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Mutant p53s generate pro-invasive niches by
influencing exosome podocalyxin levels
David Novo 1, Nikki Heath1, Louise Mitchell1, Giuseppina Caligiuri2, Amanda MacFarlane1, Dide Reijmer1,

Laura Charlton3, John Knight1, Monika Calka2, Ewan McGhee1, Emmanuel Dornier 1, David Sumpton 1,
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Sara Zanivan 1,2 & Jim C. Norman1,2

Mutant p53s (mutp53) increase cancer invasiveness by upregulating Rab-coupling protein

(RCP) and diacylglycerol kinase-α (DGKα)-dependent endosomal recycling. Here we report

that mutp53-expressing tumour cells produce exosomes that mediate intercellular transfer of

mutp53’s invasive/migratory gain-of-function by increasing RCP-dependent integrin recy-

cling in other tumour cells. This process depends on mutp53’s ability to control production of

the sialomucin, podocalyxin, and activity of the Rab35 GTPase which interacts with podo-

calyxin to influence its sorting to exosomes. Exosomes from mutp53-expressing tumour cells

also influence integrin trafficking in normal fibroblasts to promote deposition of a highly pro-

invasive extracellular matrix (ECM), and quantitative second harmonic generation micro-

scopy indicates that this ECM displays a characteristic orthogonal morphology. The lung

ECM of mice possessing mutp53-driven pancreatic adenocarcinomas also displays increased

orthogonal characteristics which precedes metastasis, indicating that mutp53 can influence

the microenvironment in distant organs in a way that can support invasive growth.
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Loss of wild-type p53 function is a key watershed in tumour
initiation and progression. This occurs through loss of p53
expression or mutations that generate p53 proteins defective

in wild-type function. A gain-of-function for mutant p53 (ref. 1)
(mutp53) first became apparent following the construction of a
mouse model of Li-Fraumeni syndrome2. In this animal, wild-
type p53 was replaced with mutp53 alleles (p53R270H and
p53R172H) and this led to the spontaneous growth of tumours
with more aggressive phenotypes than was observed in p53 null
mice. The ability of mutp53 to drive metastasis was then
demonstrated using autochthonous mouse models of pancreatic
cancer3, and cells isolated from mutp53 pancreatic tumours are
more invasive than their p53 null counterparts4, indicating that
mutp53’s pro-metastatic gain-of-function is associated with
increased cell migration5,6.

The way in which integrin receptors for the ECM are trafficked
through the endosomal pathway and returned, or recycled, to the
plasma membrane is key to the migratory behaviour of cancer
cells7,8. The Rab11 effector, Rab-coupling protein (RCP), controls
integrin recycling, and it is now clear that mutant p53s can drive
invasive migration by promoting RCP-dependent integrin recy-
cling6. The characteristics of the tumour ECM is closely correlated
with disease progression, resistance to therapy, and poor prog-
nosis, and there is now much interest in targeting the ECM and its
receptors as an anti-cancer strategy9. The ECM within tumours is
deposited primarily by fibroblastic cells (carcinoma-associated
fibroblasts (CAFs)) and this is controlled by autocrine and para-
crine pathways which relay signals between malignant cells and
CAFs10. Furthermore, ECM proteins are assembled and exten-
sively re-modelled following secretion, and the way that integrins
are trafficked through the endosomal system can control this11,12.
Finally, secreted factors, such as lysyl oxidase, can act directly on
the ECM to introduce cross-links which alter ECM organisation
and stiffness in way that promotes local invasiveness13.

The ECM of target organs also contributes to metastasis, and
cells in the primary tumour can influence this by releasing factors
into the circulation. For instance, lysyl oxidase not only influences
the ECM of primary tumours in the breast but also primes bone
marrow niches to enable metastatic seeding14. Primary tumours
also prime metastatic niches by releasing extracellular vesicles
(EVs)—such as exosomes—into the circulation. Exosomes
released by melanomas can influence differentiation of bone
marrow-derived stem cells to promote their mobilisation to tis-
sues—such as the lung—where they contribute to deposition of
ECM proteins15. More recently exosomes from pancreatic ade-
nocarcinoma cells were shown to promote TGFβ secretion from
Kupffer cells which led to fibronectin production by liver stellate
cells16. However, despite studies outlining how certain factors,
such as oncogenic proteins and microRNAs might be transmitted
between cells, the molecular players that mediate the pro-
metastatic effects of oncogenes are not yet clear.

Here we report that primary tumours expressing mutp53s with
pro-metastatic gain-of-function can evoke pro-invasive altera-
tions to the ECM in a metastatic target organ, and we provide the
molecular details of how this occurs.

Results
Mutp53 promotes release of diffusible pro-invasive factor(s).
‘Organotypic’ plugs of acid-extracted type I collagen in which the
ECM has been ‘preconditioned’ by human fibroblasts recapitulate
key characteristics of the stromal microenvironment17. When
plated onto organotypic plugs preconditioned with telomerase-
immortalised human fibroblasts (TIFs), H1229 non-small cell
lung carcinoma cells (which do not express p53) (H1299-p53−/−)
were poorly invasive, with most cells residing in the upper

portion of the plug 10 days after plating (Fig. 1a, d). By contrast,
H1299 cells expressing the conformational gain-of-function
mutant of p53, p53R273H (H1299-p53R273H) invaded extensively
into organotypic plugs (Fig. 1b, d).

Pro-invasive oncogenic pathways can operate in a non-cell
autonomous fashion by promoting release of diffusible factors. To
test whether mutp53 promotes release of pro-invasive factor(s),
we placed organotypic plugs containing H1299-p53R273H cells
in the same Petri dish as plugs plated with isogenic p53 null
cells (H1299-p53−/−) (Fig. 1c). When cultured in this way,
H1299-p53−/− cells displayed invasive behaviour that was
indistinguishable from H1299-p53R273H cells (Fig. 1c, d). These
data indicate that the mutant p53 invasive gain-of-function
phenotype may be transferred via diffusible factor(s).

Mutp53-expressing cells release exosomes to influence RCP-
dependent integrin trafficking and cell migration in p53 null
cells. Mutp53-expressing cells migrate faster and more erratically
on 2D substrates than their p53 null counterparts6. Indeed,
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Fig. 1 Mutant p53 promotes release of diffusible factors to foster tumour
cell invasion in an organotypic microenvironment. Organotypic plugs were
generated allowing acid-extracted rat tail collagen to polymerise in the
presence of telomerase-immortalised human dermal fibroblasts (TIFs).
Fibroblast-containing plugs were conditioned for 2 days to allow TIFs to
deposit and remodel the ECM. Preconditioned plugs were overlaid with
H1299-p53−/− (a) or H1299-p53R273H (b) cells and placed onto grids in
independent Petri dishes containing culture medium. In c plugs which were
overlaid with H1299-p53−/− were placed onto grids in the same Petri dish
as those overlaid with H1299-p53R273H cells, thus allowing the possibility of
exchange of diffusible factors between plugs. Tumour cells were allowed to
invade for 10 days, followed by fixation and visualisation of tumour cells
with H&E. The distance between each tumour cell and the top of the plug
was determined and plotted in d. Bars are mean ± SEM, n= 8 plugs;
*** p <0.001 Mann–Whitney test
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persistence and forward migration index (FMI) of H1299 cells
migrating into scratch-wounds is suppressed by expression of
mutp53 (Supplementary Figure 1a–c). To represent these changes
graphically, we calculated the differences between the persistence
and FMI of mutp53-expressing and p53 null cells—these we term
the ΔPersistence and ΔFMI—and plotted them as x and y coor-
dinates, respectively (Supplementary Figure 1d).

Conditioned medium from H1299-p53R273H donor cells
significantly suppressed the migratory persistence and FMI of
H1299-p53−/− recipient cells, and this was opposed by siRNA of
p53R273H in the donor cells (Supplementary Figure 1e). More-
over, depletion of exosomes by centrifugation completely opposed
the ability of conditioned medium collected from H1299-
p53R273H cells to suppress the migratory persistence and FMI
of p53−/− H1299 cells, indicating the likelihood that the diffusible
factor(s) responsible for transfer of mutant p53’s migratory gain-
of-function is/are associated with exosomes (Supplementary
Figure 1f).

