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Simple Summary: The role of the immune system in breast cancer has been debated for decades. It
is generally accepted that tumor-infiltrating lymphocytes are associated with positive prognostic
and predictive effects, especially in triple negative breast cancer. This subset of breast cancer is
characterized by the absence of hormone receptors and human epidermal growth factor receptor 2.
Compared to other breast cancer subtypes, triple-negative breast cancer has more mutations and
neoantigens, making it more immunogenic. Releasing the brakes on the immune system with the help
of so-called immune checkpoint inhibitors leads to activation of the immune system and destruction
of cancer cells. This, in turn, improves survival, especially in early and advanced triple-negative
breast cancer. A new and promising strategy is the enhancement of the immune response using
individualized mRNA vaccines against tumor-specific neoantigens.

Abstract: The role of the immune system in breast cancer has been debated for decades. The advent
of technologies such as next generation sequencing (NGS) has elucidated the crucial interplay be-
tween somatic mutations in tumors leading to neoantigens and immune responses with increased
tumor-infiltrating lymphocytes and improved prognosis of breast cancer patients. In particular,
triple-negative breast cancer (TNBC) has a higher mutational burden compared to other breast cancer
subtypes. In addition, higher levels of tumor-associated antigens suggest that immunotherapies are a
promising treatment option, specifically for TNBC. Indeed, higher concentrations of tumor-infiltrating
lymphocytes are associated with better prognosis and response to chemotherapy in TNBC. An im-
portant target within the cancer immune cell cycle is the “immune checkpoint”. Immune checkpoint
inhibitors (ICPis) block the interaction of certain cell surface proteins that act as “brakes” on immune
responses. Recent studies have shown that ICPis improve survival in both early and advanced
TNBC. However, this comes at the price of increased toxicity, particularly immune-mediated toxicity.
As an alternative approach, individualized mRNA vaccination strategies against tumor-associated
neoantigens represent another promising approach leading to neoantigen-specific immune responses.
These novel strategies should help to improve treatment outcomes, especially for patients with triple
negative breast cancer.

Keywords: tumor infiltrating lymphocytes (TILs); immune checkpoint inhibitors (ICPis); mRNA
vaccine; tumor-associated antigens (TAA); neoantigens

1. Introduction

Breast cancer is the most common cancer and the leading cause of cancer death for
women worldwide [1]. In 2015, breast vancer incidence was 2.4 million, with 523,000 breast
cancer deaths. Invasive breast cancer can be divided in several molecular subgroups
(e.g., luminal A, luminal B, HER2-positive and triple-negative) which have different prog-
noses and different systemic therapeutic options (e.g., chemotherapy, endocrine therapy,
anti-HER2 therapy) [2]. Early breast cancer has no distant metastases and is curable [2].
However, if distant metastases occur, the disease is treatable but incurable [3].
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The role of the immune system in breast cancer has long been debated [4]. With the
advent of modern techniques, such as mRNA sequencing data from The Cancer Genome
Atlas (TCGA), it has been shown that high expression of T-cell and B-cell signatures predicts
improved overall survival in many tumor types, including breast cancer [5]. In particu-
lar, triple-negative breast cancer (TNBC), which has a more pronounced immunogenic
potential compared to other molecular subtypes, is of great interest. TNBC accounts for
up to 20% of breast cancers and is associated with a significantly worse prognosis in the
first 2 to 3 years after diagnosis compared with other breast cancer subtypes [6]. It is now
generally accepted that TNBC is not a homogeneous disease. Instead, TNBC consists of
multiple subtypes (e.g., basal-like 1 and 2, immunomodulatory, mesenchymal, mesenchy-
mal stem-like, and luminal androgen receptor) [7]. In a comprehensive immunogenomic
analysis of over 10,000 tumors using TCGA data, Thorsson and co-workers identified six
stable and reproducible immune subtypes C1–C6 (i.e., wound-healing, IFN-γ-dominant,
inflammatory, lymphocyte-depleted, immunologically quiet, and TGF-β-dominant) [8].
Interestingly, these immune subtypes include multiple tumor types, and are characterized
by a dominance of either macrophage or lymphocyte signatures, T-helper phenotype,
extent of intratumoral heterogeneity, and proliferative activity. Although these authors
did not comment specifically on TNBC, it is likely that TNBC with a strong lymphocytic
infiltrate belong to immune subtype C3. Using even more sophisticated techniques, such as
single-cell sequencing, Wu and his collaborators have deconvoluted breast cancer cohorts
and stratified them into nine clusters, called “ecotypes”, with unique cellular composi-
tions and clinical outcomes that provide a comprehensive transcriptional atlas of breast
cancer cellular architecture [9]. Significantly more somatic mutations and neoantigens
are detected in TNBC than in other molecular subtypes, resulting in increased immuno-
genicity [10]. In a systematic review, Stanton and colleagues showed that the extent of
tumor-infiltrating lymphocytes (TILs) varies within and between breast cancer subtypes,
with TNBC having numerous TILs [11]. This may identify breast cancers that are more
suitable for immunotherapy.

