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Cardiovascular disease (CVD) is a common disease that poses a huge threat to
human health. Irreversible cardiac damage due to cardiomyocyte death and lack of
regenerative capacity under stressful conditions, ultimately leading to impaired cardiac
function, is the leading cause of death worldwide. The regulation of cardiomyocyte
death plays a crucial role in CVD. Previous studies have shown that the modes of
cardiomyocyte death include apoptosis and necrosis. However, another new form of
death, pyroptosis, plays an important role in CVD pathogenesis. Pyroptosis induces
the amplification of inflammatory response, increases myocardial infarct size, and
accelerates the occurrence of cardiovascular disease, and the control of cardiomyocyte
pyroptosis holds great promise for the treatment of cardiovascular disease. In this
paper, we summarized the characteristics, occurrence and regulation mechanism of
pyroptosis are reviewed, and also discussed its role and mechanisms in CVD, such as
atherosclerosis (AS), myocardial infarction (MI), arrhythmia and cardiac hypertrophy.
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INTRODUCTION

Cell death is a complex biological process that regulates various physiological functions and
maintains homeostasis. On the one hand, cell death ensures normal host development by clearing
out old, damaged and useless cells, for another, abnormal cell death destroys organ functions and
causes inflammation when cells cannot maintain essential life functions. Cell death is classified
into two categories based on functional differences: accidental cell death (ACD) and regulated
cell death (RCD), RCD also known as programmed cell death (PCD). Currently, known types of
RCD include apoptosis, necrosis, pyroptosis, ferroptosis, alkali death, etc. (1–4), this review focuses
on the molecular mechanisms of pyroptosis. Rupture of the plasma membrane (PMR) during
pyroptosis is an irretrievably catastrophic event. PMR rupture releases intracellular molecules
called damaged associated molecular patterns (DAMPs) during pyroptosis, which promotes an
inflammatory response (5). Pyroptosis is a caspase-dependent form of cell death found in immune
cells during microbial infection (6). In 1992, Zychlinsky et al.’s found that Shigella could cause
macrophage death. Electron microscopy found that chromatin condensation, membrane blebbing,
and DNA fragmentation were identified as apoptosis (7). By 1994, the team discovered that Shigella
can release large amounts of IL-1 after infecting macrophages (8), and believed that this form of
death was accompanied by an inflammatory response. In 1996, Chen et al. reported the activation
of cysteine-containing aspartate proteolytic enzyme (caspase-1) in this cell death, which was the
first report that caspase-1 could cause cell death (9). Until 2001, the Boise team discovered the
pro-inflammatory cell death method caused by caspase-1, and first proposed the concept of cell
pyroptosis (6). Pyroptosis is a kind of programmed cell death, but different from other programmed
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death, the main caspase executing death is caspase -1/4/5/11
(10). Pyroptosis can also mediate IL-1β, IL-18 and GSDMD
cleavage (10, 11), caspase-mediated cleavage of a member of
the GSDM family is a necessary step to trigger cell pyroptosis
(12). In addition to the release of two specific pro-inflammatory
cytokines, IL-1β, and IL-18, other inflammatory mediators
include DNA fragments, high mobility group protein B1,
adenosine triphosphate, and lipid mediators (13, 14). However,
activation of inflammasome and GSDMD does not always trigger
significant cell lysis (15–17). A recent study reported that
pyroptosis captures live bacteria (18), the presence of cytoskeletal
structures that capture bacteria until dead cells are engulfed by
phagocytes (19). In conclusion, on the one hand, pyroptosis
triggers the occurrence, and development of cardiovascular
diseases by releasing inflammatory factors and amplifying the
inflammatory response cascade, and on the other hand, it can
trap bacteria through the cytoskeleton and trigger the host
immune response.