Nanoparticle tracking, sucrose density gradient centrifugation
and transmission electron microscopy (TEM) indicated that the
abundance, average protein content, size distribution, and density
of exosomes released by H1299 cells was not reproducibly altered
by expression of mutp53 (Supplementary Figure 2a–e). Moreover,
immunogold TEM indicated that the majority of EVs from
H1299 cells were CD63 positive and this was not altered by
expression of mutant p53 (Supplementary Figure 2f). Further-
more, a number of exosome markers (CD9, CD63, tsg101,
HSPA8) did not differ between exosomes released by p53−/− and
mutant p53-expressing cells, and p53 itself was not detectable in
exosome preparations (Supplementary Figure 2g). Despite these
physical similarities, we isolated exosomes from H1299 cells
expressing either of two p53 mutants known to drive mutant
p53’s invasive gain-of-function, p53273H or p53175H (mutp53273H

or mutp53175H-exosomes, respectively) and p53 null H1299 cells
(termed ‘p53−/−-exosomes’) and compared the ability of these to
influence receptor recycling in p53 null-recipient H1299 cells.
α5β1 integrin, cMET, and the transferrin receptor (TfnR)
recycling was significantly increased by pre-incubation of
H1299-p53−/− recipient cells with ‘mutp53273H or mutp53175H,
but not—p53−/−-exosomes (Fig. 2a). Moreover, use of a DGKα
inhibitor (R59022) indicated that this response was dependent on
the RCP and DGKα-regulated recycling pathway previously
found to be activated in mutp53-expressing cells8. By contrast,
α5β1, cMET, and TfnR internalisation was not influenced by
treatment with mutp53R273H-exosomes (Supplementary
Figure 3a).

To investigate the ability of exosomes to mediate intercellular
transfer of mutant p53-driven migratory characteristics, we
incubated p53 null recipient cells with exosomes purified from
H1299 donor cells expressing either mutp53R273H, mutp53R175H

(Fig. 2b) or wild-type p53 under control of a doxycycline-
inducible promoter (H1299-p53tetON) (Fig. 2c). Exosomes from
donor cells that expressed mutant p53s evoked migratory
characteristics associated with mutant p53’s invasive gain-of-
function (i.e. suppression of migratory persistence and FMI and
significantly increased migration speed) in p53 null recipients,
whereas exosomes from H1299 cells expressing wild-type p53
were ineffective in this regard (Fig. 2b, c). Furthermore, increased
recycling (of α5β1 and TfnR) and migratory characteristics
associated with mutant p53 may be passed via exosomes to A2780
cells - which express wild-type p53 (Supplementary Figure 3b).
Finally, all these exosome-driven alterations to migratory
behaviour were opposed by knockdown of RCP or by inhibition
of DGKα in the recipient cells (Fig. 2d; Supplementary Figure 4a),
but not the donor cells (Supplementary Figure 4c). Titration
experiments indicated that 2 × 107 exosomes/mL were sufficient

to transfer mutant p53’s migratory phenotype between cells
(Supplementary Figure 3c). Thus, the concentration of exosomes
which accumulate in the medium bathing mutant p53-expressing
cells (approx. 1 × 109 particles/mL) is 100-fold more than is
required to generate a migratory phenotype in recipient cells.
Moreover, these data indicate that exosomes from p53−/− cells
cannot influence the migratory phenotype of recipient cells even
when used at a 100-fold higher concentrations than is required
for p53273H-exosomes to evoke increased cell migration.

Taken together, these data indicate that both p53 null and
mutant p53-expressing tumour cells release exosomes in similar
quantities, but those from mutant p53-expressing cells upregulate
RCP and DGKα-dependent receptor recycling in p53 null
recipient cells to evoke migratory characteristics associated with
mutant p53’s invasive gain-of-function.

Mutp53 controls exosomal podocalyxin levels to drive receptor
trafficking and cell migration in p53 null cells. We proposed
that altered exosome composition might be responsible for
intercellular transfer of mutp53’s migratory gain-of-function.
SILAC-based proteomics allowed comparison of exosomes pur-
ified from H1299-p53R273H and H1299-p53−/− cells which had
been labelled with light and heavy SILAC amino acids respec-
tively. Of the 428 proteins that were unambiguously identified,
only 4 of these differed significantly between mutp53-expressing
and p53 null cells (Fig. 3a; Supplementary Data 1). Podocalyxin
(PODXL), a sialomucin associated with cancer aggressiveness18,
was significantly suppressed in mutp53R273H-exosomes, and the
ability of both the 175 and 273 H mutants of p53 to suppress
exosomal PODXL was confirmed by western blotting (Fig. 3b).
Moreover, sucrose density gradients indicated that PODXL pre-
cisely co-migrated with CD63 at a density of 1.1–1.15 g/mL
indicating that PODXL is integrally associated with exosomes,
and exosomal-associated PODXL is suppressed by mutp53
(Fig. 3c). RNAseq indicated that PODXL is the second-most
significantly downregulated gene in mutp53-expressing H1299
cells - and qPCR and western blotting confirmed that PODXL
mRNA and protein levels were suppressed by mutp53175H or
mutp53R273H in H1299 cells (Fig. 3d; Supplementary Figure 5a;
Supplementary Data 2). By contrast, induction of wild-type p53
did not affect PODXL levels (Supplementary Figure 5b). We and
others have previously shown that mutant p53s exert pro-invasive
gain-of-function by associating with and inhibiting p635,6. We,
therefore, knocked-down p63 and found that this suppressed
PODXL level in H1299 cells to a similar extent as mutp53s
(Supplementary Figure 5c). This indicates that PODXL expres-
sion is under the control of p63 and mutp53 likely suppresses
PODXL levels by interfering with p63 function.

To investigate whether suppression of exosomal PODXL levels
underpins the transfer of mutant p53’s gain-of-function pheno-
type, we increased PODXL levels in p53R273H-exosomes by
expressing PODXL-GFP in H1299-p53R273H cells (Supplemen-
tary Figure 5d). This did not influence the quantity or size
distribution of mutp53R273H-exosomes (Supplementary Fig-
ure 5e). However, expression of PODXL-GFP in donor cells
significantly reduced the ability of mutp53R273H-exosomes to
drive receptor (α5β1 and cMET) recycling (Fig. 3e) and cell
migration (Fig. 3f). In many reports, it is the presence (not the
absence) of PODXL and other sialomucins has been linked to
cancer progression18. Therefore, we were interested in determin-
ing the consequences of further reducing PODXL levels in
mutp53-expressing cells. Exosomes from mutp53-expressing
PODXL knockdown donor cells (Supplementary Figure 4a) had
reduced ability to drive receptor recycling and cell migration in
p53 null cells (Fig. 3e, f). By contrast, knockdown of α3β1 integrin
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cells were pre-treated for 72 h with exosomes collected from H1299-p53−/−, H1299-p53R273H or H1299-p53R175H ‘donor’ cells, or were left untreated. Recipient
cells were then trypsinised and re-plated. Seventy-two hours following re-plating, recycling of integrin α5β1, cMET and TfnR was determined. Recipient cells were
treated with R59022 (10 μM) or DMSO control as indicated. Values are mean ± SEM, n= 6; ***red versus blue, and ***green versus black are p <0.001 ANOVA.
b H1299-p53−/−, H1299-p53R273H or H1299-p53R175H ‘recipient’ cells were pre-treated with exosomes collected from H1299-p53−/−, H1299-p53R273H or H1299-
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d H1299-p53−/− recipient cells were pre-treated with exosomes derived from H1299-p53R273H donor cells. Recipient cells were then transfected with siRNAs
targeting RCP (siRCP) or a non-targeting control (siNT), and the characteristics (ΔPersistence, ΔFMI and speed) of their migration into scratch-wounds was
determined in the presence and absence of a DGK inhibitor (R59022; 10 μM) or DMSO control. Values are mean ± SEM; n > 273 cells; *** in right panel, and
***green versus black and ***purple versus yellow are p <0.001, Mann-Whitney test
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(ITGA3) (Supplementary Figure 4a)—the most abundant exoso-
mal cargo—but whose levels do not differ between mutp53R273H

and p53−/−-exosomes (Supplementary Data 1) did not oppose
the ability of mutp53R273H-exosomes to drive migration of
recipient cells (Supplementary Figure 6a).