2. Brief Overview of the Immune System in Breast Cancer

The role of the immune system in the breast cancer microenvironment is ambigu-
ous. Following the presentation of antigens by antigen-presenting cells (APCs), various
immune system responses may occur. On the one hand, tumor-inhibitory acute inflam-
mation may develop, driven by type 1 T helper cells (Th1) via CD8 lymphocytes, B cells,
or M1 macrophages. On the other hand, tumor-promoting Th2-driven chronic inflam-
mation can also occur through M2 macrophages, regulatory T cells (Tregs), or immune
checkpoints, such as programmed cell death protein 1 (PD-1) or its ligand programmed
cell death 1 ligand 1 (PD-L1). In addition, bone-marrow-derived cells, such as myeloid-
derived suppressor cells and mesenchymal stromal cells, can exert pro-tumorigenic effects
through negative regulation of immune responses. Originally, it was thought that Th1 and
Th2 cells are characterized by their mutually exclusive expression patterns of cytokines.
Th1 cells produce IFN-γ, whereas Th2 cells produce IL-4, IL-5 and IL-13 [12]. Recent
results, however, have shown that a single-cytokine-based nomenclature fails to capture
the complexity and diversity of T helper cells [13]. Immunoediting, the dynamic interaction
between the immune system and the tumor, leads to different stages of tumor evolution
(elimination–equilibrium–escape) [14,15]. This process is responsible for both eliminat-
ing tumors and sculpting the immunogenic phenotypes of tumors that eventually form
in immunocompetent hosts in the early phase of breast cancer development. The acute
inflammatory response creates a T helper (Th) type 1 microenvironment at the tumor site,
leading to an immune response that is tumor-suppressive and destroys tumor cells. Tumor
cell variants, however, can escape the immune response. This immunoediting creates a
state of equilibrium. When inflammation transitions from acute to chronic, a Th type 2
profile develops, leading to tumor-promoting effects with escape from the immune system
and uncontrolled tumor growth (Figure 1).
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cytokines. This, in turn, leads to either a tumor-suppressive or a tumor-promoting microenvironment. Abbreviations: Th, 
T helper cells. 
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the source of immunoglobulin kappa C (IGKC) expression [25]. In this study, co-staining 
with anti-human IgG showed that IGKC was expressed in IgG-positive cells, a known 
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has been associated with favorable prognosis in untreated patients and with response to 
anthracycline-containing neoadjuvant chemotherapy in early breast cancer [25]. Indeed, 
in a comprehensive analysis of the prognostic landscape of genes and infiltrating immune 
cells in human cancers, Gentles et al. confirmed that plasma cell signatures, as well as 
plasma cells expressing IGKC, are associated with improved survival [24]. However, the 
strong dependence of the humoral immune system on T cells is examplified by C-X-C 
motif chemokine ligand 13 (CXCL13)-positive CD4+ follicular helper T (Tfh) cells, which 
are crucial for germinal center development and antigen-specific B cell maturation to 
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has been associated with improved survival in TNBC [27]. 

Overall, these and other findings suggest that humoral immunity may be as im-
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ized trials [19,31,32]. Recently, in the neoadjuvant EXPRESSION trial, we demonstrated 
that genes with significantly higher expression in pathologically complete responders are 
primarily related to the immune response, including immunoglobulins [33]. These results 
also support the predictive role of the humoral immune system in early breast cancer. 

Particularly in triple-negative breast cancer, there is a strong association between 
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Figure 1. Immunoediting in breast cancer. Cancer immunoediting has dual host-protecting and tumor-sculpting actions
of the immune system that not only prevent but also shape neoplastic disease. Cytokines determine T-cell polarization.
Th1 and Th2 cells are characterized by their mutually exclusive expression patterns of cytokines. Th1 cells produce IFN-γ,
whereas Th2 cells produce IL-4, IL-5, and IL-13. The presence of IL-12 and/or interferon-γ drives previously uncommitted T
cells to become polarized to produce T1 cytokines, while IL-4 drives them to become polarized to secrete T2 cytokines. This,
in turn, leads to either a tumor-suppressive or a tumor-promoting microenvironment. Abbreviations: Th, T helper cells.

3. Prognostic and Predictive Significance of Tumor-Infiltrating Lymphocytes

Most studies that addressed the prognostic and/or predictive role of TILs in breast
cancer focused on the cellular immune system, particularly cytotoxic T cells [16–21]. Over-
all, these studies showed that increased rates of tumor-infiltrating lymphocytes or T-cell
transcripts were associated with improved prognosis in rapidly proliferating breast cancer
such as TNBC.

In contrast, we primarily examined B cells and the humoral immune system and
reported a strong positive prognostic impact of a B cell metagene on breast cancer progno-
sis [22]. This strong protective effect of a B cell/plasma cell signature was later confirmed
by others [23,24]. Tumor-infiltrating plasma cells were identified by confocal microscopy
as the source of immunoglobulin kappa C (IGKC) expression [25]. In this study, co-staining
with anti-human IgG showed that IGKC was expressed in IgG-positive cells, a known
feature of B-cell maturation and plasma cell differentiation after antigen contact. IGKC
has been associated with favorable prognosis in untreated patients and with response to
anthracycline-containing neoadjuvant chemotherapy in early breast cancer [25]. Indeed, in
a comprehensive analysis of the prognostic landscape of genes and infiltrating immune
cells in human cancers, Gentles et al. confirmed that plasma cell signatures, as well as
plasma cells expressing IGKC, are associated with improved survival [24]. However, the
strong dependence of the humoral immune system on T cells is examplified by C-X-C
motif chemokine ligand 13 (CXCL13)-positive CD4+ follicular helper T (Tfh) cells, which
are crucial for germinal center development and antigen-specific B cell maturation to
high-affinity memory cells and antibody-secreting plasma cells [26]. In addition, CXCL13
has been associated with improved survival in TNBC [27].

Overall, these and other findings suggest that humoral immunity may be as impor-
tant as cellular immunity in eliminating cancer [28]. These, initially retrospective, results
were later confirmed in exploratory studies using archival tissue from randomized tri-
als [27,29,30], as well as by histological evidence of TILs in archival tissue from randomized
trials [19,31,32]. Recently, in the neoadjuvant EXPRESSION trial, we demonstrated that
genes with significantly higher expression in pathologically complete responders are pri-
marily related to the immune response, including immunoglobulins [33]. These results
also support the predictive role of the humoral immune system in early breast cancer.

