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Abstract

Transposable elements (TEs) comprise a substantial portion of many eukaryotic genomes and are typically transcriptionally
silenced. RNA–dependent RNA polymerase 2 (RDR2) is a component of the RNA–directed DNA methylation (RdDM)
silencing pathway. In maize, loss of mediator of paramutation1 (mop1) encoded RDR2 function results in reactivation of
transcriptionally silenced Mu transposons and a substantial reduction in the accumulation of 24 nt short-interfering RNAs
(siRNAs) that recruit RNA silencing components. An RNA–seq experiment conducted on shoot apical meristems (SAMs)
revealed that, as expected based on a model in which RDR2 generates 24 nt siRNAs that suppress expression, most
differentially expressed DNA TEs (78%) were up-regulated in the mop1 mutant. In contrast, most differentially expressed
retrotransposons (68%) were down-regulated. This striking difference suggests that distinct silencing mechanisms are
applied to different silencing templates. In addition, .6,000 genes (24% of analyzed genes), including nearly 80% (286/361)
of genes in chromatin modification pathways, were differentially expressed. Overall, two-thirds of differentially regulated
genes were down-regulated in the mop1 mutant. This finding suggests that RDR2 plays a significant role in regulating the
expression of not only transposons, but also of genes. A re-analysis of existing small RNA data identified both RDR2–
sensitive and RDR2–resistant species of 24 nt siRNAs that we hypothesize may at least partially explain the complex changes
in the expression of genes and transposons observed in the mop1 mutant.
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Introduction

Repetitive sequences, including transposable elements (TEs)

and tandem repeats, comprise a substantial fraction of many

eukaryotic genomes. To protect genome integrity TEs are typically

transcriptionally silenced via epigenetic mechanisms [1–3]. At the

core of many of these mechanisms are a variety of small RNAs.

Diverse small RNA pathways exist in most eukaroytes producing

microRNAs and short-interfering RNAs (siRNAs) that function to

negatively regulate gene expression and/or to suppress the activity

of transposons. siRNAs derived from double-stranded RNAs via

mechanisms that are either RNA-dependent RNA polymerase

(RDR) dependent or independent. Various RDRs (e.g. RDR1,

RDR2 and RDR6) are functional in different siRNA pathways

and most siRNAs are biosynthesized from the heterochromatic

loci, a process that generally requires RDR2 and DICER-LIKE3

(DCL3)[4]. In Arabidopsis, these heterochromatic 24 nt siRNAs,

predominate the small RNA population. These siRNAs recruit

chromatin-targeted RNA silencing components to form transcrip-

tionally silent heterochromatin, which is derived mainly from TEs

and tandem repeats [5], by cytosine methylation and various

histone modifications, such as histone deacetylation and histone

H3 lysine 9 dimethylation. RDR2 is required for the biogenesis of

most of these 24 nt siRNAs [5,6]. Thus, RDR2 is a key

component of the chromatin-targeted RNA silencing process,

which is also called the RNA dependent DNA Methylation

(RdDM) pathway.

The maize homolog of AtRDR2, mediator of paramutation1 (mop1)

[7], is required to establish and maintain paramutation at multiple

genetic loci [8]. Paramutation is an epigenetic process in which the
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interaction of two alleles of a single locus causes a heritable change

of one allele that is induced by the other allele. Paramutation was

first observed on the red1 (r1) locus in maize by R.A. Brink in the

1950s in which specific weakly expressed alleles can heritably

change other strongly expressed alleles to weakly expressed alleles

[9]. In maize, paramutation is also observed in b1 and pl1 loci. The

mop1 gene, which encodes the maize version of RDR2, is required

for paramutation in b1, r1and pl1 loci, demonstrating that an RNA-

dependent mechanism is important for paramutation in maize [7].

A tandem repeat 100 kb upstream of b1 locus is required for

paramutation in b1 locus. This repeat does not share sequence

similarity with the b1 coding sequence, but has been demonstrated

to physically interact with the b1 transcription start site [10].