Taken together these data indicate that PODXL is required for
exosomes to influence receptor trafficking, but that its levels must
be within a certain range for this to occur. The role of mutant p53
is to drive transcriptional suppression of PODXL expression
which reduces the exosomal content of this sialomucin to within
this range, thus driving RCP-dependent receptor trafficking in
recipient cells and allowing transfer of mutp53’s gain-of-function
to p53 null cells.

Rab35 associates with PODXL to influence its sorting to exo-
somes. PODXL binds to the Rab35 GTPase, and this association
controls PODXL trafficking to the plasma membrane19,20. Rab35
and PODXL co-immunoprecipitated (Fig. 4a, e) to an extent that
is commensurate with the expression levels of PODXL in p53−/−

and mutp53-expressing cells respectively (Fig. 4a). Furthermore,
knockdown of Rab35 (using SMARTPool siRNAs, an individual
siRNA oligo or CRISPR gene editing) reduced PODXL at the cell
surface (Fig. 4b; Supplementary Figure 6b, c). Interestingly, Rab35
knockdown led to accumulation of PODXL in CD63-positive late
endosomes and, consistently, increased levels of PODXL in exo-
somes—while not affecting the number and size of exosomes
released by H1299 cells (Fig. 4c, d). By contrast, knockdown of
Rab27a and Rab27b did not influence the sorting of PODXL into
exosomes (Fig. 4c). Mutation of residues in the juxtamembrane
region of PODXL’s cytoplasmic tail, that have previously been
found to be important for Rab35–PODXL association (Val496 and
Tyr500), reduced their co-immunoprecipitation and led to
increased trafficking of PODXL to CD63-positive late endosomes
and exosomes (Fig. 4e–g). Consistently, the ability of H1299-
p53R273H-exosomes to influence recipient cell migration was
completely opposed by Rab35 knockdown, whereas Rab27
knockdown (which does not influence sorting of PODXL to
exosomes) was ineffective in this regard (Fig. 4h). Taken together,
these data indicate that because Rab35 (but not Rab27) is
required to transport PODXL to the plasma membrane, sup-
pression of Rab35 diverts PODXL to late endosomes, thus
increasing exosomal PODXL levels and disturbing exosome-
mediated transfer of mutp53’s migratory gain-of-function to
recipient cells.

mutp53R273H-exosomes promote integrin recycling in fibro-
blasts to influence ECM architecture. Treatment with

mutp53R273H-exosomes did not significantly increase the inva-
siveness of p53 null tumour cells in fibroblast-free Matrigel plugs
(Supplementary Figure 7a). This raised the possibility that the
fibroblasts in the organotypic plugs may contribute to transfer of
mutp53’s invasive gain-of-function. Indeed, pre-treatment with
exosomes from mutant p53-expressing H1299 cells (either
H1299-p53R273H or H1288-p53R175H) potently increased recy-
cling (of α5β1 and TfnR) in TIFs, and this was opposed by
inhibition of DGKα (Fig. 5a). Consistently, pre-treatment of TIFs
with mutp53R273H or mutp53R175H exosomes increased their
migration speed, decreased migratory persistence and FMI in
scratch-wound assays (Fig. 5b), and increased random migration
speed of subconfluent TIFs (Supplementary Figure 7b). More-
over, exosome-mediated transfer of these migratory character-
istics to fibroblasts was opposed by CRISPR-mediated disruption
of Rab35 or PODXL (Supplementary Figure 4b) or over-
expression of PODXL-GFP in H1299-p53R273H donor cells
(Supplementary Figure 5d), indicating that control of PODXL
levels in tumour cells is required for the transfer of mutant p53’s
migratory phenotype to fibroblasts (Fig. 5b).

To test whether altered DGKα-dependent integrin trafficking
might influence ECM deposition, we allowed TIFs that had been
pre-treated with mutp53R273H-, mutp53R175H- or p53−/−-exo-
somes to deposit ECM for 8 days. Immunofluorescence indicated
that ECM deposited by fibroblasts is normally organised into
bundles of largely parallel filaments, and pre-incubation with
p53−/−-exosomes did not alter this (Fig. 5c). By contrast, pre-
incubation with mutp53 (R273H or R175H) exosomes led to a
more branched, orthogonal ECM network. To quantify this, we
used grey level co-occurrence matrix (GLCM) analysis. This
approach determines the probability (intensity correlation) that
pixels at increasing distances (comparison distance) from a given
point can be found to have similar intensities. Thus if an image
consists mainly of long straight fibres it is possible to travel some
distance in a straight line away from a given point without much
alteration to intensity, and this will be reflected by long
comparison distances for a given intensity correlation—i.e. a
long mean decay distance. However, if an image is comprised
mainly of short, orthogonally arrayed filaments then the
correlation will fall more quickly as one travels away from a
given point—yielding a shorter mean decay distance. The
intensity correlation of ECM deposited by fibroblasts treated
with mutp53R273H or mutp53R175H- exosomes decreased more
quickly with distance than it did in ECM from untreated
fibroblasts or those incubated with p53−/−-exosomes (Fig. 5c).
Furthermore, inhibition of DGKα (during the ECM deposition
period) opposed deposition of orthogonal ECM with a short
mean decay distance. Finally, second harmonic generation

Fig. 3 Mutant p53 controls exosomal podocalyxin levels to drive receptor trafficking and cell migration in p53 null cells. a H1299-p53−/− and H1299-
p53R273H cells were SILAC-labelled with heavy and light amino acids respectively. Conditioned media were collected from labelled cells, exosomes purified
from these using differential centrifugation, and their proteome analysed by mass spectrometry. Scatter plot indicates the SILAC ratio H1299-p53R273H/
H1299-p53−/− (Log2 scale) of each protein identified in the exosomal proteome. Proteins to the left and right of the red dotted lines are significantly down-
and up-regulated respectively in exosomes from H1299-p53R273H cells (Significance B statistic test, false discovery rate of 5%, Perseus software). These
data are extracted from the table presented in Supplementary Data 1. b Exosomes from H1299-p53−/−, H1299-p53R273H, and H1299-p53R175H cells were
analysed by western blotting with an antibody recognising PODXL. CD63 was used as sample control. c Exosome pellets from H1299-p53−/− and H1299-
p53R273H cells were characterised using sucrose density gradient centrifugation followed by western blotting for PODXL and the exosome marker, CD63.
d H1299-p53−/−, H1299-p53R273H and H1299-p53R175H cells were lysed and assayed for the levels of mRNA encoding PODXL (left panel) using qPCR, and
for PODXL protein using western blotting (right panel). Values in the left panel are mean ± SEM, n= 3; *** is p < 0.001 unpaired t-test. e, f Donor H1299-
p53R273H cells were transfected with GFP, or PODXL-GFP, siRNAs targeting PODXL (siPODXL) or non-targeting control (siNT). Exosomes collected from
these cells were used to treat H1299-p53−/− recipient cells for 72 h before the cells were re-plated and recycling of α5β1 and cMET (e) and migratory
characteristics of these cells into scratch-wounds (f) were determined as for Fig. 2a, b. Values are mean ± SEM. N > 317 cells; ***green versus black, and
***purple versus yellow are p < 0.001, Mann–Whitney test. In the right panel of e, *** is p < 0.001 and * is p < 0.05, Mann–Whitney
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microscopy (SHG) in combination with GLCM analysis indicated
that pre-incubation of fibroblasts with mutp53R273H-exosomes
prior to seeding them into collagen plugs significantly reduced the
mean decay distance of fibrillar collagen within these plugs
(Fig. 6b, d). Taken together, these data indicate that mutant p53-
expressing tumour cells influences organisation of the ECM in 3D
microenvironments by releasing exosomes which alter integrin
trafficking in fibroblasts.