Particularly in triple-negative breast cancer, there is a strong association between TILs
and a more favorable prognosis or response to neoadjuvant chemotherapy [31,32,34–37].
Overall, increased tumor-infiltrating lymphocytes in TNBC resulted in increased complete
pathologic response (pCR) and also improved survival (Table 1).
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Table 1. Tumor-infiltrating lymphocytes in early triple-negative breast cancer.

Author n pCR DDFS DFS OS

Denkert et al., 2015 [30] 314 33.8% vs. 59.9%
p = 0.004 - - -

Denkert et al., 2018 [31] 906 11% vs. 50%
p < 0.0001 - HR 0.93 (0.87–0.98) HR 0.92 (0.86–0.99)

Loi et al., 2014 [32] 134 - HR 0.77 (0.61–0.98) -

Adams et al., 2014 [34] 506 - - HR 0.86 (0.76–0.98) HR 0.82 (0.68–0.99)

Hida et al., 2019 [37] 234 21% vs. 46%
p = 0.032 - HR 3.71 (1.60–8.57) HR 3.87 (1.46–10.27)

Ibrahim et al., 2014 [36] 2987 - HR 0.78 (0.68–0.90) HR 0.70 (0.56–0.87) HR 0.66 (0.53–0.83)

Loi et al., 2013 [35] 512 - . HR 0.31 (0.11–0.84) HR 0.30 (0.094–0.95)

Abbreviations: DDFS, distant disease-free survival; DFS, disease-free survival; HR, hazard ratio; OS, overall survival; pCR, pathologic
complete response (low vs. high tumor-infiltating lymphocytes); TNBC, triple-negative breast cancer; vs., versus.

This significant association of tumor-infiltrating immune cells and TNBC is not sur-
prising, considering that the overall mutational burden is highest in TNBC [10]. In addition,
these authors found that mutational burden was highly correlated with neoepitope load
(R2 = 0.86). A comprehensive analysis of immunogenic signatures in TNBC based on
two sets of large-scale breast cancer genomic data showed that TNBC has the strongest
immunogenicity among breast cancer subtypes [38]. Furthermore, these authors confirmed
that TNBC also has higher levels of immune cell infiltration and higher expression of genes
encoding immune checkpoints than non-TNBC. However, mutational and neoantigen
load appear to incompletely explain the immune response in TNBC, as other studies have
described an inverse relationship between immune infiltration and somatic copy number
alterations [39,40]. Obviously, the exact relationship between immune infiltration, muta-
tion burden, and neoantigen burden has not been fully elucidated. Nevertheless, TILs
are widely used, especially in TNBC. To improve reproducibility, a standardized method
for the evaluation of TILs has been defined to integrate this parameter into standard
histopathological practice [41,42].

4. Immune Checkpoint Inhibitors

Important target structures in the immune system are “immune checkpoints”. Immune
checkpoint inhibitors (ICPis) block the interaction of certain cell surface proteins that serve
as “brakes” on immune responses. Currently, the most important immune checkpoint in
breast cancer is the PD-1/PD-L1 axis [43,44]. The interaction between PD-1 and its ligand
PD-L1 functions as an immune checkpoint against unrestrained cytotoxic T effector cell
activity. Furthermore, it promotes peripheral T effector cell exhaustion and conversion of T
effector cells to immunosuppressive Tregs [45]. Immune checkpoint inhibitors that block
the PD-1/PD-L1 axis and reactivate cytotoxic T effector cell function increase immune cell
activity against tumor cells.

Indeed, monoclonal antibodies, so-called immune checkpoint inhibitors, which block
either PD-1 or PD-L1 (e.g., atezolizumab, durvalumab, nivolumab, or pembrolizumab)
are increasingly used to release the “brake” of the immune system and, thus, increase
the activity of the immune system against the tumor. A potential problem is that ICPis
require the presence of effector immune cells in the tumor, suggesting a baseline immune
response to trigger pre-existing immunity [46]. The monoactivity of ICPis such as ate-
zolizumab or pembrolizumab was modest in phase I trials in advanced and extensively
pretreated TNBC [15]. Few, but long-lasting, responses were observed, particularly in
less extensively pretreated patients [47]. In a phase III trial (KEYNOTE-119) in pretreated
advanced TNBC, monotherapy with pembrolizumab did not significantly improve overall
survival compared with chemotherapy, although the effect of pembrolizumab treatment
increased with increasing PD-L1 positivity [48]. However, the efficacy can be significantly
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increased by adding chemotherapy. Indeed, chemotherapy may lead to immunogenic cell
death, which in turn activates the antitumor immune response [49,50]. The combination of
immunotherapy and chemotherapy should, therefore, achieve an additive or synergistic
clinical effect [51].

Due to the specific mode of action of immunotherapies, which, in contrast to cytotoxic
chemotherapy, have no direct effect on tumor cell proliferation, a therapeutic response
can only be expected at a later stage. In addition, infiltration of immune cells may lead to
an initial enlargement of metastases, a so-called pseudoprogression [52]. However, this
pseudoprogression occurs in less than 10% of cases, whereas, conversely, a very rapid
increase in size, known as hyperprogression, may be more common occuring in up to
29% [53]. Therefore, continuation of therapy with ICPi in the presence of imaging evidence
of progression should only be considered if the clinical condition has improved and no
treatment-related toxicities are present [54].

4.1. ICPi in Advanced Breast Cancer

The monoactivity of ICPis such as atezolizumab or pembrolizumab in advanced
TNBC has been evaluated in several phase I and phase II studies (Table 2). Depending on
PD-L1 status and line of therapy, objective response rates (ORR) ranged from 5.3% to 24%.
Progression-free survival (PFS) ranged from 1.4 to 2.1 months and overall survival (OS)
ranged from 9.0 to 18 months [47,55–57]. Winer and colleagues compared pembrolizumab
with chemotherapy for second- or third-line treatment of patients with metastatic triple-
negative breast cancer [58]. Randomization was stratified by PD-L1 tumor status (combined
positive score [CPS ≥ 1] vs. negative [CPS < 1]) and history of prior neoadjuvant or adjuvant
treatment vs. de novo metastatic disease at initial diagnosis. The median overall survival in
patients with a PD-L1 CPS of 1 or more was 10.7 months in the pembrolizumab group and
10.2 months in the chemotherapy group (hazard ratio [HR] 0.86; 95% confidence interval
[95% CI] 0.69–1.06). The efficacy of pembrolizumab increased with higher CPS. However,
no significant improvement was observed.

