0.05.
TABLE 1 The unicox results of aliphatic acid metabolism related
genes in BLCA.

id HR HR.95L HR.95H pvalue

CYP1B1 1.134194 1.027638 1.2518 0.012365

FADS1 1.247846 1.098894 1.416989 0.00064

FAAH 0.80687 0.702405 0.926871 0.002418

DHCR24 1.125808 1.004933 1.261222 0.040866

CPT1B 0.634687 0.495423 0.8131 0.000322

EPHX1 1.159196 1.00884 1.331962 0.037149

ACSBG2 0.140267 0.021113 0.931864 0.042052

ME1 1.214928 1.050692 1.404837 0.008607

FASN 1.255983 1.072129 1.471366 0.004766

ACAT1 1.288816 1.050969 1.580492 0.014787

SERINC1 1.305306 1.021072 1.668663 0.033471

ACLY 1.415876 1.109378 1.807053 0.005207

NUDT19 0.688117 0.534144 0.886474 0.003823

SCD 1.155528 1.036247 1.28854 0.00931

PTGIS 1.136026 1.038623 1.242563 0.005294

DECR1 0.749596 0.600636 0.935498 0.010778

SLC27A2 0.843864 0.738861 0.963789 0.012281
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+(-0.284173428370957) * CPT1B+(0.102797313048634) * EPHX1

+(-0.40870133580594) * ACSBG2+(0.177530542982211) * FASN

+(0.228151304346159) * ACSL6. The risk score model was utilized

to fully identify low- and high-risk BLCA samples (Figures 2F, G).
The correlation between the risk score
and clinical characteristics

The cutoff value was chosen at the median of the risk

assessments in the training set. On the basis of the threshold

value above, the sample risk scores were sorted and categorized

into low (n = 203) and high (n = 203) risk score categories. In the

TCGA, samples with a high-BLCA risk score had a worse

prognosis than samples with a low risk score (p<0.001;

Figure 3A). Using the training set’s threshold value, test group

samples from GEO: GSE13507 were divided into low-BLCA (n =
Frontiers in Oncology 07
85) and high -BLCA (n = 80) risk score groups to verify the

predictive risk score model. The high-BLCA risk group’s

samples had a poorer prognosis than the low-BLCA risk

group’s samples (p=0.043; Figure 3B), indicating that the

prognostic risk score model may reliably predict OS in BLCA.

Only the risk score and clinical T stage were independent

predictors of OS in multivariate analysis among the criteria

linked to OS in univariate analysis, which included lymph node

status, clinical stage, T stage, and risk score (Figures 3C, D).

There was a strong link between PFS (progression-free survival)

and risk score in the TCGA-BLCA cohort (p0.001; Figure 3E).

To verify the predictive risk score model’s accuracy, a time-

dependent ROC curve was drawn at 1, 3, and 5 years (Figure 3F).

The AUC indicated that the risk score (AUC = 0.745) was more

predictive of survival than age (AUC = 0.608), pathological stage

(AUC = 0.674), clinical T stage (AUC = 0.658), and clinical N

stage (AUC = 0.633; Figure 3G). We investigated the distribution
A B

D E F G

IH J K

L M N

C

FIGURE 3

The estimation efficacy of the aliphatic acid metabolism score model in predicting BLCA patients’ survival status. (A, B) Comparison of OS in the
training and test sets between low- BLCA and high- BLCA risk score groups. (C, D) The forest plot depicts the data of the TCGA data set univariate
along with multivariate Cox regression.(E) Comparison of progress-free survival (PFS) in the TCGA cohort between low- BLCA and high-BLCA risk
score groups. (F) The estimation potential of the risk score as determined by ROC curves in the 1,3,5-year TCGA cohort. The AUC values are 0.725,
0.724, and 0.745, respectively. (G) Receiver operating characteristic curves for the TCGA cohort’s aliphatic acid metabolism score along with clinico-
pathological features. (H–N) The relationship of the risk score with clinicopathological characteristics, such as age (H), gender (I), grade (J), clinical
stage (K), clinical T stage (L), clinical N stage (M), and clinical M stage (N).
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of risk scores in matched samples by age, gender, grade,

pathological stage, and AJCC TNM Classification of Malignant

Tumors (TNM) stage. Although there were no significant

associations between risk scores and gender, advanced

pathological stages, or AJCC-T (tumor invasion) (Figures 3I,

K, L), higher risk scores were associated with increased age

(p=0.011; Figure 3H), grade (p<0.001; Figure 3J), AJCC-M

(distal metastasis) (p = 0.011; Figure 3M), and AJCC-N

(lymphoid metastasis) (Figure 3N).
The creation of a nomogram for
survival prediction