mutp53-exosomes encourage fibroblasts to generate a pro-
invasive microenvironment. Exosome-driven alterations to the
organisation of the ECM might be expected to influence its
mechanical properties to affect tumour cell invasiveness. AFM
analysis indicated that the ECM deposited by mutp53-treated
TIFs had similar stiffness to that from untreated fibroblasts and,
despite observations that pre-treatment with p53−/− exosomes
encouraged the deposition of a slightly stiffer ECM (increased
Young’s modulus), this was not consistent with altered stiffness
being associated with the altered properties of mutp53-fostered
ECM (Fig. 5d). We, therefore, continued to use AFM to deter-
mine the adhesive properties of the ECM. We attached a silica
bead to the tip of the AFM cantilever, allowed this to interact with
the ECM for a defined time, and then measured the energy
required to remove the bead. The energy required to remove a
silica bead from the ECM deposited by untreated TIFs was
unchanged by pre-treatment of TIFs with p53−/−exosomes
(Fig. 5d). However, pre-treatment of TIFs with mutp53-exosomes
led to a three- to four-fold reduction in energy necessary to
remove a bead from the ECM deposited by these fibroblasts
(Fig. 5d). Because of this altered stickiness, we assessed the
adhesions formed when cancer cells interacted with these
matrices. Quantitative analysis of paxillin distribution indicated
that MDA-MB-231 cancer cells assembled significantly fewer and
smaller 3D cell:matrix contacts when they were plated into ECM
deposited by fibroblasts pre-treated with mutp53-exosomes
(Fig. 5e), indicating that cell:ECM contacts structures were less
well-established in this less adhesive microenvironment. There-
fore, we measured the speed at which tumour cells migrated
through de-cellularised ECM deposited by exosome-treated
fibroblasts. MDA-MB-231 breast cancer cells migrated sig-
nificantly more quickly through ECM from fibroblasts that had
previously been treated with mutp53R273H-exosomes than they
did through ECM from untreated fibroblasts or those treated with
p53−/−-exosomes (Fig. 6a). Furthermore, the ability of exosome-

treated fibroblasts to assemble ECM which supported enhanced
tumour cell migration was completely opposed by inhibition of
DGKα (during the ECM deposition period). Finally, we incubated
TIFs with exosomes and allowed them to pre-condition collagen
plugs which were subsequently overlaid with H1299 tumour cells.
This indicated that H1299 cells, irrespective of their p53 status,
invaded efficiently into collagen plugs that had been conditioned
by mutp53R273H-exosome-treated TIFs (Fig. 6e). By contrast, pre-
treatment of TIFs with p53−/−-exosomes did not confer
increased invadability to organotypic collagen plugs (Fig. 6e)
despite increasing the overall levels of fibrillar collagen (Fig. 6c).
Taken together, these data indicate that exosomes from mutant
p53-expressing tumour cells influence the way that fibroblasts
deposit and remodel the ECM so as to generate a micro-
environment highly supportive of tumour cell migration and
invasion.

Mutp53-expressing tumours influence ECM architecture in the
lungs via PODXL and Rab35-dependent mechanisms. Exo-
somes released by a mutp53-expressing tumour in one organ
might engender alteration to ECM organisation in other tissues.
To test this, we subcutaneously implanted H1299-p53−/− cells or
H1299s expressing mutp53273H or mutp53175H into nude mice.
When the tumours had grown to 0.8 cm in diameter, we used
SHG microscopy in combination with GLCM analysis to analyse
ECM organisation in the lung parenchyma. It is important to
note that we were unable to detect any H1299 cells in the lung,
indicating that any alterations to the lung ECM were owing to
factors (such as exosomes) released by the tumour cells and not
migration of tumour cells to the lung. The total quantity of
fibrillar collagen in the lung did not differ between non-tumour-
bearing mice or those implanted with p53 null or mutp53-
expressing tumours. However, the fibrillar collagen in the lung
parenchyma of mutp53 tumour-bearing mice appeared to be
more punctate and less well-organised into long fibres, and the
mean decay distance of collagen filaments (as determined using
GLCM) was significantly reduced by comparison with those
animals with p53 null tumours or non-tumour-bearing animals
(Fig. 7a). Importantly, deletion of either PODXL or Rab35 using
CRISPR (Supplementary Figure 4b) opposed the ability of
H1299-p53273H cells to alter lung ECM organisation in nude mice
(Fig. 7a).

We used the KPC and KPflC autochthonous models of
pancreatic ductal adenocarcinoma (PDAC). In these, primary

Fig. 4 Rab35 interacts with PODXL to influence its sorting to exosomes. a H1299 (p53−/− or p53R273H) cells were transfected with GFP-Rab35 or mock
transfected. GFP-tagged proteins were immunoprecipitated using an antibody recognising GFP conjugated to magnetic beads. Rab35 and PODXL were
detected in the lysates (Tot) and immunoprecipitates (GFP-IP) using western blotting. b H1299-p53R273H cells were transfected with siRNAs targeting
Rab35 (SMARTPool (Rab35-sp) or an individual siRNA (Rab35#1)) or a non-targeting control (NT). Cell surface proteins were labelled with NHS-Biotin at
4 °C and precipitated using streptavidin beads. Labelled (surface) and total (input) PODXL were then visualised by western blotting with actin as sample
control. c H1299-p53R273H cells were transfected with siRNAs targeting Rab35 (Rab35-sp or Rab35#1), Rab27a/Rab27b (Rab27) or a non-targeting control
(NT) ± GFP-PODXL. Exosomes were purified by differential centrifugation. Western blotting was used to determine exosomal levels of PODXL and GFP-
PODXL with CD63 as sample control. Nanoparticle tracking was used to characterise exosomes (right panels), values are mean ± SEM, n= 6 movies from
two individual experiments. d H1299-p53R273H cells were transfected with siRab35-sp, siRab35#1, or siNT. Cells were fixed and PODXL (green) and CD63
(red) were visualised by immunofluorescence. Bar, 15 μm. ImageJ was used to quantify co-localised pixels as determined by the Costes method. Values are
mean ± SEM. n > 16 cells. *** is p < 0.001, Mann–Whitney. e H1299-p53R273H cells were transfected with GFP, GFP-PODXL or GFP-PODXLV486A/Y500A.
GFP-tagged proteins were immunoprecipitated and Rab35 and GFP-PODXL were detected in the immunoprecipitates as for a. f H1299-p53R273H cells were
transfected with GFP-PODXL or GFP-PODXLV486A/Y500A. Cells were fixed and PODXL (green) and CD63 (red) were visualised by immunofluorescence.
Bar, 15 μm. Colocalisation was determined as for d. Values are mean ± SEM. n > 16 cells. *** is p < 0.001, unpaired t-test. g H1299-p53R273H cells were
transfected with GFP-PODXL or GFP-PODXLV486A/Y500A. Exosomes were collected by differential centrifugation. Western blotting was used to determine
exosomal levels of GFP-PODXL with CD63 as a sample control. h H1299-p53R273H cells were transfected with siRab27, siRab35-sp, siRab35#1 or siNT.
Exosomes collected from these cells were used to treat H1299-p53−/− cells and the characteristics of their migration into scratch-wounds was
determined. Values are mean ± SEM; n > 262 cells; for siRab35#1 n= 100 cells; ***p < 0.001, Mann–Whitney
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tumour initiation and growth is driven by expression of
constitutively-active KRas (LSL-KRasG12D) in combination with
either deletion of an allele of p53 (p53fl/+ generating the KPflC
mouse) or expression of mutant p53s (either LSL-mutp53172H or
LSL-mutp53270H generating the KP172C and KP270C mice
respectively) under control of the pancreatic-specific Cre
recombinase, Pdx-Cre. For comparison, we used KC mice which
express LSL-KRas12G under control of Pdx-Cre, but the resulting

tumours do not readily progress past the pre-malignant PanIN
(pancreatic intraepithelial neoplasm) stage. Importantly for this
study, PDAC driven by LSL-KRas and LSL-mutp53172H or LSL-
mutp53270H metastasise to the liver and lung. On the other hand,
PDAC driven by KRas in combination with p53 loss (p53fl/+)
appear with similar penetrance, but do not metastasise4. We used
SHG followed by GLCM analysis to assess the ECM of the lung
parenchyma and perivascular regions at an age (10–12 weeks) in
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which primary tumour growth was underway, but metastases
were not detectable in the liver or lung. Any animals with
premature lung metastases visible by examination of paraffin-
embedded, H&E-stained sections were excluded from the analysis
—but these were rare. SHG indicated that collagen filaments in
the perivascular regions and lung parenchyma of mutp53-driven
KP172C and KP270C animals were shorter and less well-organised,
and the mean decay distance (as assessed by GLCM analysis) of
these fibres was reduced by comparison with that of KC (Fig. 7b,
c) or normal animals. By contrast, for KPflC animals, in which
tumours are driven by p53 loss, organisation of lung ECM was
indistinguishable from KC animals (Fig. 7b, c). Taken together,
these data indicate that hallmark alterations to ECM organisation,
which we have established to be driven by the influence of
mutp53R273H- or mutp53175H-exosomes on integrin trafficking in
fibroblasts, may also be detected in the lungs of animals bearing
autochthonous PDAC expressing the equivalent p53 mutations,
but not in the lungs of animals with PDAC with p53 loss.