The above-mentioned studies enrolled patients with advanced TNBC. Very few early-
phase clinical trials have included advanced hormone receptor (HR)-positive and HER2-
negative patients. Either with an ICPi alone or in combination, the survival was mod-
est [49–52].

It is obvious that further combinations are needed to increase the efficacy of ICPi in
breast cancer. For instance, low-dose metronomic chemotherapy with cyclophosphamide
reduced regulatory T cells (Tregs) and enhanced anti-tumor activity of cytotoxic T cells [59].
In addition, vinorelbine, cyclophosphamide, and 5-FU had significant preclinical effects
on circulating and tumour-infiltrating immune cells and could be used to obtain synergy
with anti-PD-L1 [60]. Furthermore, a combinatorial therapy in preclinical models of breast
cancer increased checkpoint inhibition by activating antigen-presenting cells, enhancing in-
tratumoral CD8+ T cells, and increasing progenitor exhausted CD8+ T cells [61]. Radiation
therapy also has immunomodulatory effects that could contribute to increased efficacy of
immunotherapies [62].

Although preclinical models provide a solid basis that certain low-dose chemother-
apies, such as cyclophosphamide or vinorelbine, improve anti-PD-L1 activity in breast
cancer, these therapeutic approaches need to be tested in clinical trials. In the adaptive,
non-comparative phase II TONIC trial, Voorwerk and coworkers investigated multiple
strategies (e.g., radiation, low-dose cyclophosphamide, cisplatin, doxorubicin) to make the
tumor microenvironment more sensitive to PD-1 blockade with nivolumab in 67 patients
with advanced TNBC [63]. In the entire cohort, the objective response rate (ORR) was
20%. Most responses were seen in the doxorubicin (35%) and cisplatin (23%) cohorts.
Interestingly, the authors noted upregulation of immune-related genes in these two co-
horts and speculated that this induction approach may induce a more favorable tumor
microenvironment and increase the likelihood of response to PD-1 blockade in TNBC.
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Another approach to increase the efficacy of an immune checkpoint blockade in
advanced cancer is to combine it with poly(ADP-ribose) polymerase inhibitors (PARPi).
PARPi-mediated unrepaired DNA damage modulates the tumor immunological microen-
vironment through a number of molecular and cellular mechanisms, such as increasing
genomic instability, immune pathway activation, and PD-L1 expression on cancer cells,
which could promote responsiveness to ICPis [64]. In the MEDIOLA basket study, dur-
valumab and olaparib were combined in solid tumors [65]. This combination showed
promising antitumor activity and safety. Disease was under control at 12 weeks in 24 of
30 evaluable patients (80%). While the above combinations are interesting and promising,
combining ICPi with chemotherapy is currently the simplest approach. A phase Ib study
evaluated the safety and clinical activity of atezolizumab in combination with nanoparticu-
late albumin-bound (nab)-paclitaxel in a cohort of 33 extensively pretreated patients with
advanced TNBC [66]. The rationale for combining an immune checkpoint inhibitor with
chemotherapy was the postulated greater activation of T-cell-mediated immunity due to
increased release of tumor-associated antigens and resulting immunogenic cell death [51].
The results of the study demonstrated that the combination of ICPi and nab-paclitaxel is an
effective treatment option with a tolerable side effect profile for patients with metastatic
TNBC (Table 2).

Table 2. Phase I/II evidence for ICPis in advanced breast cancer.

Author n Therapy AE ORR PFS OS

Emens et al., 2019 [56] 116
TNBC Atezolizumab 63% 24% 1.4 m 17.6 m

Nanda et al., 2016 [57] 31
TNBC Pembrolizumab 66.3% 18.5% 1.9 m 11.2 m

Adams et al., 2019 [55] 170
TNBC Pembrolizumab 60.6% 5.3% 2.0 m 9.0 m

Adams et al., 2019 [47] 84
TNBC Pembrolizumab 63.1% 21.4% 2.1 m 18.0 m

Adams et al., 2019 [66] 33
TNBC Atezolizumab + nab-paclitaxel 100% 39.4% 5.5 m 14.7 m

Barroso-Sousa et al., 2020 [67] 8
HR+ Pembrolizumab + radiotherapy 87.5% 0 1.4 m 2.9 m

Pérez-García et al., 2020 [68] 44
HR+ Pembrolizumab + eribulin 18% 6.0 m -

Yuan et al., 2021 [69] 23
HR+ Pembrolizumab + palbociclib + letrozole 56% 25.2 m 36.9 m

Abbreviations: AE, adverse events; HR, hormine receptor; ICPis, immune checkpoint inhibitors; m, months; ORR, objective response rate;
OS, overall survival; PFS, progression-free survival; TMBC, triple-negative breast cancer; vs., versus.