THE PYROPTOSIS PATHWAY

Pyroptosis pathways include classical pathways and non-classical
pathways. In addition, studies have shown that apoptosis-
related caspase-3 and caspase-8 also trigger pyroptosis. In
the classical pathway, pro-IL-1β and pro-IL-18 are cleaved by
caspase-1 to form activated IL-1β and IL-18, full-length GSDMD
was also cleaved by caspase-1 to N-terminal and C-terminal
GSDMD during pyroptosis. The GSDMD-N-terminal binds to
the plasma membrane and rapidly forms pores 12–14 nm in
diameter, leading to cytoplasmic swelling. The plasma membrane
lyses and releases pro-inflammatory cell contents. In addition
to caspase-1, the researchers found a similar phenomenon
in caspase-4, caspase-5, and caspase-11, which also cause
pyroptosis. When bacterial lipopolysaccharide (LPS) enters the
cytoplasm, it directly activates caspase-4, caspase-5 in humans
and caspase-11 in mice (10, 20) and subsequently causes GSDMD
cleavage. The pyroptosis pathway independent of caspase-1
is called the non-classical cell pyroptosis pathway (21, 22),
GSDMD pore triggers assembly of NLRP3 inflammasome and
maturation of caspase-1 and then activates caspase-1 which
causes the cleavage of IL-1β and IL-18. Recent studies have
shown that OspC3 in shigella III type secretory system blocks
activation of caspase-4 or caspase-11, and GSDMD cleavage,
thereby preventing the occurrence of pyroptosis and evading
the host immune system (23). The pyroptosis pathway is
shown in Figure 1 and Figure 2: canonical and noncanonical
pathways.

KEY COMPONENTS INVOLVED IN
PYROPTOSIS

Gasdermin, caspase and inflammasomes are important molecules
in pyroptosis. Their characteristics and function in pyroptosis
will be discussed in the following sections.

THE GASDERMIN FAMILY

In humans, the GSDM family is made up of six members:
GSDMA, GSDMB, GSDMC, GSDMD, GSDME, and GSDMF,
as shown in Table 1. Mice lacked GSDMB but expressed
GSDMA and GSDMC (24). In terms of structure, except
for GSDMF, all GSDM family members have three common
structural domains, one N-terminal hole formation domain,
one C-terminal self-inhibition domain, one binding domain, in
which the N-terminal and C-terminal form an inactive full-
length gasdermin protein through the binding domain. As
the executor of pyroptosis, GSDM is associated with many
diseases. The key role of GSDMD in pyroptosis is due to
its high expression in a variety of tissues. GSDMD induces
pyroptosis and further amplifies inflammatory response with
intracellular material outflow, which is connected with the
nosogenesis of many inflammatory autoimmune diseases (25,
26). In addition, spontaneous mutations in GSDMs cause hair
loss (GSDMA) (27), asthma (GSDMB) (28), hearing impairment
(GSDME/DFNB59) (29). There is increasing evidence that
GSDMs perform different functions under different caspase
activation, including tumor pyroptosis and pathogen infection
(30, 31). Because DNA methyltransferase inhibitors induce
GSDMs expression, some GSDMs have potential applications in
epigenetics modification, especially DNA methylation, of which
DNA methylation of GSDMA and GSDME is the most obvious
(32, 33).

GSDMs Cause Hair Loss
The first member of the GSDM family, GSDMA, was identified by
mapping genes that cause abnormal skin and hair development in
cloned mice Rim3 mutants (34). There is increasing evidence that
GSDMA is closely linked to skin diseases. TNF can upregulate
GSDMA3 and cause apoptosis in mouse skin keratinocytes
(35). GSDMA has also been associated with susceptibility to
asthma, and macrophage transcriptome analysis has revealed
that GSDMA is associated with the pathogenesis of sclerosis and
inflammatory bowel disease (36–38).

GSDMB
GSDMB is more widely expressed than GSMDA, especially in the
gastrointestinal epithelium, liver, neuroendocrine and immune
cells (39–41). There are four subtypes of GSDMB, and caspase-4
promotes pyroptosis by activating GSDMB. In another large-
scale genome-wide analysis of asthma, mutations in the GSDMB
gene were associated with childhood asthma and autoimmune
diseases (42–44). In addition, the expression of GSDMB in tumor
cells increased and promoted the growth, invasion, metastasis of
neoplasm (45–47).

GSDMC
GSDMC was originally discovered in melanoma cells. With the
further study, researchers found that the expression of GSDMC
in melanoma cells has been at a high level (48). Researchers
defined GSDMC as a marker of melanoma occurrence, and
GSDMC is expressed in a number of cells and tissues, and is
also one of the star molecules. The deactivation of transforming
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FIGURE 1 | Role of GSDMD in canonical inflammasome activation. The canonical pathway of pyroptosis. PAMPs or DAMPs bind to inflammasome to activate
caspase-1, cleaving GSDMD to form GSDMD-C and GSDMD-N. GSDMD-N cluster and bind to the plasma membrane to form GSDMD pores. Simultaneously
activated caspase-1 activates IL-18 and IL-1β, and cytokines IL-18 and IL-1β are released into the cell through the GSDMD pore. In addition to IL-18 and IL-1β,
HMGB1 is also removed.

TABLE 1 | Characteristics of GSDM family proteins.