Exosomes from mutp53-expressing tumour cells derived from
patients with squamous-type PDAC lead to ECM modification.
We determined whether the mutp53 status of cells from human
PDAC dictates the capacity of exosomes from these cells to
influence ECM deposition. Human PDAC may be categorised
into four main subtypes, and these are termed, progenitor,
immunogenic, ADEX and squamous21. KPC tumours closely
recapitulate the characteristics of the squamous subtype of PDAC,
so we focussed on the three patient-derived cell lines (PDCLs)
from this category. Of these, two (SQ2 and SQ3) expressed
mutations that led to ablation of p53 protein expression and were
considered, therefore, to be p53 null, while another (SQ1)
expressed a mutant of p53 (M237I) with gain-of-function prop-
erties (Fig. 8a; Supplementary Figure 7c)22. We isolated exosomes
from conditioned medium from these PDCLs and incubated
them with fibroblasts. We assessed the migration of these
exosome-exposed fibroblasts and found that only SQ1 (which
expressed a mutant p53 protein) was able to increase migration
speed and depress migratory persistence and FMI, as we had
previously found for H1299 cells expressing mutant p53s
(Fig. 8b). Furthermore, ECM deposited by fibroblasts pre-treated
with exosomes from the SQ1 PDCL had reduced mean decay
distance (Fig. 8c) and supported increased migration of cancer
cells (Fig. 8d). Importantly, we found that knockdown of mutant
p53 in SQ1 cells, while not significantly affecting the exosome
quantity or size (Fig. 8a), led to increased PODXL levels (Fig. 8a)

and opposed the ability of exosomes released from these cells to
support altered fibroblast migration (Fig. 8b) and ECM deposi-
tion (Fig. 8c, d).

Discussion
We have recently reported that conditional deletion of RCP in
pancreatic lineages (using Pdx-Cre) opposes metastasis in auto-
chthonous models of mutant p53-expressing PDAC23. This is not
owing to RCP’s ability to control the recycling of α5β1 integrin,
but via trafficking of the ephrin receptor, EphA2. However, this
does not mean that RCP-mediated integrin trafficking has no role
in PDAC metastasis. The progression of tumours from indolent
to invasive and onwards to metastasis depends not only on the
intrinsic invasiveness and dissemination of cancer cells, but on
their ability to influence other cells to generate invasive micro-
environments and to prime metastatic niches. Here we show that
RCP-regulated α5β1 integrin trafficking is involved in the con-
tribution made by fibroblasts to invasion and metastasis by
controlling the way that the ECM is deposited by these cells.
Furthermore, we show that mutant p53s expressed by tumour
cells activates RCP-dependent integrin trafficking in fibroblasts
via an exosome-mediated mechanism.

There are numerous reports that microRNAs and other non-
coding RNAs are found within exosomes, and that these can drive
processes such as tumour-associated inflammation and metastasis
by influencing mRNA processing and translation in target cells24.
Exosomes from mutant p53-expressing tumours may mediate
transfer of a microRNA to influence the polarisation of macro-
phages to generate an immunosuppressive tumour micro-
environment25. However, we have conducted extensive
quantitative proteomic and RNAseq analyses and cannot
demonstrate any alteration to the transcriptome or proteome of
target cells following treatment with mutp53-exosomes. This
indicates that the influence of exosomes on integrin trafficking
does not involve detectable alterations to transcription or trans-
lation in target cells and is, therefore, more likely to be mediated
by a more direct effect on the endosomal trafficking machinery of
target cells. The exosome cargo that is most significantly altered
by mutant p53 expression is the sialomucin, PODXL—and this is
owing to mutp53’s ability to influence PODXL levels in the
exosome-producing cells. Alteration of cellular PODXL does not
influence the quantity or the size of exosomes released by tumour
cells, nor are exosomes with different PODXL content assimilated
at different rates by target cells, so it is interesting to speculate
how exosomal PODXL levels might influence receptor recycling

Fig. 5 mutp53 exosomes promote integrin recycling in fibroblasts to influence ECM architecture. a, b mutp53-expressing R175H or R273H H1299 cells, or
cells generated by CRISPR from the latter (PODXL-CRSP; Rab35-CRSP), were transfected with GFP or PODXL-GFP or were left untransfected. Exosomes
collected from H1299-p53−/− and the transfected and untransfected mutant p53-expressing H1299 cells were used to treat TIFs and receptor recycling
(a) and migratory characteristics of these (b) were determined as for Fig. 2a, b. In a R59022 (10 μM) or DMSO was added to TIFs as indicated. Mean ±
SEM, n= 6. In a ***red versus blue, and ***green versus black are p < 0.001, ANOVA. In b, n= >52; ***red versus blue,***purple versus yellow, ***green
versus black, ***light blue versus black are p < 0.001, Mann–Whitney. In the right panel of b, *** is p < 0.001, Mann–Whitney. c TIFs were incubated with
exosomes from H1299 (p53−/−, p53R273H, p53R175H) cells or left untreated and allowed to deposit ECM in the presence and absence of R59022 (10 μM)
or DMSO. ECM was then de-cellularised, stained with antibodies recognising fibronectin and image stacks were collected using confocal microscopy.
Extended focus projections of these stacks are displayed in the left panel of c, bar, 50 μm. The organisation of the ECM fibres in these was determined
using GLCM. The decay curves and the weighted means of the decay distances derived from these are presented in the centre and right panels of
c respectively. Weighted mean ± SEM, n= 8, * is p < 0.05, Mann–Whitney. d TIFs were treated with exosomes from H1299 (p53−/− or p53R273H) cells or
were left untreated and allowed to deposit ECM. De-cellularised ECM was analysed using AFM. The left and right panels indicate ECM stiffness and
stickiness respectively. Mean ± SEM, n > 6 ECM preparations from two individual experiments *** is p < 0.001, Mann–Whitney. e MDA-MB-231 cells were
seeded onto de-cellularised ECM deposited by exosome-treated TIFs as indicated. Cells were fixed and cell:ECM adhesions visualised by
immunofluorescence. Top panel shows representative images (bar, 20 μm). Total area of paxillin per cell and average area of paxillin-positive particles are
plotted in the bottom left (n > 6) and right panels (n > 16). Mean ± SEM, * is p < 0.05, Mann–Whitney
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in target cells. PODXL is a glycocalyx component which, by virtue
of negative charge imparted by sialylated N- and O- linked oli-
gosaccharide residues, controls the separation of apposed lipid
bilayers to promote the opening of lumens during morphogen-
esis, and to dictate the spacing of kidney podocytes. By respec-
tively controlling PODXL expression and intracellular sorting,

mutant p53 and Rab35 collude to tune levels of exosomal PODXL
into a range which is just right for influencing receptor recycling.
Any manipulation which places PODXL above or below this
range (siRNA of PODXL, overexpression of PODXL, siRNA of
Rab35) renders exosomes to be ineffective in driving receptor
recycling. Given that sialomucins would be expected to contribute

1.0
*** **

0.5

S
pe

ed
 (

μm
/m

in
)

0.0
Recip.:

Donor:

TIF

TIF     collagen plug

TIF

– p53–/– p53–/– p53–/–p53R273H p53R175H p53R273H

TIF TIF TIF TIF
DMSO

TIF
R59022

TIF
DMSO

TIF
R59022

1.0
2.0

1.5

1.0

0.5

0.0

400

300

200

100

0

D
is

ta
nc

e 
in

to
 p

lu
g 

(μ
m

)

R
el

at
iv

e
de

ca
y 

di
st

an
ce

8000

6000

4000

2000

0

S
H

G
 c

ov
er

ag
e 

(A
.U

.)