For OS prediction in BLCA samples, a nomogram with

integrated age, grade, pathological stage, clinical T stage, clinical

M stage, gender, and clinical N stage, as well as a predictive risk

score model, was built (Figure 4A). Calibration curves at one-

year, three-years, as well as five-years exhibited that the

nomogram successfully estimated the OS of CRC patients, as

seen in Figures 4B. The AUC indicated that the nomogram

(AUC = 0.807) was more predictive of survival than a single

indication, such as risk (AUC = 0.773) or clinical stage (AUC =

0.674) (Figure 4C). Cox regression study, both univariate and

multivariate, demonstrated that Nomogram is an independent

prognostic predictor of BLCA (Figures 4D, E).
Analyses of gene set variation (GSVA)

To investigate the biological behaviors of the two groups,

GSVA enrichment was performed via the gene sets

“c2.cp.kegg.v7.2” retrieved from the Molecular Signatures

Database (MSigDB). The high-risk score enriched the majority

of metabolic pathways, including aliphatic acid metabolism, and

the majority of signaling pathways (Figure 5A). Additionally,

individuals with TP53, TTN, KMT2D, MUC16, ARID1A, or

KDM6A mutations had a nonsignificant risk value compared to

those without the mutation. (See Figures 5B–G).
Chemotherapy reaction

Given the association of the risk score with dismal prognosis,

the link of the risk score with chemoresistance was investigated.

The halfmaximal inhibitory concentration (IC50) was used to

estimate treatment response to several chemotherapeutic drugs

in the TCGA cohort using the R package “pRRophetic”. Low-

risk score samples were more susceptible to Vinorelbine,

Tubastatin A, Sorafenib, and Pyrimethamine, which are more

generally recommended for advanced BLCA treatment.

Thapsigargin, Sunitinib, S-Trityl-L-cysteine, and Rapamycin
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were more sensitive to high-risk score samples, which were

more generally recommended for treating terminal BLCA

(Figures 6A–P).
Characteristics of the immune system
in the low- BLCA and high- BLCA risk
score groups

Additionally, individuals with the CMS1 phenotype who

were immunotherapy candidates had higher BLCA risk scores

(Figure 7A), demonstrating that quantifying the aliphatic acid

metabolism risk score is an unique and robust biomarker for

assessing prognosis along with clinical responsiveness to

immunotherapy. The group was extremely densely infiltrated

with immune-suppressive cells, including CD8 T cells, T cell

follicular helper cells, T cell regulatory cells (Tregs), M2

macrophages, and activated dendritic cells, corresponding with

the high- BLCA risk group’s survival disadvantage (Figure 7B).

Additionally, para-inflammatory, APC co-inhibition, HLA, APC

co-stimulation, CCR, check-point cytolytic activity, pro-

inflammatory, T cell co-inhibition, along with T cell co-

stimulation were activated in the high-risk group, showing

that individuals with suppressed immunity may react to

immunotherapy (Figure 7C).
Network of DEGs with protein-protein
interactions (PPIs) in low- BLCA and
high- BLCA risk score groups

The STRING online data resource was utilized to examine

the DEGs’ expression patterns in low-BLCA and high- BLCA

risk groups. Figure S2A illustrates how the PPI network was

created utilizing the DEGs. The PPI network data were

generated and visualized through the Cytoscape program.

DEG interaction is given in Figure 7D, with upregulated genes

in the high- BLCA risk score group highlighted in red and

downregulated genes in the low-BLCA risk score group

highlighted in blue. Cytoscape’s cytoHubba plug-in was

adopted to deduce the hub genes from the DEGs. As seen in

Figure 7E, a total of ten genes were chosen from the network.

The degree approach was used to rank FN1, COL1A2, MMP9,

COL3A1, SPP1, ITGAM, DCN, ACTA2, LOX, and CXCL12.