Building on these encouraging results, the phase III IMpassion130 trial confirmed the
clinical efficacy of atezolizumab in combination with nab-paclitaxel as a first-line therapy
in a cohort of 902 patients with metastatic or locally advanced TNBC [70]. Patients were
randomized 1:1 to either the experimental arm (atezolizumab in combination with nab-
paclitaxel) or the placebo arm (nab-paclitaxel + placebo). The results showed a significant
prolongation of PFS in both the intention-to-treat (ITT) population and the PD-L1-positive
subgroup: PFS was 7.2 months in the experimental arm compared with 5.5 months in the
placebo arm (HR 0.80; 95% CI 0.69–0.92; p = 0.002). In the subset of PD-L1-positive (≥1% of
immune cells) TNBC patients, PFS was 7.5 months compared with 5 months in the placebo
arm. Atezolizumab in combination with nab-paclitaxel prolonged OS in PD-L1-positive
patients (25.0 versus 15.5 months). Based on these results, atezolizumab in combination
with nab-paclitaxel is now approved as a first-line therapy for advanced PD-L1-positive
TNBC. In a recent IMpassion130 update, Schmid et al. showed that atezolizumab did not
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significantly increase OS in the overall cohort from 18.7 to 21 months at longer follow-
up (HR 0.86; 95% CI 0.72–1.02; p = 0.078) [71]. However, in PD-L1-positive patients, OS
increased from 18 to 25 months (HR 0.71; 95% CI 0.54–0.94). Surprisingly, the recently
presented IMpassion131 trial combining atezolizumab with conventional paclitaxel in
advanced TNBC did not improve PFS or OS compared with placebo + paclitaxel [72]. Of
651 randomized patients, 45% had PD-L1-positive aTNBC. In the PD-L1-positive popu-
lation, atezolizumab and paclitaxel were associated with a more favorable unconfirmed
overall response rate (63% vs. 55% for placebo–paclitaxel) and a longer median duration
of response (7.2 and 5.5 months, respectively). Possible reasons for this apparent contrast
with the benefit observed in IMpassion130 require further investigation, although several
hypotheses (e.g., different taxanes and the role of steroids or imbalances in prognostic
features or random results in a relatively small study) are under discussion [72,73].

Recently, Cortes and coworkers presented the results of KEYNOTE-355, a randomized,
double-blind, phase III trial of pembrolizumab + chemotherapy versus placebo + chemotherapy
in previously untreated, locally recurrent, unresectable, or metastatic triple-negative breast
cancer [74]. They showed that pembrolizumab in combination with multiple chemotherapy
partners (nab-paclitaxel, paclitaxel, or gemcitabine/carboplatin) produced a statistically sig-
nificant and clinically meaningful improvement in PFS compared with chemotherapy alone
in patients with previously untreated locally recurrent unresectable or metastatic TNBC
whose tumors expressed PD-L1. Compared with TNBC, there are few randomized data
in hormone receptor (HR)-positive/HER2-negative advanced breast cancer. Tolaney et al.
randomized 88 heavily pretreated patients with advanced HR-positive/HER2-negative
breast cancer to eribulin +/− pembrolizumab in one study. [75]. However, the addition of
pembrolizumab to eribulin did not improve PFS or OS compared to eribulin alone in either
the intention-to-treat or PD-L1-positive populations. The results of randomized trials in
advanced TNBC are summarized in Table 3:

Table 3. Randomized evidence for ICPi in advanced breast cancer.

Author n Therapy PFS in ITT OS in ITT

Schmid et al., 2018 [70] 902 Nab-paclitaxel +/−
atezolizumab

7.2 vs. 5.5 m
HR 0.80

(0.69–0.92)

21.3 vs. 17.6 m
HR 0.84

(0.69–1.02)

Miles et al., 2021 [72] 651 Paclitaxel +/−
atezolizumab

6.0 vs. 5.7 m
HR 0.82

(0.60–1.12)

22.1 vs. 28.3 m
HR 1.11

(0.76–1.64)

Cortes et al., 2020 [74] 847 Chemotherapy +/−
pembrolizumab

7.5 vs. 5.6 m
HR 0.82

(0.69–0.97)

Winer et al., 2021 [58] 622 Pembrolizumab vs.
chemotherapy

10.7 vs.10.2 m
HR 0.86

(0.69–1.06)

Tolaney et al., 2020 [75] 88 Eribulin +/−
pembrolizumab

4.1 vs. 4.2 m
HR 0.80

(0.50–1.26)

13.4 vs. 12.5 m
HR 0.87

(0.48–1.59)

Abbreviations: HR, hazard ratio; ICPis, immune checkpoint inhibitors; ITT, intention to treat; m, months; OS, overall survival; PFS,
progression-free survival; vs., versus.
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4.2. ICPis in Early Breast Cancer

As a result of the efficacy of ICPis in advanced breast cancer, trials have also been
initiated in early TNBC. In a randomized phase II trial in early TNBC (GeparNuevo), the
PD-L1 antibody durvalumab was combined with anthracycline- and taxane-containing
neoadjuvant chemotherapy (NACT) in 174 TNBC patients [76]. In total, 87% of patients
were PD-L1 positive. Pathological complete remission (pCR) was increased with durval-
umab from 44.2% to 53.4%. A significant increase in pCR was seen in the subgroup (n = 117)
that received durvalumab neoadjuvantly for 2 weeks before starting NACT (61% vs. 41.4%;
p = 0.035). Immune-mediated thyroid dysfunction occurred in 47%, with good overall
tolerability. Interestingly, a preplanned exploratory analysis of this study showed that both
tumor mutational burden (TMB) and immune gene expression profile (GEP) independently
predicted pCR in TNBC patients [77]. In patients with high TMB and GEP, the pCR rate
was 82% compared to 28% in the low TMB and GEP group. These results encourage
further analysis of TMB in combination with immune parameters to tailor therapies in
breast cancer. In GeparNuevo, Sinn and coworkers also examined mRNA signatures to
predict response to neoadjuvant PD-L1 inhibition in combination with chemotherapy in
early triple-negative breast cancer [78]. They found that immune-associated signatures
related to antigen presentation and interferon signaling were associated with pCR after
chemotherapy, but may be of limited utility in predicting response to additional immune
checkpoint blockade. Recently, at the Annual Meeting of the American Society of Clinical
Oncology, Loibl et al. presented the long-term survival results of GeparNuevo [79]. Of
note, durvalumab was discontinued after surgery. As reported in the primary analysis,
durvalumab failed to significantly increase pCR rates. However, 3-year iDFS was 84.9%
with durvalumab versus 76.9% with placebo (HR 0.54, 95% CI 0.27–1.09, p = 0.0559), 3-year
DDFS was 91.4% versus 79.5% (HR 0.37, 95% CI 0.15–0.87, p = 0.0148), and 3-year OS was
95.1% versus 83.1% (HR 0.26, 95%CI 0.09–0.79, p = 0.0076). The authors concluded that
durvalumab as an adjunct to neoadjuvant chemotherapy in TNBC significantly improved
long-term outcome despite a small increase in pCR and no continuation after surgery. They
raised the obvious question of whether adjuvant therapy with ICPis is necessary at all. Fur-
thermore, in addition to standard taxane- and anthracycline-based NACT, pembrolizumab
was studied in the adaptive randomized phase II I-SPY trial [80]. In TNBC, pembrolizumab
increased pCR from 22% to 60% with an acceptable safety profile.