Gene Activate way Organism Disease links References

GSDMA Autoactive Human and mouse Alopecia (71)

GSDMB GzmA Caspase-4 Human Autoimmune disease, breast cancer, asthma, uterine cervix cancer, tumor (43, 45, 46, 72)

GSDMC Caspase-8 Human and mouse Tumor, colorectal cancer (49, 51)

GSDMD Caspase-1/4/5/11 Human and mouse Autoimmune encephalomyelitis, Yersinia infection, familial Mediterranean (25, 73, 74)

GSDME Autoactive Caspase-3 GzmB Human and mouse Tumor, hearing impairment (29, 53, 66)

GSDMF Not known Human and mouse Auditory neuropathy (75)

growth factor β receptor Type II leads to the up-regulation of
GSDMC and promotes the proliferation of colorectal cancer
(49). Studies have shown that the Death receptor 6 can recruit
pro-caspase-8 and GSDMC, activate caspase-8 to cleave GSDMC
and thus induce pyroptosis (50). A recent study has shown that
hypoxia triggers the binding of signal transducer and activator
of transcription(STAT3)phosphorylation and programmed
death ligand 1(PD-L1)in tumor cells, thereby causing nuclear
translocation of PD-L1 to induce GSDMC expression. Caspase-8
specifically cleaves GSDMC and induces cell pyroptosis. PD-L1
mediates GSDMC expression under the activation of tumor

necrosis factor α(TNF-α). The apoptosis of cancer cells is
transformed into pyroptosis, which promotes tumor death (51).

GSDMD
GSDMD is the most studied protein in pyroptosis, which is
mainly expressed in immune cells, placenta, gastrointestinal
epithelial cells, various cancers, and Jurkat T and Ramos B cancer
cell lines (52). It is a crucial executor of pyroptosis, mediating
inflammatory responses and influencing chronic inflammatory
diseases. When the inflammasome complex is formed, GSDMD
can recruit caspase, which cleaves Asp275 (mouse Asp276)
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of GSDMD in the linker (53), releasing the self-inhibition
of its GSDMD-N domain and performing pyroptosis through
pore-forming. GSDMD-induce pyroptosis of macrophages also
activate the release of cytokines that activate coagulation and lead
to sepsis (54, 55). Similarly, GSDMD relies on neutrophils to
capture platelets and promotes thrombosis and helps to activate
clotting (56). Studies of gene defects or gene knockdown have
also shown that GSDMD is associated with the nosogenesis of
alcoholic hepatitis, non-alcoholic steatohepatitis, non-infectious
liver injury, and ischemia/reperfusion (I/R) injury (57–60).

GSDME
GSDME, also known as DFNA5, was initially being identified
as a gene associated with deafness (61), mutations of DFNA5
lead to hearing impairment, and mutations in several different
DFNA5 leads to a jump exon eight at the transcriptional level.
GSDME can be detected in the heart, brain, and tumor cells and
has promising research prospects in tumor cells (62, 63). Shao’s
research team has found that chemotherapy drugs used in clinical
practice can activate GSDME-mediated pyroptosis. Caspase-3 is
activated to cut Asp270 of GSDME and induces the occurrence of
pyroptosis after chemotherapy drugs, which explains the strong
side effects brought to patients after the use of chemotherapy
drugs (53, 64). However, studies have found that, compared
with normal cells, GSDME is not expressed in most tumor
cells. The combination of chemotherapy drugs and GSDME to
induce intense pyroptosis of tumor cells and protect normal
cells is the key to future research (53). It is reported that iron
increases intracellular ROS levels and combined therapy with
drugs enhances the therapeutic effect of drugs due to the elevation
of ROS production. High levels of ROS promote the release of
cytochrome C, which activates caspase-3, and caspase-3 cleaves
GSDME, leading to the activation of GSDME and inducing
pyroptosis. Researchers have also found that the poor effect of
clinical chemotherapy drugs may be related to pyroptosis, and
found the unique effect of the iron agent. Combined with clinical
chemotherapy drugs, the proliferation and metastasis of tumor
cells were inhibited (65). GSDME expression in tumor cells can
transform apoptosis into pyroptosis, which provides a way out
of the poor efficacy of chemotherapy drugs and overcomes the
drug resistance of tumor cells (66). With further research, it
was also found that the tumor suppressor p53 activated GSDME
through transcription, and GSDME induced the occurrence of
cell pyroptosis, outflow of inflammatory factors, and recruitment
of macrophages to remove more tumor cells (67).