The changes in gene expression between healthy and malignant

tissues were then compared. To get a better understanding of the

function of eight distinct hub genes, we carried out GO along

with KEGG analyses using the R package “GOplot.” The genes

were shown to be participate in organization of the extracellular

matrix, cornification, extracellular structure organization, skin

development, keratinization, epidermal cell differentiation,

epidermis development, and keratinocyte differentiation
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FIGURE 4

The estimation potential of the aliphatic acid metabolism score in conjunction with clinicopathological features in patients from the TCGA
cohort with regard to overall survival. (A) Nomogram for estimating OS in TCGA cohort participants. (B) The nomogram’s calibration plots. The x
axis depicts expected survival, whereas the y axis designates the actual survival. (C) Receiver operating characteristic curves for the TCGA
cohort’s aliphatic acid metabolism score, clinical pathological features, and nomogram. (D, E) Analysis of the nomogram using univariate
coupled with multivariate Cox regression. *p < 0.05, ***p < 0.001.
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FIGURE 5

GSVA and mutation analysis of a model of aliphatic acid metabolism. (A) Heatmap depicting the enrichment of GSVA in low- BLCA and high-
BLCA risk score categories. (B–G) Differences in lipid metabolism score between several kinds of gene mutations, including TP53 mutation
(B), TTN mutation (C), KMT2D status (D), MUC16 status (E), ARID1A status (F), and KDM6A status (B, G).
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(Figure 8A). According to KEGG, these genes were enriched in

the following categories: Focal adhesion, ECM receptor cross

talk, Proteoglycans in cancer, PPAR signaling cascade, Dilated

cardiomyopathy, Arrhythmogenic right ventricular

cardiomyopathy, Complement and coagulation cascades, and

Hypertrophic cardiomyopathy (Figure 8B). We examine the top

five HUB genes in this section. The survival study revealed a

significant association between FN1, MMP9, COL1A2,

COL3A1, and SPP1 mRNA expression of the hub genes and

the prognosis of BLCA patients (Figures 8C, K; Figures S2A,

S2C, S2E). Additionally, expression levels rise with increasing

age, grade, clinical M stage, and clinical N stage (Figures 8D–J).

The expression of FN1 was shown to be related with a bad

prognosis. The difference in TME immune cell invasion between

patients with high and low FN1 expression was investigated

using the FN1 median expression potential as a threshold value.

Tumors expressing high levels of FN1 demonstrated
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considerably greater infiltration of M2 macrophages, activated

dendritic cells, follicular T cells, and M0 macrophages, than

tumors expressing low levels of FN1 (Figure 8S). Also, the

expression of MM9, COL1A2, COL3A1 and SPP1 was shown

to be related with a bad prognosis (Figures 8K–R; Figure S3).

The results of immune infiltration of MMP9, COL1A2, COL3A1

and SPP1 were showed in Figure 8T; Figures S2B, S2D, S2F.

Additionally, we used the HPA database to explore the protein

levels of these three genes. The findings indicated that BLCA

tissues included significantly greater levels of FN1, MMP9,

COL1A2, COL3A1, and SPP1 (Figures 9).
Discussion

One of the hallmarks of cancer is metabolic re-

programming, and each metabolic state has a unique
A B D
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FIGURE 6

A model of aliphatic acid metabolism in the context of chemotherapy. The relationship between patient risk scores and predicted IC50 values,
as well as the response variations between the low- BLCA and the high- BLCA risk score groups for several chemotherapeutic agents. (A–D)
Vinorelbine, (E, F) Thapsigargin (G, H) Saracatinib, S-Trityl-L-cysteine (I, J), Sorafenib (K, L), Rapamycin (M, N), and Pyrimethamine (O, P).
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molecular signature that reflects a varied prognosis (23).

Alterations in food metabolism in tumor stroma are being

recognized as a critical component of cancer-linked metabolic

reprogramming (24). It is commonly accepted that several

oncogenic mechanisms may trigger glucose metabolic

reprogramming (25). The Myc protein acts as a critical

regulator of metabolism, participating in metabolic re-

programming processes for instance glucose and glutamine

metabolic re-programming, as well as serine synthesis, all of

which contribute to cancer cell proliferation (26). Over the past

two decades, remarkable advancements have been achieved in

diagnosing and treating BLCA. While the majority of bladder

cancers are non-muscle invasive upon diagnosis, the high

relapse rate and risk of progression to invasive disease need

periodic surveillance cystoscopy, resulting to bladder cancer

being one of the most costly types of cancer to treat (27).