In the neoadjuvant phase III KEYNOTE-522 trial, 1174 patients with early-stage
TNBC were treated neoadjuvantly with anthracycline-, taxane-, and platinum-containing
chemotherapy +/− pembrolizumab [81]. The addition of pembrolizumab significantly
increased pCR from 51.2% to 64.8% (p = 0.00055). This increase in pCR was observed
regardless of PD-L1 status. In addition, pembrolizumab improved event-free survival
(EFS) (HR 0.63; 95% CI 0.43–0.93). Grade 3/4 toxicities also occurred more frequently with
pembrolizumab (78% vs. 73%). Recently, an updated version of this study was presented
at the Annual Meeting of the European Society of Medical Oncology [82]. The authors
confirmed improved EFS (84.5% vs. 76.8%) and reported a strong trend towards longer OS
(HR 0.72; 95% CI 0.51–1.02).

The NeoTRIPaPDL1 Michelangelo randomized trial evaluated neoadjuvant nab-
paclitaxel treatment with or without atezolizumab in triple-negative, early high-risk breast
cancer and locally advanced breast cancer and failed to demonstrate a significant increase
in pCR with atezolizumab [83]. Recently, however, results were presented on the efficacy
and safety of atezolizumab compared with a placebo in combination with nab-paclitaxel
followed by doxorubicin plus cyclophosphamide as a neoadjuvant treatment of early
TNBC [84]. In total, 333 patients with early-stage TNBC were enrolled in the double-blind,
randomized phase III IMpassion031 trial. Atezolizumab increased pCR from 41% to 58%.
In the PD-L1-positive population, pCR was increased from 49% to 69%. Treatment-related
serious adverse events occurred in 23% and 16% of cases, respectively. The authors con-
cluded that neoadjuvant treatment with atezolizumab in combination with nab-paclitaxel
and anthracycline-based chemotherapy improves pCR in early-stage TNBC patients and
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has an acceptable safety profile. The results of the phase III trials in early-stage TNBC are
summarized in Table 4:

Table 4. Randomized evidence for ICPis in early triple-negative breast cancer.

Author n Therapy pCR in ITT EFS in ITT OS in ITT

Schmid et al.,
2020 [81]; ESMO 2021 [82] 1174 Chemotherapy +/−

pembrolizumab 64.8% vs. 51.2% HR 0.63
0.43–0.93)

HR 0.72
(0.51–1.02)

Mittendorf et al.,
2020 [84] 333 Chemotherapy +/−

atezolizumab 58% vs. 41 HR 0.76
(0.40–1.44)

Gianni et al., SABCS 2019
[83] 280 Chemotherapy +/−

atezolizumab 43.5% vs. 40.8%

Loibl et al., 2019 [76];
ASCO 2021 [79] 174 Chemotherapy +/−

durvalumab 53.4 vs. 44.2 HR 0.26
(0.09–0.79)

Abbreviations: EFS, event-free survival; ESMO, European Society of Medical Oncology; HR, hazard ratio; ICPis, immune checkpoint
inhibitors; ITT, intention to treat; m, months; OS, overall survival; pCR, pathologic complete response; SABCS, San Antonio Breast Cancer
Symposium; vs., versus.

Indeed, the vast majority of randomized trials using ICPi in early or advanced TNBC
showed significant benefits over standard therapy alone. When combined with an ac-
ceptable safety profile, immune checkpoint inhibitors are a promising new therapeutic
option in TNBC. Recently, the Society for Immunotherapy of Cancer (SITC) published a
clinical practice guideline on immunotherapy for breast cancer [85]. Recommendations
in this clinical practice guideline include diagnostic testing, treatment planning, immune-
related adverse events, and patient quality of life considerations to provide guidance to the
oncology community treating breast cancer patients with immunotherapies.

5. Predictive Markers for Immune Checkpoint Inhibitors

Currently, the only established predictive biomarker for response to ICPi in advanced
TNBC is PD-L1 status. Recent analyses have shown a potential role of TMB in response to
durvalumab in early TNBC [77]. In a recently published comprehensive genomic analysis
of 3831 consecutive breast cancer samples, potential biomarkers (e.g., TMB, microsatel-
lite instability [MSI], BRCA mutations) were assessed to guide the use of ICPIs in these
patients [86]. Interferon-γ (IFN-γ) plays a crucial role in the regulation of anti-tumor immu-
nity [87]. Upon ligand binding, IFN-y receptor 1 and 2 (IFNγR1 and IFNγR2) oligomerize
and transphosphorylate, activating Janus-activated kinase (JAK) 1 and 2. Thereby, IFNγR1
is phosphorylated, creating a docking site for the signal transducer and activator of tran-
scription (STAT) 1. Interferon-γ (IFN-γ) signaling signatures are associated with clinical
response to treatment with ICPi [88]. Similarly, JAK/STAT pathways predict response to
ICPi therapy [89]. In addition, cancer stem cells are a potential biomarker to predict the
effectiviness of ICPis [90]. However, for all of these potential biomarkers, prospective ran-
domized trials are needed to assess the predictive value in response to immune checkpoint
inhibitors.