0.5

C
or

re
la

tio
n

0.0
0 10050

Distance (μm)

Recip.:

Recip.:

Recip.:

Donor:

Donor:

Donor:
TIF

TIF
TIF
TIF

TIF TIF TIF TIF TIF

p53R273H

p53273H

p53273H

p53273H

p53273H

p53R273H

p53R273H

p53–/–

p53–/–

p53–/–

p53–/–– –

Tumour cells:

Tumour cells:

0 μm

500 μm

In
va

si
on

TIFs pre-treated
with exosomes

from:

TIFs pre-treated with
exosomes from:

p53–/– p53–/–

p53–/– p53–/–p53–/–

p53–/–

p53–/–

–

– –

–

–

*

*
**

***

p53–/–      TIF        ECM

 TIF     collagen plug

p53R273H    TIF        ECM

TIF    collagen plug

a

b

c d

e

p53–/–
p53273H

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-07339-y ARTICLE

NATURE COMMUNICATIONS |          (2018) 9:5069 | DOI: 10.1038/s41467-018-07339-y | www.nature.com/naturecommunications 11

www.nature.com/naturecommunications
www.nature.com/naturecommunications


to the surface charge of exosomes, our data suggest that exosomes
within a defined charge range can influence integrin trafficking by
acting within the endosomal system, and it will be interesting to
determine how other factors which would be expected to influ-
ence exosome charge (such as post-translational modification of
sialomucins) contribute to the ability of exosomes to interfere
with endosomal processes.

CAF activation is associated with increased secretion of
fibronectin. More recently, this process has been shown to be
promoted by exosomes. Exosomes from PDAC cell lines can bind
to liver macrophages to promote release of TGFβ leading to
fibroblast activation and fibronectin deposition to prime pre-
metastatic niche formation in the liver16. However, the alterations
in collagen organisation that we find to be driven by mutp53-
exosomes are not associated with events that accompany fibro-
blast activation, such as increased α-smooth muscle actin
expression and fibronectin deposition. Rather mutp53-exosomes
upregulate RCP-dependent integrin recycling without altering the
profile of gene expression in target cells. Integrin endocytosis and
recycling can influence ECM deposition and, as fibroblast
migration is influenced by mutp53-exosomes, this is also likely to
affect the ECM organisation. Long-term time-lapse experiments
indicate that fibroblasts in a confluent monolayer normally
migrate within a restricted area and this movement is direc-
tionally constrained. By contrast, mutp53-exosome-treated
fibroblasts undergo much longer range and directionally adven-
titious movements, and this behaviour may be what leads to the
more branched and disorganised ECM that they deposit. Mutant
p53-expressing tumours can influence collagen organisation in
the tumour stroma and this is associated with ECM cross-linking
and assembly of parallel arrays of collagen fibres26. Indeed, SHG/
GLCM analysis indicates that the mean decay distance of collagen
filaments in the stroma of mutant p53-expressing (KPC) PDAC is
significantly increased by comparison with the stromal regions of
KfC tumours (Figure S7d). Thus, our findings clearly indicate that
ECM alterations evoked at some distance from the primary
tumour by mutp53 exosomes are distinct from those observed in
the primary tumour. The orthogonal/tangled ECM that is
deposited by lung fibroblasts under the influence of mutp53-
exosomes may contribute to metastatic niche priming in more
than one way—for instance by increasing the ability of circulating
tumour cells to extravasate and colonise the lungs and/or by
influencing the dormancy of micrometastatic colonies, and fur-
ther work will determine how this occurs. Recently, it has been
found that a p53-driven transcriptional programme supports
many of the features of tumour-associated fibroblast behaviour,
including ECM deposition which fosters cancer cell migration

and invasion27. It will be interesting to determine whether reg-
ulation of fibroblast p53 function is associated with exosome-
mediated transfer of mutp53-like phenotypes and the activation
of fibroblast integrin trafficking, cell migration and ECM
remodelling.

It is now clear that primary tumours release factors that
influence the physiology of other organs to render them more
receptive to metastatic seeding. A number of mechanisms have
been shown to contribute to this, including mobilisation of
immune cells, release of ECM-modifying enzymes (such as lysyl
oxidase) and production of exosomes14,15,28. Although ECM
modification is key to metastatic niche priming, the cellular
mechanism through which tumour-derived exosomes lead to
altered ECM deposition are not yet clear. Our findings describe a
pathway in which a mutated tumour suppressor operates via a
well-characterised gain-of-function mechanism to alter the ECM
microenvironment to promote tumour cell invasive behaviour.
Indeed, mutp53 and Rab35 collaborate to control the PODXL
content of exosomes released by tumours cells, and these exo-
somes promote RCP/DGKα-dependent trafficking of α5β1
integrin in fibroblasts to influence the organisation and adhesive
properties of the ECM that they deposit. Although further work
will be necessary to determine how this more orthogonal and less
adhesive ECM influences cell migration and invasion, this type of
ECM organisation, which may be clearly detected in the lungs of
mutant p53 tumour-bearing animals, is more conducive to the
metastatic seeding of tumour cells. Thus, we have identified a new
mechanism that may drive the morbidity of mutp53-expressing
tumours and highlight an intercellular communication pathway
consisting of a number of measurable well-characterised com-
ponents (including Rab35, PODXL, RCP, DGKα, collagen orga-
nisation) which are amenable to pharmacological intervention
and may constitute viable biomarkers to indicate the presence of
metastatic tumours.

Methods
Cells, qPCR primers and antibodies. H1299 (p53−/− and p53R273H /R175H) (from
ATCC) TIFs (in house, Beatson Institute) and MCF7 (ATCC) cells were cultured in
Dulbecco’s modified Eagle medium (DMEM, Life Technologies) supplemented
with 10% fetal bovine serum (FBS) (Gibco), 1 mM L-glutamine, 100 µg/mL strep-
tomycin and 100 U/mL penicillin. For all experiments involving exosomes,
exosome-depleted serum was used throughout. PDCLs were generated as pre-
viously described1–4 and cultured in M199/F12 HAM medium (1:1) (Life Tech-
nologies) supplemented with 7.5% filtered FBS (Hyclone, Thermo Scientific), 15
mM HEPES (Life Technologies), 2 mM L-glutamine (Life Technologies), 20 ng/mL
EGF (Life Technologies), 40 ng/mL hydrocortisone (Sigma), 5 ng/mL apo-
Transferrin (Sigma), 0.2 IU/mL Insulin ActRApid (Life Technologies), 0.06%
glucose (Sigma), 0.5 pg/mL Tri-iodotyronine (Sigma), 1 ×MEM vitamins (Life
Technologies) and 2 μg/mL O-phosphoryl ethanolamine (Sigma). All cell lines were