GSDMF
GSDMF, unlike other members of the GSDM family, has
only one C-terminal domain. GSDMF can be detected in a
variety of tissues, but there are few specific studies (68). Like
GSDME, GSDMF is associated with hearing loss in humans,
and patients with GSDMF mutations present dysfunctions of
the cochlear hair cells of the cochlea or auditory neuropathy,
which impairs the neurotransmission of auditory signals (69).
Excessive noise causes excessive oxidative stress on auditory hair
cells and damages the function of auditory hair cells in hearing
impairment. GSDMF, as a peroxisome-related protein, degrades

peroxisome through rapid, we selective autophagy to protect
cells from functional damage during excessive oxidative stress of
auditory hair cells (70).

CASPASE FAMILY

Caspases are evolutionarily conserved proteins, which consist of
amino-terminal domains and large and small catalytic subunits.
Activation of large and small catalytic subunits is also key to
the executive function of caspase. Caspases specifically cleave
certain substrate proteins, mainly acting on the aspartic acid
residues of these proteins. The amino-terminal region of initiator
caspases contains the caspases recruitment domain or death effect
domain, which promotes their recruitment and activation in the
multi-protein complex (76). Executioner caspases, in contrast,
lack the amino-terminal domain and its activation is needed
to be cleaved, as shown in Table 2. Prior studies have shown
that caspases are associated with apoptosis, homeostasis, and
an insoluble modulated mode of cell death that supports the
removal of senescent and damaged cells (77). Compared with
apoptosis, necrosis emerged as a new way of death mediated
by Receptor interacting protein kinase (RIPK) and mixed-
lineage kinase domain-like protein (MLKL) (78). With the
deepening of caspase research, a dependent on inflammasome
induced pyroptosis, caspase-1/4/5/11 cleavage GSDMD, induce
the emergence of pyroptosis, and caspase-1 can also combine pro-
IL-1β and pro-IL-18. The formation of active IL-1β and IL-18,
released extracellular by GSDMD pore, leads to an inflammatory
response. Previous studies have shown that abnormal regulation
of caspase is the mechanism of tumorigenesis, autoimmunity and
autoinflammation (79).

INFLAMMASOME

The innate immune system relies heavily on the assembly and
activation of inflammasome (97), the inflammasome is made up
of sensors, adapters, and effectors, the sensors determine the type
of inflammasome. The most mature inflammasome was NOD-
like receptor protein 3 (NLRP3); NOD-like receptor protein 1
(NLRP1); NLR family inhibitor of apoptosis protein (NAIP);
NOD-like receptor protein and CARD domain 4 (NLRC4).
What’s more, many other NLR family proteins, including,
NLRP6, NLRP7, NLRP12, AIM2, and Pyrin inflammasome, are
also thought to be sensors of inflammasome complexes. The
nod like receptor (NLR) family of pattern recognition receptors
respond to pathogen-related molecules or host-derived injury-
related molecules. After activation of the inflammasome, NLR
forms oligomerize through its a central nucleotide-binding and
oligomerization domain with ATPase activity (NACHT) domain,
which promotes caspase-1 recruitment through direct interaction
between NLR and caspase-1. However, most NLRs lack the
CARD domain and cannot recruit inflammation-related caspases
alone. To solve this problem, NLRs recruit (apoptosis-associated
speck-like protein containing CARD) ASC, and the Pyrin domain
(PYD) domain of ASC interacts with the PYD domain of NLR to
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recruit caspase-1 through the CARD domain of ASC. Therefore,
activating caspase-1 leads to the occurrence and development
of pyroptosis (98). NLR can recognize ligands from a variety
of microbial pathogens, host cells, and environmental sources.
Based on its domain structure, the NLR is subdivided into NLRP
and NLRC. NLRP1, NLRP3, and NLRC4 are NLRs that assemble
inflammasomes (99).

NOD-Like Receptor Protein 1
Nucleotide-binding domain (NBD) and leucine-rich repeat
sequence (LRR) containing Pyrin domain protein 1 (NLRP1) are
inflammatory body sensors that mediate activation of caspase-
1 to induce cytokine maturation and pyroptosis (100, 101).
NLRP1 contains a functional lookup domain (FIIND) that
automatically hydrolyzes proteins into non-covalently related
subdomains (102). NLRP1-FL and DPP9 have been shown to act
as checkpoints for NLRP1 inflammasome activation by directly
binding to isolate inflammatory NLRP1-CT (103).