6. Adverse Events with Immune Checkpoint Inhibitors

Adverse effects of ICPis are mainly explained by their mode of action. ICPis block
so-called immune checkpoints, which act as “brakes” for triggered immune reactions.
When this “brake” is blocked by antibodies, such as ICPis, an unrestrained immune
response can occur, which can also attack the body’s own tissues through autoimmune
phenomena. This is associated with a spectrum of side effects related to the mechanism of
action. The side effects can affect multiple organs of the body and most commonly occur in
the skin, gastrointestinal tract, lungs, thyroid, adrenal, pituitary, kidney, nervous system,
musculoskeletal system, eyes, or cardiovascular system. In addition to organ-specific side
effects, infusion-related reactions such as fever, chills, shortness of breath, and sudden
redness of the face, neck, or chest may occur [91–93] (Table 5). During treatment, it is
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important to note that these immune-mediated side effects may occur at widely varying
intervals and sometimes even after cessation of therapy with ICPi.

Table 5. Immune-mediated adverse effects of immune checkpoint inhibitors.

Organ Occurrence with PD-(L)1 Inhibitors Symptoms

Brain Encephalitis < 1%
Aseptic meningitis < 0.5%

Headache, changes in mental status, confusion,
depressed mood, sensitivity to light, seizures, motor or

sensory disturbances, meningitis, neck stiffness.

Nerves
Guillain- Barré

Syndrome < 0.5%
Peripheral neuropathy 16%

Muscle weakness (including eye muscles), fatigue,
difficulty swallowing, paresthesia or altered sensory

perception, ascending or progressive paralysis,
weakness of respiratory muscles.

Skin Rash 10%
Pruritus 15% [93] Persistent and/or severe skin rash or itching

Thyroid gland, adrenal
glands, pituitary gland,

islets of Langerhans of the
pancreas

Hypothyroidism 8%
Hyperthroidism 5%

Adrenal insufficiency 1%
Hypophysitis 1%

Diabetes mellitus 1%

Fatigue, headache, changes in mental status, intolerance
to heat or cold, tachycardia or bradycardia, irregularity

in bowel movements, weight change, polyuria or
polydipsia, blurred vision.

Lung Pneumonitis 4%
Difficulty breathing or coughing, radiographic changes
(e.g., focal morning opacity, patchy, patchy infiltrates),

dyspnea, hypoxia

Liver Hepatitis 5% Increase in transaminases, increase in total bilirubin,
jaundice, right-sided abdominal pain, fatigue.

Pancreas Pancreatitis 3% Abdominal pain, nausea, vomiting, and fever

Intestine Diarrhea/colitis 11% Watery, soft, or liquid stools; diarrhea; abdominal pain;
mucus or blood in the stool.

Adverse Event Management

Early diagnosis and therapy can reduce the severity and duration of immune-mediated
adverse events. Proper management of these adverse events is, therefore, crucial. Depend-
ing on the severity of the side effects, different therapeutic measures are recommended. In
case of marked worsening of symptoms, therapy with corticosteroids or even discontinua-
tion of treatment with ICPi is required. (Table 6) [91].

Table 6. Treatment of adverse effects of immune checkpoint inhibitors.

CTC Actions

I - Continue with close monitoring

II - Discontinue therapy until improvement to grade 1, consider corticosteroids if necessary

III
- Administration of corticosteroids (prednisone 1 to 2 mg/kg/d or methylprednisolone 1 to 2 mg/kg/d)
- Taper off 4–6 weeks
- Infliximab, if no improvement under corticosteroids within 48–72 h

IV - Termination of therapy (exception: endocrinopathies with improvement through hormone substitution)

CTC: common criteria of toxicity.
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7. Vaccination

The idea of using vaccines to boost the immune system against breast cancer has
a long history [94]. Especially in cold tumors, there are few or no tumor-infiltrating
lymphocytes. Possible reasons for this could be a lack of tumor antigens, a defect in antigen
presentation, a lack of T-cell activation, and a deficit in homing to the tumor bed [95].
Vaccines may help to overcome this problem by improving the presentation of tumor-
associated antigens, leading to a better immune response. Indeed, enhancing antigen
presentation through vaccination is an obvious way to elicit a protective immune response
against breast cancer. However, vaccination against solid tumors, such as breast cancer,
has shown limited efficacy. In most cases, known antigens, such as HER2, have been used,
but these vaccination strategies have shown only modest efficacy in breast cancer patients
(Table 7) [96–99].

Table 7. Vaccination trials in breast cancer.

Author n Setting Vaccine PFS DFS

Peoples et al., 2005 [96] 53 Adjuvant E75 + GM-CSF - 85.7% vs. 59.8%

Disis et al., 2009 [99] 22 Advanced HER2+ HER2 Th peptide + trastuzumab 17.7 months -

Mittendorf et al., 2014 [98] 187 Adjuvant E75 + GM-CSF - 89.7% vs. 80.2%
p = 0.08

Mittendorf et al., 2016 [97] 298 Adjuvant AE37 + GM-CSF - 80.8% vs. 79.5%
p = 0.70

Abbreviations: DFS, disease-free survival; GM-CSF, granulocyte macrophage colony-stimulating factor; PFS, progression-free survival;
Th, T helper; vs., versus.