Fig. 6 mutp53-exosomes encourage fibroblasts to generate a pro-invasive microenvironment. a TIFs were pre-treated with exosomes from H1299-p53−/−,
H1299-p53R273H or H1299-p53R175H cells and allowed to generate ECM in the presence and absence of R59022 as for Fig. 5c. ECM was then de-
cellularised and MDA-MB-231 breast cancer cells plated onto these. The migration of MDA-MB-231 cells through the de-cellularised ECMs was recorded
over a 16 h period using time-lapse video microscopy and cell tracking software. Representative tracks are indicated by the coloured lines in the left panels.
Bar, 100 μm. The migration speed of the MDA-MB-231 cells was calculated and is presented in the right graph. Values are mean ± SEM, n > 79 cells; **p <
0.01, ***p < 0.001, Mann–Whitney. b–d TIFs were incubated with exosomes from H1299-p53−/− (p53−/−) or H1299-p53R273H (p53R273) cells for 72 h.
Exosome pre-treated TIFs were trypsinised, mixed with acid-extracted collagen and the resulting organotypic plugs allowed to polymerise and contract for
3 days prior to collection of image stacks using second harmonic generation (SHG) microscopy. Representative optical slices from these are displayed in b.
Bar, 4 μm. The coverage of the SHG signal (c) and organisation of the fibrillar collagen (d) was determined using GLCM as for Fig. 5c. The decay curves
from these are presented in the left panels of d and the weighted means of the decay distances derived from these curves are displayed in the graph on the
right. Values in c are mean ± SEM, n= 22 fields of view across three separate experiments. Values in d are weighted mean ± SEM, n= 46 fields of view
across three separate experiments; * is p < 0.05, Mann–Whitney. e Collagen plugs were conditioned for 48 h with untreated TIFs or with TIFs that had been
pre-treated for 72 h with exosomes from H1299-p53−/− or H1299-p53R273H cells. Conditioned plugs were overlaid with H1299-p53−/− (p53−/−) or
H1299-p53R273H (p53R273H) cells and these were allowed to invade for 10 days. Plugs were then fixed and tumour cells visualised using H&E. The distance
between each tumour cell and the top of the plug was determined using ImageJ. Bars are mean ± SEM, n > 233 cells; *** p < 0.001 Mann–Whitney test
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routinely tested for mycoplasma contamination. H1299 cells were transfected using
the AMAXA system–Solution V with the X-001 electroporation protocol. PDCLs
were transfected using Lipofectamine RNAiMAX (Thermo Scientific) according to
the manufacturer’s instructions. To suppress p53 the siRNA forward oligo was
GACUCCAGUGGUAAUCUACUU, and for p63 it was UGA ACA GCA UGA
ACA AGC U (TT). siRNAs for RCP, DGKα, PODXL, Rab35, Rab27a, Rab27b and
ITGA3 were ON-TARGET siRNAs from Dharmacon. An individual siRNA was
also used to target Rab35 and the sequence of this was

GAUGAUGUGUGCCGAAUAU. Antibodies used were: CD63 (Pelicluster M1544,
dilution for WB—1:1000; IF -1:200), p53 (in house, DO-1, 1:10000), Rab35 (Cell
Signalling 9690S, 1:1000), RCP (in-house raised against RCP379–649, 1:1000),
PODXL (Abcam 150358, 1:1000), p63 (Abcam ab53039, 1:1000), α5 and α3
integrin (BD Pharmingen), cMET (R&D systems), GFP (Abcam ab6556, 1:1000),
Actin (Sigma A2066, 1:3000), TSG101 (GeneTex GTX70255, 1:1000), HSPA8 (Cell
signalling 8444S, 1:1000), Integrin β1 (BD Pharmingen 610467, 1:2000), CD9
(Abcam ab92726, 1:10000), DGKa (Protein tech 11547-1AP, 1:500), Rab27 (Abcam
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ab55667, 1:1000), p21 (Cell signalling 2947, 1:1000), Fibronectin (BD Pharmingen
610078, 1:100), Paxillin (BD Pharmingen 610052, 1:100), Integrin α3 (Millipore
AB1920, 1:1000). Uncropped blots corresponding to the main figures are presented
in (Supplementary Figure 8). qPCR primers for PODXL and GAPDH were from
QIAGEN.

For the CRISPR/Cas9 knockout of Rab35 and PODXL we used the lentiCRISPR
vector (Addgene plasmid #52961) established by Zhang lab29. The guide RNAs
sequences we used were GTAGCGAACGTGTCCGGCGT, which was generated by
Wang et al.30 as control, Rab35 guide TTGTCAACGTCAAGCGGTGG and
PODXL guide GTGAGGTTCAGGACGAGCTG. The lentiviral constructs were
cloned and transduced into H1299 cells as described in ref. 31.

Exosome purification and characterisation. Conditioned medium was collected
and centrifuged to remove live cells (300g), dead cells (2000g) and finally to remove
cell debris and larger lipid membrane fragments (10,000g). Exosomes were then
pelleted using a 100,000g centrifugation in a SW32 rotor. The pellet was washed in
PBS before a final pelleting centrifugation at 100,000 g, after which exosomes were
resuspended in a small volume of PBS. For sucrose density gradient centrifugation,
exosome pellets were mixed with 1 mL of a 2.5 M solution of sucrose at the bottom
of a 12 mL centrifugation tube. Exosomes were overlaid with 11 layers of sucrose
deceasing in concentration (from 2 to 0.4 M sucrose using 20 nm HEPES as the
diluent). The gradient was centrifuged at 200,000 g overnight using an SW40 rotor.
Exosomes were collected from each gradient fraction by a final centrifugation in
PBS at 100,000 g.

Nanoparticle tracking analysis was carried out using the NanoSight LM10
instrument according to the manufacturer’s instructions. Exosomes resuspended in
200 µL of filtered PBS were diluted 1:30 in filtered PBS before being introduced into
the instrument for measurement.

When incubating recipient cells (H1299, A2780, or TIFs) with exosomes we
routinely included these in the medium at a concentration of approx. 1 × 109

particles/mL.

Electron microscopy. Exosomes were fixed in 2% paraformaldehyde (Thermo
Scientific Pierce) and subsequently adsorbed onto Formvar carbon coated EM grids
overnight at 4 °C. Grids were washed with PBS and treated with 1% glutaraldehyde
(Sigma) solution for 5 min. This was followed by eight washes with distilled water.
Exosomes were visualised by negative staining, grids were incubated with uranyl
oxalate (Polysciences) for 5 min and subsequently methyl cellulose-UA (Sigma) for
10 min at 4 °C. Air dried grids were imaged on a transmission electron microscope
FEI Tecnai T20 running at 200 kV using Olympus Soft Imaging System software.

For immunogold staining, adsorbed exosomes were subject to four blocking
washes with PBS containing 50 mM glycine after initial adsorption onto grids. A
second blocking step was then carried out using PBS containing 5% BSA (Sigma)
for 10 min. Exosomes were then exposed to CD63 primary antibody (Pelicluster,
1:200) or mouse IgG1 isotype control antibody (Pierce, 1:200) diluted in PBS
containing 1% BSA for 30 min. Grids were washed in PBS containing 0.1% BSA six
times for 5 min each. Grids were then incubated with anti-mouse 10 nm protein A-
gold conjugate secondary antibodies (Cell Microscopy Centre) for 30 min before
eight PBS washes. From this point onward the fixation and negative staining
protocol was performed as described above. Images were analysed using ImageJ to
determine the exosome size.

SILAC proteomics. H1299-p53−/− cells were cultured in heavy SILAC (lysine8,
arginine10—Cambridge Isotope Labs) and H1299-p53R273H in light SILAC med-
ium. Conditioned media from these labelled cells were mixed and exosomes iso-
lated by differential centrifugation. The exosome pellet was resuspended in 6M
urea for mass spectrometry analysis. Exosome proteins were reduced (10 mM
dithiothreitol), alkylated (55 mM iodoacetamide) and digested (Lys C and trypsin).

Peptides were cleaned using stage tips and re-dissolved in 5% acetonitrile/0.25%
formic acid. Protein samples were then applied directly to an Orbitrap Elite (LC-
MS). Data were searched and quantified using Swissprot (Human) database and
MaxQuant software.