Mutations in mop1 can also result in reactivation of transcription-

ally silenced Mutator transposons and can substantially reduce the

overall levels of 24 nt siRNAs, demonstrating that in maize RDR2

contributes to the silencing of repetitive elements and plays an

important role in the biogenesis of 24 nt siRNAs [11,12].

Shoot apical meristems (SAMs) are responsible for the

elaboration of all above-ground plant organs [13]. Maintenance

of SAM identity and organogenesis are precisely regulated by a

complex regulatory network involving various transcriptional

factors and signal transduction proteins, as well as epigenetic

factors [14]. In a previously conducted global gene expression

analysis of maize SAMs and seedlings we identified 2,700+ genes

as being preferentially expressed in SAMs [15]. This included ,60

retrotransposons that were substantially up-regulated in SAMs as

compared to seedlings despite the fact that mop1 was expressed

.100 fold higher in SAMs than in seedlings. It was not clear at

that time why repetitive retrotransposons and mop1, which

contributes to the silencing of repetitive elements, would be both

significantly up-regulated in SAMs. Given that retrotransposon-

derived transcripts represent ,9% of all SAM transcripts (as

opposed to ,0.3% of seedling transcripts)[15], the SAM is an ideal

model for studying the effects of mop1 on the accumulation of

retrotransposon-derived transcripts.

Here we report an analysis of an RNA-seq experiment that

detected hundreds of transposons and thousands of the genes that

are differentially expressed in mop1 mutant and non-mutant SAMs.

This finding suggests that RDR2 plays a role in regulating the

expression of not only transposons, but also of genes. Consistent

with this observation, RDR2 mutants also exhibited a distinct

SAM morphology relative to their wild type siblings, suggesting a

role for RDR2 in normal SAM development. As expected based

on its role in the RdDM pathway, loss of RDR2 function resulted

in the up-regulation of many DNA TEs, retrotransposons and

genes. However, some DNA TEs and many retrotransposons and

genes were down-regulated in the mop1 mutant.

Results

Collection of SAMs via Laser Capture Microdissection
(LCM) and RNA–seq

A family segregating 1:1 for mop1 homozygotes and heterozy-

gotes was planted in a growth chamber and harvested 14-days

after planting. Individual seedlings were genotyped to identify

mop1 homozygotes and heterozygotes (see Materials and Methods).

To determine the effects of mop1 on SAM development the ratios

of height versus width of mutants (homozygous) and non-mutants

(heterozygous) SAMs were compared (Figure 1); mutant ratios

were significantly smaller than non-mutant ratios (p-value = 0.006;

Table S1). SAMs plus leaves at plastochron 0 (P0) and P1 stages

were collected via LCM followed by RNA extraction and

amplification according to our previously published procedures

[15]. A pooled RNA sample from twelve mutant SAMs and a

pooled RNA sample from ten non-mutant SAMs were subjected

Figure 1. Comparison of SAM morphologies between mop1
mutants and non-mutants. Safranin O/FastGreen stained image of
SAMs from (A) a mop1/mop1 mutant and (B) a non-mutant sibling. See
Table S1 for a quantitative analysis.
doi:10.1371/journal.pgen.1000737.g001

Author Summary

Shoot apical meristems (SAMs) are ultimately responsible
for generating all above-ground plant tissues. Recent
studies highlighted the effects of chromatin remodeling
on the expression of various genes important to SAM
development. The transposons that comprise a substantial
portion of many eukaryotic genomes are typically tran-
scriptionally silenced, presumably to promote genome
stability. We demonstrate that a loss of a key component
of the RNA–dependent DNA Methylation (RdDM) silencing
pathway affects the expression of not only transposons
but also thousands of genes, including nearly 80% of the
chromatin-associated genes. Surprisingly, the expression
of many transposons and genes is down-regulated via the
loss of this component of the silencing pathway. In this
study, we have shown that a maize mutation of RDR2
causes significant changes in SAM morphology. In
combination, these observations indicate the complexity
of transcriptome regulation and the crucial roles of RDR2
on transcriptome regulation, chromatin modification, and
SAM development.