NOD-Like Receptor Protein 3
NLRP3 acts as an activator of inflammatory response
and contains three domains, leucine-rich repeat (LRR),
oligomerization domain with ATPase activity (NACHT), PYD
domain (104). Therefore, NLRP3 inflammasome requires
initiation and activation processes, during which multiple
signaling receptors induce NLRP3 expression. Signals provided
by the NF-κB activator are necessary for NLRP3 activation.
Moreover, PAMPs or DAMPs are required for the activation
of inflammasome (105). PAMPs and DAMPs accelerate the
assembly of the NLRP3 inflammasome, which leads to the
maturation and release of caspase-1-mediated inflammatory
cytokines and pyroptosis (106).

NOD-Like Receptor Protein and CARD
Domain 4
NLRC4 is a nod-like receptor family member expressed in innate
immune cells. It indirectly senses bacterial flagellin and III
type secretion system and reacts by assembling inflammasome

complex to promote caspase-1 activation and pyroptosis (107–
109). NAIP-NLRC4 inflammasome is strongly activated in
intestinal epithelial cells (IEC) following pathogen infection,
resulting in pyroptosis and subsequent expulsion of infected cells
into the intestinal.

ROLE OF PYROPTOSIS IN
CARDIOVASCULAR DISEASES

Cardiovascular disease is a significant cause of death and reduced
quality of life worldwide. Studies have shown that pyroptosis
is associated with the pathogenesis of many cardiovascular
diseases. Endothelial cells pyroptosis (110), macrophages
pyroptosis (111) and smooth muscle cells pyroptosis (112)
are intimately connected to the emergence and progress of
atherosclerotic lesions and the stability of plaques (113). The
expression of NLRP3/IL-1β/caspase-1 has been observed in
patients with diabetes, myocardial infarction, arrhythmia,
and cardiac hypertrophy, and some agents can improve the
symptoms of cardiovascular disease in patients by inhibiting
the occurrence of pyroptosis. We will describe separately from
atherosclerosis, myocardial infarction, diabetes, arrhythmia, and
cardiac hypertrophy. The relationship between pyroptosis and
cardiovascular disease is shown in Table 3.

Pyroptosis in Atherosclerosis
Atherosclerosis is a chronic progressive disease characterized by
lipid deposition in the arteries, the formation of plaques leads
to vascular stenosis, vascular stenosis caused by atherosclerosis
and function of organs in the blood supply can produce
a significant effect, plaque rupture, then induce important
organs such as heart, brain, kidney embolism phenomenon.
In recent years, more and more pieces of evidence suggest
that atherosclerosis is an inflammatory disease associated with
endothelial dysfunction, and pyroptosis is the key cause of
endothelial dysfunction (111, 114, 115). Among them, NLRP3
inflammasome components NLRP3, ASC, caspase-1 are highly
expressed in carotid atherosclerotic plaques, suggesting that they

TABLE 2 | Key information of caspase family.

Caspase Organism Type Biological function References

Caspase-1 Human and mouse Cytokine Activators Pyroptosis (80)

Caspase-2 Human and mouse Initiator Caspases RCD (81)

Caspase-3 Human and mouse Executioner Caspases Apoptosis/pyroptosis (64, 82)

Caspase-4 Human Cytokine Activators Pyroptosis (21, 83)

Caspase-5 Human Cytokine Activators Pyroptosis (11, 83)

Caspase-6 Human and mouse Executioner Caspases Apoptotic/pyroptosis (84)

Caspase-7 Human and mouse Executioner Caspases Apoptotic (85)

Caspase-8 Human and mouse Initiator Caspases Necroptosis/pyroptosis (86–89)

Caspase-9 Human and mouse Initiator Caspases RCD (85)

Caspase-10 Human and mouse Initiator Caspases RCD (90)

Caspase-11 Mouse Cytokine Activators Pyroptosis (21, 22, 91)

Caspase-12 Mouse Not known RCD (92, 93)

Caspase-14 Human and mouse Executioner Caspases Unknown (94–96)
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FIGURE 2 | Role of GSDMD in non-canonical inflammasome activation. The canonical pathway of pyroptosis. When LPS enters cells, it directly participates in and
activates human caspase-4 and caspase-5 and mouse caspase-11. Caspase-11 cleaves GSDMD, forming GSDMD-C and GSDMD-N. GSDMD-N cluster and bind
to the plasma membrane. Formation of GSDMD pore, the formation of GSDMD pore activates inflammasome to bind to caspase-1, activated caspase-1 activates
IL-18 and IL-1β, and cytokines IL-18 and IL-1β are released extracellularly through GSDMD pore.

are related to the pathogenesis of atherosclerosis (116, 117). The
negative effect of NLRP3 on atherosclerosis is mainly dependent
on its effector cytokine IL-1β. In IL-1β deficient mice, the area
of atherosclerotic plaque is reduced by about 30%, which may
indicate that IL-1β deficiency inhibits the migration of monocytes
to lipid deposition sites (118, 119). These findings confirm that
pyroptosis is involved in the formation of atherosclerotic plaques,
and inhibition of NLRP3 and IL-1β in the pyroptosis pathway
may be a strategy for the treatment of atherosclerosis.