Receptor trafficking and cell migration. Recipient cells were cultured in the
presence of purified exosomes for 72 h. Following this, cells were trypsinised and
washed to remove exosomes, re-plated and grown for 48 h to achieve a confluence
of 80–90% prior to conducting receptor recycling assays32. H1299-p53−/− cells
were incubated in serum-free DMEM, transferred to ice, washed twice in cold PBS
and surface-labelled at 4 C with 0.2 mg/mL NHS-SS-biotin (Pierce) in PBS for 30
min. Cells were transferred to serum-free DMEM for 30 min at 37 °C to allow
internalisation of tracer. Cells were returned to ice, washed twice with ice-cold PBS
and biotin was removed from proteins remaining at the cell surface by reduction
with MesNa. The internalised fraction was then chased from the cells by returning
them to 37 °C in serum-free DMEM. At the indicated times, cells were returned to
ice and biotin removed from recycled proteins by a second reduction with MesNa.
The DGK inhibitor (R59022) or DMSO control were added as the receptor
internalised, and were maintained during the subsequent recycling period. Bioti-
nylated α5β1, cMET and TfnR were then determined by capture-ELISA using
Maxisorp (Nunc) plates coated with antibodies recognising human α5 integrin (BD
Pharmingen 555651; 5 μg/mL), cMET (R&D systems AF276; 5 μg/mL)) or TfnR
(BD Pharmingen 555534; 5 μg/mL)).

For scratch-wound assays, exosome-treated cells were trypsinised and re-plated
for 24 h prior to scratch-wounding and analysis of cell migration.

De-cellularised ECM and organotypic approaches. Telomerase-immortalised
human dermal fibroblasts (TIFs) were cultured in the presence of purified exo-
somes for 72 h. To produce de-cellularised ECM, gelatin-coated tissue culture-ware
was cross-linked with glutaraldehyde, quenched and equilibrated in DMEM con-
taining 10% FBS. Exosome-treated TIFs were trypsinised and re-plated at near
confluence (~2 × 104 cells/cm2) and grown for 8 days in DMEM containing 10%
FBS and 50 µg/mL ascorbic acid. Matrices were denuded of living cells by incu-
bation with PBS containing 20 mM NH4OH and 0.5% Triton X-100, and DNA
residue was removed by incubation with DNaseI33. For pre-conditioning of
organotypic plugs of rat tail collagen, exosome-treated TIFs were seeded in plugs of
rat tail collagen 1 which were allowed to contract in full DMEM (DMEM sup-
plemented with 10% FBS) for 14 days. 4 × 104 H1299 cells were then plated on top
of these plugs and cultured for 2 days. Plugs were then transferred to a metal grid
and cultured with full DMEM for 1 week followed by fixation in 4% paraf-
ormaldehyde before paraffin embedding. Four micrometer sections were then cut
and stained using hematoxylin and eosin17.

Atomic force microscopy. The mechanical properties of the cell-derived ECM
were carried out with an Atomic Force Microscope Nanowizard II (JPK Instru-
ments) mounted on an inverted optical microscope (Zeiss Observe) with a cell
heater attachment. Force indentation measurements were carried out using an
AFM probe (Nanoworld, Arrow TL with a nominal spring constant of 0.03 N/m)
attached with a 4.8 µm silica microsphere (Bang Labs) as described previously34.
Thermal calibrations were performed to determine the spring constant of each
cantilever before use. Force spectroscopy measurements were performed on 50
randomised locations on each sample by applying a 3 nN force indentation. The
Hertzian spherical model was applied to the approach force–distance curves to
deduce the elastic modulus of the ECM using an in-house algorithm written in R.
The adhesive properties of the ECM were estimated through analysing the energy
required to remove the probe from the matrix, which is the total areas of adhesion
peaks in the retraction force–distance curves (JPK data analysis software).

Fig. 7 Mutant p53-expressing PDAC influences ECM architecture in the lungs. a H1299-p53−/−, H1299-p53R273H or H1299-p53R175H cells, or H1299-
p53R273Hcells in which Rab35 or Podocalyxin had been disrupted by CRISPR were injected subcutaneously into CD1 Nude mice. Mice were monitored for
tumour growth and culled when tumours reached 0.8 cm diameter. Mice were sacrificed by IP injection of pentobarbital, and lungs were inflated with 2%
low melting point agarose which was then allowed to solidify. Agarose-filled lungs were sliced using a vibratome, and parenchymal regions were imaged by
SHG microscopy. Representative SHG pictures of lungs from CD1 nude mice transplanted with the respective cell line are displayed (top panels). Bar, 100
μm. Organisation of the fibrillar collagen was determined using GLCM as for Fig. 5c. The decay curves from these are presented in the bottom left panel of
a and the weighted means of the decay distances derived from decay curves are displayed in the graph on the right. Values are weighted mean ± SEM; n > 4
animals per condition (except for H1299-p53R175H, where n= 3); * is p < 0.05, *** is p < 0.001, Mann–Whitney. b, c KP172C (Pdx1-Cre:KrasG12D/+:
p53R172H/+) or KP270C (Pdx1-Cre:KrasG12D/+:p53R270H/+), KPflC (Pdx1-Cre:KrasG12D/+:p53fl/+) or KC (Pdx1-Cre:KrasG12D/+) mice were
sacrificed by IP injection of pentobarbital, and the parenchymal (b) and perivascular regions (c) of the lungs were and analysed by SHG microscopy as for
a. Representative SHG pictures of lungs are displayed (left panel). Bar in b, 25 μm; bar in c 100 μm. Fibrillar collagen organisation was determined using
GLCM. The decay curves from these are presented in the centre panels of b, c. Weighted means of the decay distances derived from decay curves are
displayed in b, c, right panels). Values are weighted mean ± SEM. In b, n > 7 lung fields from three animals per condition (except for KC, where there were 6
animals); * is p < 0.05, Mann–Whitney. In c, n= 3 for KC, n= 4 for KPflC and n= 5 animals for KPC. * is p < 0.05, Mann–Whitney
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GLCM analysis of ECM organisation. Using image sets generated by second
harmonic and immunofluorescence imaging, the structure and organisation of
the ECM was analysed by applying grey level co-occurrence matrix (GLCM)
analysis, a second-order statistical method. Briefly, the intensity of each pixel
containing collagen signal is compared to the neighbouring pixels (up to 100
away, corresponding to 100 μm) and a 2D histogram of intensity occurrences

compiled, from which statistical parameters of the intensity distribution are
calculated such as correlation, homogeneity, contrast and entropy. This has the
advantage of removing bias introduced by varying total amounts of signal,
changes in the image acquisition and/or signal strength as compared to direct
measurements from the raw image data. A bi-exponential model is applied to
the correlation decay data and the fit parameters used to calculate a weighted
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mean decay distance for use as a parameterisation metric between sample
conditions.

Experimental animals. KP172C (Pdx1-Cre, KrasG12D/+, p53R172H/+), KP270C
(Pdx1-Cre, KrasG12D/+, p53R270H/+), KPflC (Pdx1-Cre, KrasG12D/+, p53fl/+) and
KC (Pdx1-Cre, KrasG12D/+) mice (mixed FVB/Bl6 strain) are as previously
described3. Mice were monitored daily and kept in conventional animal facilities.
All animal experiments were performed under UK Home Office licence and
approved by the University of Glasgow Animal Welfare and Ethical Review Board.
Tumourigenesis was assessed by gross pathology and confirmed by histology. For
xenograft experiments, 1 × 106 H1299 cells were subcutaneously injected into 8-
week-female CD1 nude mice. Subcutaneous tumour growth was measured by
callipers three times a week until they reached a size endpoint of 8 mm. Mice were
sacrificed by intraperitoneal injection of pentobarbital and lungs were inflated with
2% low melting point agarose. Briefly, a small incision was performed in the
trachea and liquid agarose was injected with a blunted syringe needle. Mice were
then left on ice for 10 min to allow agarose to solidify in lungs. Lungs were dis-
sected and sliced using a vibratome (Campden Instruments 5100mz). Then, either
fresh slices of lung were imaged using a Trimscope multiphoton microscope
(Lavision) to visualise fibrillar collagen in the parenchyma by SHG, or to visualise
fibrillar collagen in the perivascular/peribronchial area by SHG, the lung was fixed
with 4% formaldehyde in PBS, sliced as before, mounted in Mowiol with 2.5%
DABCO and imaged using an LSM 880 NLO multiphoton microscope (Zeiss).

Data availability
The data supporting the findings of this study are available within the article and its
supplementary information files and from the corresponding author upon request.
For the proteomics data, the raw MS files and search/identification files obtained
with MaxQuant have been deposited to the ProteomeXchange Consortium via the
PRIDE partner repository with the dataset identifier PXD011241.
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