Expression of Gene and TEs in mop1 Mutant
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to Illumina/Solexa sequencing (see Materials and Methods). 2.8

million reads from mop1 mutants and 4.1 million reads from non-

mutants could be uniquely mapped to the Maize Genome

Sequencing Project’s (MGSP’s) B73 reference genome [16] (see

Materials and Methods).

Expression of various TEs is differentially affected by loss
of RDR2 function

More than 80% of the B73 reference genome is composed of

TEs [16]. To ensure genome stability these elements are mostly

suppressed via genome defense systems such as chromatin-based

silencing, which is guided and reinforced by 24 nt siRNAs [17].

RDR2 plays an important role in the biogenesis of 24 nt siRNAs

[18]. To test the hypothesis that the loss of RDR2 function in the

mop1 mutant would result in the activation of TEs (i.e, an increased

accumulation of TE-derived transcripts), the Illumina/Solexa

reads obtained from the SAM were aligned to all annotated TEs in

the B73 genome (see Materials and Methods). As expected based

on the mechanism associated with the RdDM silencing pathway,

many DNA TEs (class II) and retrotransposons (class I) were up-

regulated in the mop1 mutant (Table 1). However, a significant

fraction of DNA TEs and retrotransposons were down-regulated

(Table 1). The most strongly up-regulated DNA TE super-families

were Stowaway and Tourist and the most strongly down-regulated

DNA TE family was CACTA (Figure S1). Both the Ty1/Copia-like

and Ty3/Gypsy-like super-families of retrotransposons include

some families that were up-regulated and others that were down-

regulated (Figure S2).

To assess the effects of mop1 on specific groups of DNA TEs,

each DNA TE super-family was divided into families based on a

phylogenetic analysis conducted by the Maize Transposon

Consortium that defined 797 unique families (i.e., monophyletic

clades) [16]. Of these families, 22% (175/797) were differentially

expressed in the mop1 mutant (Table 1; Table S2). Consistent with

our hypothesis, most (78%; 136/175) of the differentially expressed

DNA TEs were up-regulated in the mop1 mutant. In particular, of

the 32/140 TE families annotated as Mutator-like elements

(MULEs) that were differentially expressed, 29 (91%) were up-

regulated. This is consistent with the report that silenced Mutator

TEs can be reactivated in mop1 mutants [11]. Similarly, of the 31/

228 hAT families that were differentially expressed, 74% (23/31)

were up-regulated. Among the 58/151 differentially expressed

CACTA families many (37/58) individual CACTA families were up-

regulated. Even so, CACTA DNA TEs as a group were down-

regulated by loss of RDR2 function (Figure S1). The up-regulation

of one MULE element and the down-regulation of one hAT

element (viz., an Ac-like element) were confirmed by quantitative

real-time PCR (qRT-PCR) (Figure 2).

A similar analysis was performed on retrotransposons, which

have been categorized by the Maize Transposon Consortium into

super-families (e.g., RLG, retrotransposon LTR Gypsy), families

(e.g., Huck) and sub-families (e.g., Ac186577_1525). 71% of the

608 unique retrotransposon sub-families were differentially

expressed to various degrees in the mop1 mutant (Table S3).

Consistent with current understanding of the RdDM silencing

pathway, approximately one-third (32%) of the differentially

Table 1. Expression patterns from diverse super-families of
TEs.

TE class Superfamilya Total Upb Downb Up+Downb

I RIL 3 0 2 2

RIX 18 1 12 13

RLC 153 44 62 106

RLG 188 49 105 154

RLX 246 45 112 157

Total 608 139 (32%) 293 (68%) 432

II CACTA 151 37 21 58

hAT 228 23 8 31

Helitron 63 12 4 16

Mariner 9 0 0 0

MULE 140 29 3 32

PIF/Harbinger 38 10 3 13

Stowaway 101 14 0 14

Tourist 67 11 0 11

Total 797 136 (78%) 39 (22%) 175

a RIL, LINE (L1) retrotransposons; RIX, unknown LINE retrotransposons; RLC,
Ty1/Copia LTR retrotransposons; RLG, Ty3/Gypsy LTR retrotransposons; RLX,
unknown LTR retrotransposons.
b Up, number of up-regulated sub-families/families; Down, number of down-
regulated sub-families/families; sub-families for class I TEs; families for class II
TEs; Up+down, total number of differentially expressed sub-families/families.
doi:10.1371/journal.pgen.1000737.t001