Pyroptosis in Diabetic Cardiomyopathy
Cardiomyopathy is a common clinical syndrome in the terminal
stage of diabetes mellitus. Cardiac inflammation and oxidative
stress are the main causes of diabetes. High glucose induces
increased ROS levels in cardiomyocytes, and mitochondrial
dysfunction leads to cardiomyocyte death (120). High levels of
ROS and inflammasome can also trigger pyroptosis, prompting
that pyroptosis plays an irreplaceable part in the occurrence
and progress of diabetic cardiomyopathy. Previous studies have

shown that islet amyloid polypeptide (IAPP) is a protein
formed in patients with diabetes that causes activation of
the NLRP3 inflammasome, triggering a series of inflammatory
responses that produce mature IL-1β, a process also known
as glucose metabolism (121). LPS and IAPP have the same
pathological characteristics. It was found that continuous high
glucose feeding increased the proportion of intestinal microbiota
containing lipopolysaccharide, and the concentration of plasma
LPS was upregulated. The upregulation of LPS led to the
expression of NLRP3 and IL-1β, thereby inducing the occurrence
of diabetes (122). In a mice model of spontaneous non-
obese diabetes, activation of NLRP3 promotes the proliferation,
differentiation, and transport of diabetic TH1 cells to islets,
thereby delaying the onset of diabetes (123). It was found that
NLRP3 silencing improved myocardial inflammation, fibrosis,
and cardiac dysfunction in type ii diabetic mice induced by
high glucose, suggesting that the reduction of pyroptosis can
improve the complications of diabetes (124). In addition, similar
results were observed in H9c2 cells treated with high glucose.
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TABLE 3 | Pyroptosis and cardiovascular disease.

Cardiovascular disease Therapeutic targets Biological functions References

Atherosclerosis NLRP3/ASC/Caspase-1/IL-1β Reduced expression of VCAM-1 and monocyte chemoattractant
protein-1, reducing atherosclerotic plaques

(116–118)

Diabetic cardiomyopathy IL-1β/NLRP3/Caspase-1 LPS, miR-214-3p and IAPP trigger pyroptosis and induce diabetes (121, 122, 126)

Acute myocardial infarction NLRP3/Caspase-1/IL-18 Increased NLRP3/IL-1β/caspase-1 expression and increased
myocardial infarction size

(128, 132, 133)

Arrhythmia Caspase-1/IL-1β/IL-18 Activation of the NLRP3 inflammasome triggers arrhythmias (139, 140)

Cardiac hypertrophy NLRP3/IL-18/IL-1β/Caspase-1 Deletion of IL-1β, Tripterygium wilfordii Hook F, SiNPs, and irisin reduces
cardiac hypertrophy

(141, 142, 144, 145)

More importantly, LPS was shown to induce pyroptosis through
activation of the ROS-dependent NLRP3 inflammasome of H9C2
cardiomyocytes, followed by the NF-κB signaling pathway (125).
In diabetic cardiomyopathy, increased levels of caspase-1 related
circRNAs activate Caspase-1 activity and cause pyroptosis,
while silencing caspase-1 related circRNAs significantly reduces
pyroptosis (126). These findings confirm that high levels of ROS,
LPS and inflammasome are involved in the development of
diabetes, and inhibition of NLRP3 and caspase-1 in the pyroptosis
pathway can alleviate diabetes.