However, a fundamental drawback of this approach is that immune responses against
known self-antigens, such as HER2, are usually weak because T lymphocytes, which have
a high affinity for these self-antigens, are subject to central tolerance. With the help of
high-throughput mutation analysis techniques, such as next generation sequencing (NGS),
single non-synonymous somatic mutations (the so-called mutanome) are increasingly
coming into focus [100]. The resulting neoantigens are ideal for individual vaccination.
Using complex computational prediction algorithms, the neoantigens with the highest
expected immunogenicity are selected from the mutanome of a tumor. The mRNA of
these neoantigens is then used as a vaccine [101]. The mRNAs are administered intra-
venously as a nano-particulate lipoplex formulation and are selectively delivered to splenic
antigen-presenting cells. The encoded antigens are translated into proteins that are rapidly
processed and presented as peptides on the surface of APCs, which, in turn, leads to the
induction of antigen-specific T-cell responses [102].

While the focus of anti-tumor immunity research has long been on MHC I and CD8 T
cells, it has been shown in mouse models that the majority of immunogenic mutations are
presented via MHC II and recognized by CD4 T cells [103]. Meanwhile, the clinical efficacy
of individual RNA vaccination against the individual mutanoma of a tumor in patients
with advanced malignant melanome has been described [104].

Based on these encouraging results, the Mutanome Engineered RNA Immuno-Therapy
(MERIT) project, a collaborative effort of partners from academia and industry, funded by
the European Union’s Seventh Framework Programme (FP7), aims to clinically and industri-
ally validate a pioneering mRNA-based immunotherapy concept that targets individually
expressed tumor antigens and tumor-specific mutations in patients with early TNBC. [102].
Before treatment, every patient’s tumor will be profiled to select suitable shared tumor anti-
gens (MERIT WAREHOUSE) and identify individual mutations (MERIT MUTANOME).
Ideally, this approach will lead to a paradigm shift from stratified therapy targeting single
common biomarkers, such as HER2, to fully individualized treatment targeting patient-
specific mutations. As an integral part of the MERIT project, we have initiated a phase I
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study in early TNBC after completion of standard (neo)adjuvant chemotherapy [105].
TNBC-MERIT is a phase I study (NCT02316457) evaluating the feasibility, safety, and
immunogenicity of a lipoplex-formulated intravenous mRNA vaccine encoding different
tumor antigens in TNBC patients after surgery and (neo-)adjuvant chemotherapy. Patients
in two arms of this study received a personalized set of pre-formulated, non-mutated,
shared tumor-associated antigens (MERIT WAREHOUSE) with or without universal T
helper epitopes. In a third arm, patients were inoculated with IVAC_M_uID, an on-demand
individualized neoantigen-specific immunotherapy (iNeST) encoding neoepitopes derived
from up to 20 cancer mutations identified by NGS (MERIT MUTANOME). The objective of
this study was to demonstrate the feasibility, safety, and biological efficacy of a llipoplex-
formulated intavenous mRNA vaccine encoding different tumor antigens. Patients received
eight intravenous vaccinations with either a personalized mRNA vaccine based on the anti-
gen expression profile of each tumor (MERIT WAREHOUSE) or an individualized mRNA
vaccine against up to 20 neoepitopes identified by NGS (MERIT MUTANOME). Recently,
at the Annual Meeting of the European Society of Medical Oncology, we reported prelimi-
nary immune response data in IVAC_M_uID-vaccinated patients analyzed by interferon-γ
enzyme-linked-immuno-spot (IFNγ-ELISpot), T-cell receptor (TCR) profiling, and single-
cell TCR sequencing [106]. Immunogenicity data were obtained from all 14 patients treated
with IVAC_M_uID. All patients studied had vaccine-induced CD4+ and/or CD8+ T-cell
responses against 1 to 10 of the vaccine neoepitopes detected by IFNγ-ELISpot ex vivo
or after in vitro stimulation. A substantial number of T-cell responses against individual
neoepitopes were induced de novo, of a high magnitude, and durable. One of the index
patients characterized in more detail had CD4+ and/or CD8+ T-cell responses against 10 of
20 vaccine neoepitopes. The highly poly-epitopic TCR-clonotype diversified CD8+ T-cell
response comprised, in aggregate, about 30% of total peripheral CD8+ T cells and was
sustained at high levels for more than 600 days after the last vaccination. This suggests
that the individualized neoantigen-specific vaccine is highly efficient in inducing strong
polyepitopic T-cell responses in patients with TNBC in the post-(neo)adjuvant phase. As an
important effector cytokine for cancer immunity, IFNγ also has prognostic and predictive
significance in basal-like or triple-negative breast cancer, arguing for a protective effect of
IFNγ-mediated immune responses by vaccination. [107,108].

With this vaccination strategy, T-cell responses against tumor-specific neoantigens
can be induced. Such vaccines may lead to an increase in the immunogenicity of tumors
that lack spontaneous immunogenicity, which should make these tumors more responsive
to treatment with ICPis. Therefore, a combination of RNA vaccination and ICPis may
be useful to stimulate the endogenous immune system against tumor cells, including in
patients with prior ICPi experience [109]. Sahin and coworkers reported in this exploratory
interim analysis of a phase I study that RNA vaccination is an effective immunotherapy
in patients with ICPi-experienced melanoma, resulting in durable objective responses
accompanied by the induction of strong CD4+ and CD8+ T-cell immunity to the vaccine
antigens.

8. Conclusions

The immune system plays an important role in breast cancer. High expression of
tumor-infiltrating lymphocytes or immune transcripts is associated with improved progno-
sis, as well as enhanced response to chemotherapy, especially in TNBC. Novel therapies,
such as immune checkpoint inhibitors, have improved survival in triple-negative breast
cancer. In addition, individualized vaccination strategies using mRNA vaccines against
mutant tumor antigens are promising. Thus, a potentially rewarding future direction in
the treatment of triple-negative breast cancer may be the combination of personalized
vaccination and immune checkpoint inhibitors to fully harness the power of anti-tumor
immunity.
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