Relapse of bladder cancer, emergence of resistance to drugs,

along with a high rate of disease progression are significant

obstacles to bladder cancer treatment, underscoring the

fundamental need for the identification of novel biomarkers in

the clinical diagnosis along with treatment of bladder cancer

(28). This is the first research to investigate the link between

genes involved in aliphatic acid metabolism and BLCA. Cox

regression with univariate LASSO and Cox regression with

univariate Cox Using 90 differentially expressed aliphatic acid

metabolism-linked genes from TCGA and GEO tumor and

normal BLCA tissue samples, we created a predictive risk
Frontiers in Oncology 12
score model. To get a better comprehension of the

involvement of these genes in BLCA, we employed a

predictive risk score model to estimate OS in the training set

of BLCA patients. There were disparities in survival between

patients with a low-risk BLCA score and those with a high-risk

BLCA score. In the test set, the same result was obtained,

exhibiting that the predictive risk score model is capable of

identifying individuals at risk of poor survival. In multivariable

analysis, the predictive risk score model was revealed as the

independent predictive factor. Additionally, the predictive

ability of the predictive risk score model was enhanced by

including a few chosen clinicopathological characteristics into

a risk-assessment nomogram. To get a better understanding of

the predictive risk score model’s involvement in BLCA, we

compared the responsiveness of patients with low- and high-

risk ratings to pharmacological therapy. As previously reported,

the risk score was favorably related with chemoresistance to

various chemotherapeutic treatments. Patients harboring higher

risk scores in the BLCA group had a shorter PFS, showing that

the aliphatic acid predictive risk score model may be used to

tailor BLCA therapy to individual patients. Patients harboring a

high-risk score had a strong activation state of the stroma,

indicating chemoresistance. It was thought that individuals

with a high-risk score would not benefit from immunotherapy

due to the development of chemoresistance. As a result, it is

critical to identify immunotherapy candidates in clinical

practice. Patients with a high-risk score had a higher
A B

D E

C

FIGURE 7

Model of aliphatic acid metabolism in relation to immunotherapy. (A) The difference in risk scores between CMS subtypes. (B) The difference in
immune infiltration between high- BLCA risk and low- BLCA risk scores. (C) The difference in the known function linked with immune
modulation between subjects with a high- BLCA risk score and those with a low- BLCA risk score. (D) Cytoscape-processed PPI network (red):
DEGs with a high level of expression in the high- BLCA risk score group; blue: DEGs with a low level of expression in the low-BLCA risk score
group. (E) cytoHubba’s top ten hub genes. *p < 0.05, **p < 0.01, ***p < 0.001.
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FIGURE 8

Hub gene prognosis and immunological analysis. (A, B) GO along with KEGG enrichment analysis findings for hub genes. (E) Survival study of
patients classified into subgroups based on FN1 mRNA expression. (D–J) The difference in FN1 mRNA expression between patients with various
clinical features. (K) Survival analysis for patients classified into subgroups based on MMP9 mRNA expression. (L–R) The difference in MMP9
mRNA expression between distinct clinical features. (S–T) The number of cells invading the TME in patients with varying levels of FN1 and
MMP9 mRNA expression. *p < 0.05, **p < 0.01, ***p < 0.001.
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concentration of inhibitory immune cells, such as Tregs and

others, as well as immune-inflamed cells. Additionally,

individuals with a high-risk score had activation of check-

point cytolytic activity, PC co-inhibition, CCR, HLA, pro-

inflammatory, para-inflammatory, APC co-stimulation, T cell

co-inhibition, and T cell co-stimulation, suggesting that they are

immunotherapy candidates. Due to the significant disparities in

risk scores between the low-risk and high-risk groups, the

distinct genes in the two groups were further investigated.

FN1 is a glycoprotein present in the extracellular matrix, as well

as on the cell surface that stimulates cell adhesion along

with migration, both of which are important in the onset and

progress of cancer (29). In oral squamous cell carcinoma,

upregulated FN1 was linked to a dismal prognosis and resulted in

lymphangiogenesis, along with lymph node metastases (30).

Overexpression of the FN1 gene has been implicated as a

significant predictor of thyroid cancer aggressiveness and has also

been shown in gastrointestinal carcinoma, renal carcinoma,

hepatocellular carcinoma, and head/neck cancer (30, 31). MMP9

is a matrix metalloproteinase that aids cancer infiltration,

metastasis, as well as angiogenesis (32). In tongue squamous cell
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carcinoma, MMP9 expression is elevated in neoplastic cells along

the infiltration front, and MMP9 expression in histologically

negative surgical margins of oral squamous cell carcinoma

(OSCC) is a predictor of tumor recurrence (33). MMP9

overexpression is required for the advancement of a variety of

tumor kinds, consisting of esophageal squamous cell carcinoma,

bladder cancer, and intrahepatic cholangiocarcinoma (34).