Pyroptosis in Acute Myocardial Infarction
Coronary thrombosis caused by the rupture of unstable
atherosclerotic plaque and continuous interruption of blood
flow in diseased coronary arteries is the main cause of acute
myocardial infarction (ACM). For patients with ACM, the best
treatment plan is percutaneous coronary intervention (PCI) to
restore coronary blood supply as soon as possible to reduce
myocardial cell death (127), the ischemic necrotic myocardium
releases a large amount of ATP and oxidative stress products
(reactive oxygen species), which are activators of NLRP3
inflammasome. Some studies have reported that loss of NLRP3
inflammasome alleviates inflammatory response and improves
cardiac dysfunction induced by myocardial infarction (MI).
Therefore, the regulation of NLRP3 inflammasome is considered
as a underlying curative mark for MI (128). Studies have
shown that MicroRNA-29a inhibits oxidative stress, while NLRP3
ameliorates MI through SIRT1 (129). Intriguingly, colchicine, as
a non-specific inhibitor of the NLRP3, was shown to significantly
reduce infarct size in phase II clinical trials (130). In 2001, a study
showed that inhibiting caspase-1 with an inhibitor restored heart
function (131). IL-18 binding protein and IL-1 receptor blockers
also had similar protective effects, suggesting that interleukin
is involved in mediating injury. To further understand the
role of inflammation-related caspase-1 in myocardial ischemia-
reperfusion (I/R) injury, we constructed transgenic mice with
caspase-1. After I/R surgery, the size of MI increased, whereas
caspase-1 knockout mice showed a better therapeutic effect and
reduced the size of myocardial infarction (132, 133). Z-vad, a
commonly used inhibitor of apoptosis, had the same inhibitory
effect on pyroapoptosis and restored the size of MI (134, 135).
Another caspase-1 inhibitor, VX-765, also had the same effect,
which may be related to the increase of the reperfusion injury
salvage kinase (RISK) expression by inhibiting caspase-1 (136).

After tail vein injection of VX-765 in MI model mice, the
expression of inflammatory and pyroptosis-related factors was
decreased, and the infarct size left ventricular remodeling and
left ventricular function were decreased (137). These findings
confirm that large amounts of ATP and oxidative stress can
activate NLRP3, thereby increasing myocardial infarct size, while
some inhibitors of oxidative stress can reduce myocardial infarct
size by inhibiting the expression of NLRP3 and caspase-1.

Pyroptosis in Arrhythmia
Atrial fibrillation (AF) is the most common persistent
arrhythmia, has a complex mechanism, and electrical remodeling
and structural remodeling of atrial muscle are two major
pathological bases for its occurrence and maintenance (138).
Yao et al. isolated atrial myocytes from atrial tissue of patients
with AF and detected the expression of the p20 subunit of
caspase-1, and found that the expression of the p20 subunit in
atrial myocytes of patients with paroxysmal AF and persistent
AF was significantly increased compared with normal controls
(139). Studies have shown that oxidative stress and inflammatory
response linked in the occurrence of AF, and serum IL-1β and
IL-18 levels are positively correlated with AF (140).

Pyroptosis in Cardiac Hypertrophy
Cardiac hypertrophy is an adaptive response to cardiac pressure
overload. Prolonged cardiac overload can lead to cardiovascular
disease. The most common causes of cardiac hypertrophy
are hypertrophic cardiomyopathy, hypertension, and valvular
stenosis. Pyroptosis-related factors play a critical role in
the cardiac hypertrophic reaction. IL-18, a myocardial pro-
inflammatory cytokine, is raised the serum of sick persons with
cardiac hypertrophy, and hypertrophy-related genes are down-
regulated in IL-18 knockout mice, suggesting a key role in cardiac
hypertrophy (141). In addition to IL-18, leading to cardiac
hypertrophy (142). Taken together, NLRP3 inflammasome is
concerned with the pathological changes of cardiac hypertrophy,
and pirfenidone ameliorates left ventricular hypertrophy in
mice with coarctation aorta by forbiding NLRP3 inflammasome
combination and adjustment ROS-dependent NLRP3-IL-1β

signaling and myocardial fibrosis (143). Studies have shown that
silica nanoparticles (SiNPs) are associated with cardiovascular
disease. It was found that SiNPs could induce ROS oxidative
damage and promote the expression of inflammatory factors. At
the same time, SiNPs can up-regulate the expression of cardiac
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hypertrophy-related genes, and can also promote cardiomyocyte
pyroptosis by up-regulating the expression of pyroptosis-related
proteins. The NADPH inhibitor VAS2870 can effectively inhibit
the level of ROS. The decrease in the level of ROS causes
the NLRP3 inflammasome to fail to assemble and activate
the caspase-1 signaling pathway, thereby inhibiting pyroptosis
and cardiac hypertrophy (144). There are also studies showing
that irisin is a promising therapeutic agent for inhibiting
nlrp3-mediated cardiomyocyte pyroptosis (145). These findings
confirm that in patients with cardiac hypertrophy, ROS levels
induce oxidative stress, leading to increased expression of
NLRP3/IL-18, and some therapeutic agents associated with
oxidative stress can reduce the expression of genes associated
with cardiac hypertrophy.

CONCLUSION AND OUTLOOK

In summary, we can see that the occurrence of inflammation is
highly related to cardiovascular disease. Whether it is ischemic
heart disease or non-ischemic heart disease, inflammation-
related pyroptosis is involved in the occurrence and development
of cardiovascular disease. The expressions of pyroptosis-related
NLRP3, GSDMD, caspase-1, IL-1β, and IL-18 in these heart
disease patients were elevated. With the efforts of many
research teams, NLRP3, GSDMD, caspase-1, IL-1β were also
confirmed. The key role of IL-18 in cardiomyocyte pyroptosis,
necrotic cardiomyocytes can trigger an inflammatory cascade,
dead cells release intracellular components, and the NLRP3
inflammasome recognizes PAMPs and DAMPs, thereby further
stimulating the innate immune mechanism and promoting
inflammation the activation of the NLRP3 inflammasome can
activate caspase-1, and the activated caspase-1 induces the
occurrence of pyroptosis, and further exerts inflammation by
inducing the secretion of pro-inflammatory cytokines (i.e., IL-
1β, IL-18). Effect, aggravating cardiovascular disease due to the
combined effect of changes in glycolipid energy metabolism,
oxidative stress, and systemic inflammatory responses. The
current research mainly inhibits the occurrence of pyroptosis
by inhibiting the expression of pyroptosis-related proteins or
inflammatory factors, and inhibiting the occurrence of pyroptosis
does relieve the symptoms of cardiovascular diseases, and also
opens up opportunities for the development of drugs for the
treatment of cardiovascular diseases in the future. A new way
studies have also found that some specific drugs perform well
in pyroptosis, including SiNPs, Ac-YVAD-CMK, BAY11-7082,
NAC, etc. These drugs also inhibit the occurrence of interactions
through the ROS/NLRP3/caspase-1 signaling pathway. Up to
now, research has found that everyone has focused on how to
inhibit the occurrence of inflammation, including inhibiting the
activation of the NLRP3 inflammasome and the activation of
caspase-1. Release of IL-1β and IL-18. Of course, IL-1β and IL-18
have great prospects as biomarkers for predicting the occurrence
of cardiovascular diseases. IL-1β and IL-18 are relatively stable
in serum, and the determination is simple and sensitive. The
development of clinical standards and the development of
relevant test kits can complement current clinical diagnostic
methods.

So far, the application of pyroptosis is still in the basic
research stage. The identification methods of pyroptosis mainly
focus on the identification of morphology and the detection of
pyroptosis-related proteins. In the morphological identification,
electron microscope was mainly used to observe the cell
morphology. When the cells were pyroptosis, the chromatin was
intact, the cells were swollen and swollen, bubbles on the cell
membrane, and pyroptosis bodies were produced. Chromatin
integrity was detected by TUNEL, pyroptosis-related proteins
were detected by Western blot, including caspase-1/4/5/11,
GSDMD, IL-1β, IL-18, and the levels of inflammatory factors
could also be detected by ELISA kits, including IL-1β, IL-18.
In addition, the expression of GSDMD can also be observed by
immunofluorescence. With the improvement of the mechanism
of pyroptosis, more and more researchers realize that pyroptosis
plays an important role in the occurrence and development of
cardiovascular diseases. Although pyroptosis has shown great
promise as a therapeutic target for cardiovascular disease, its
clinical application still has a long way to go due to diagnostic
limitations. Finding biomarkers of cardiovascular disease is
an important means to prevent disease, and the three most
important features of biomarkers are specificity, sensitivity, and
stability. GSDM protein and inflammatory factors in pyroptosis
can be used as potential biomarkers, because they are stable
(i.e., unaffected by ribonucleases) and can be used simply and
sensitively in blood, or other body fluids, must be standardized
clinically. Therefore, it is necessary to further validate the
function of pyroptosis and integrate it into clinical practice.
For example, (1) standardized methods need to be developed to
detect pyroptosis levels in body fluids and tissues; (2) further
analysis of optimal blood components for pyroptosis detection
is beneficial for the development of clinical pyroptosis diagnosis;
(3) The development of pyroptosis inhibitors is beneficial to
the development of cardiovascular clinical drugs. In summary,
the mechanism of pyroptosis and its molecular mechanism of
action in cardiovascular disease remain to be elucidated, which
will provide new theoretical basis and analytical ideas for the
diagnosis and treatment of cardiovascular disease.
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