COL3A1, the extracellular matrix gene, which was first identified

as a cause of autosomal dominant Ehlers-Danlos disease, was

subsequently reported to be dramatically changed in individuals

with melanoma (35). COL3A1 expression is related with a worse

OS rate in patients with epithelial ovarian cancer in four primary

tissue types (36). COL3A1 has been found to be over-expressed in a

range of cancers, such as bladder cancer, glioblastoma, and gastric

cancer, in addition to its normal expression in connective tissues

(37). Collagen factors COL1A1, COL1A2, and COL3A1 were often

implicated in carcinogenesis or metastasis in a variety of tumor

types, for instance breast cancer, gastric cancer, and cervical cancer

(38). The molecules controlled by COL1A2 are also related with

cellular behaviors, as well as signaling cascades in CRC, which may

be a significant factor in the high rate of relapse and dismal

prognosis seen in individuals with CRC with reduced COL1A2

expression (39). SPP1 is over-expressed in a variety of malignant

neoplasms, consisting of medullary thyroid cancer, HCC, as well as

colorectal cancer, and is involved in metastasis and tumorigenesis

(40). SPP1 acts as a CD44 ligand in glioma, promoting the

production of the oncogene EPAS-1 and aggresive glioma

development. SPP1 expression is related with poor survival in

colorectal cancer patients with positive venous invasion and

advanced TNM stage (41). Further research, however, will be

necessary to determine the therapeutic use of these five hub genes

in human bladder cancer. In this study, transcriptome profiling

associated with aliphatic acid metabolism was carefully examined,

and a risk-predictive signature based on survival and genes

associated with aliphatic acid metabolism in BLCA patients was

developed. However, there are still a few limitations that should be

taken into account when interpreting the findings. The included

genes were identified using information about their involvement in

the illness’ development that was already known, but prospective

data are needed to prove their clinical importance. In order to

determine whether the signature has any potential therapeutic

applications, independent external validation is still required. The

signature was produced and confirmed using retrospective datasets

that were made accessible to the public.
Conclusions

The aliphatic acid predictive risk score model may be

utilized to decipher the patterns of aliphatic acid metabolism.

Individuals may be classified using the risk score based on their
FIGURE 9

Validation of hub gene protein expression levels.
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clinicopathological characteristics, such as clinical stage and

molecular subtype. Additionally, the risk score is related to

patient prognosis and may be used to forecast therapy

sensitivity. As a result, clinical practice may be more effectively

guided by risk score and clinical stage, resulting in a more

tailored approach to clinical follow-up. These results provide a

unique, efficient, as well as accurate prognosis and response

prediction model for chemotherapy and immunotherapy,

paving the path for future tailored cancer chemotherapy

and immunotherapy.
Data availability statement

The original contributions presented in the study are

included in the article/Supplementary Material. Further

inquiries can be directed to the corresponding authors.
Author contributions

TS, KH, and JN coordinated to collect, as well as analyze

data, and discussed the details, and wrote this article.

Considering that authors TS, KH, and JN contributed equally

to the work, they should be considered co-first authors. WL, TX,

and WY analyzed and typed setting the data, figures and tables.

FC and TR analyzed the data and modified this manuscript

together and were primary contributors in writing the

manuscript. FC and TR should be regarded as co-

corresponding authors. Each person was assigned specific

responsibilities, resulting in a clear division of labor. The final

text was reviewed and approved by all writers.
Funding

This research was supported by funding from the Chinese

National Natural Science Foundation (no. 81800617 and

81870471) and the Hubei Province’s Science and Technology

Major Project (2019AEA170).
Frontiers in Oncology 15
Acknowledgments

We would like to acknowledge all of the subjects for their

support with data.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fonc.

2022.930038/full#supplementary-material

SUPPLEMENTARY FIGURE 1

GO and KEGG analysis of differentially expressed fatty acid metabolism-

linked genes. (A)The result of GO enrichment analysis of differentially
expressed fatty acid metabolism-linked genes. (B) The result of KEGG

enrichment analysis of differentially expressed fatty acid metabolism-
linked genes.

SUPPLEMENTARY FIGURE 2

Survival analysis and immune infiltration analysis of hub Genes. (A, C, E)
Survival analysis of hub genes. (B, D, F) Immune infiltration analysis of
hub genes.

SUPPLEMENTARY FIGURE 3

The relationship of gene expression and clinicopathological features,
consisting of age, T stage, gender, clinical stage, N stage, grade, and M

stage. (A–G) COL1A2. (H–N) COL3A1. (O–U) SPP1.
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