Figure 2. Validation of eight differentially expressed genes via
qRT–PCR. Eight differentially expressed genes were chosen from the RdDM
pathway (ago4a [Chromdb ID: AGO104], ago4b [Chromdb ID: AGO105],
ago4c [Chromdb ID: AGO119], ddm1 [Chromdb ID: CHR101], met1 [Chromdb
ID: DMT101]), transposons (hAT [a member of the ZM_hAT_8 sub-family;
http://www.maizesequence.org]) and MULE [a member of the MULE sub-
family DTM_Zm33205; http://www.maizesequence.org]) and a regulator of
SAM development (liguleless3 [Gene model ID: GRMZM2G087741; http://
www.maizesequence.org]) for qRT–PCR validation. Primers used for qRT–
PCR are presented in Table S8. Fold change was presented as the relative
abundance of transcript in the mop1 mutant/non-mutant. The quantitative
fold changes obtained from between RNA–seq and qRT–PCR experiments
were significantly correlated (Pearson correlation coefficient was 0.94,
r2 = 0.88, p-value = 0.0005). A t-test of equal expression between the mutant
and non-mutant using the data from four biological replications of qRT–PCR
were conducted (p-value #0.05, *; p-value #0.01, **).
doi:10.1371/journal.pgen.1000737.g002

Expression of Gene and TEs in mop1 Mutant
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expressed retrotransposon sub-families were up-regulated in mop1

mutants as compared to non-mutants. But inconsistent with

expectations, the majority (68%) of the differentially regulated

retrotransposons were down-regulated in the mutant (Table 1;

Table S3). Some specific sub-families of retrotransposons were

mostly up- or mostly down-regulated. For example, within the

Ty1/Copia-like super-family, 12/16 Ji and 9/17 Opie sub-families

were up-regulated. Within the Ty3/Gypsy-like super-family, 6/7

Flip and 19/20 Huck sub-families were up-regulated. In contrast,

38/41 Ty3/Gypsy-like Cinful-zeon sub-families and 9/10 annotated

Ty3/Gypsy-like Prem1 sub-families were down-regulated in the

mop1 mutant (Table S3). These distinct responses to loss of RDR2

function suggest that the expressions of different retrotransposon

families are regulated via different mechanisms.

Many chromatin modification genes are down-regulated
in the mop1 mutant

To study the impacts of mop1 on chromatin modification

pathways, 386 maize genes annotated as being involved in

chromatin modification were downloaded in Dec. 2008 from

ChromDB [19]. In total, 361 of these genes can be uniquely

mapped to the B73 reference genome (see Materials and

Methods). RNA-seq reads that map to these chromatin-associated

genes were used to conduct Fisher’s exact tests. Nearly 80% (286/

361) of these chromatin pathway genes were differentially

expressed between the mop1 mutants and non-mutant siblings

using a 5% false discover rate (FDR) cutoff, a frequency far higher

than observed when considering all genes (24%). Approximately

L (76%) of differentially expressed chromatin genes were down-

regulated in the mop1 mutant (Table S4). A wide variety of

chromatin-associated genes exhibited differential expression be-

tween mop1 mutants and non-mutants, including those affecting

various histone modifications, such as histone ubiquitination,

methylation, acetylation and deacetylation (Table S4). As the

maize homolog of AtRDR2, mop1 is expected to function in the

RdDM pathway, which involves the biogenesis of 24 nt siRNAs, de

novo methylation of DNA, maintenance of DNA methylation, and

demethylation [20]. Almost all of the genes known to be

implicated in the RdDM pathway were down-regulated in the

mop1 mutants (Table 2). The maize genome contains two DCL3

paralogs, which are involved in the biogenesis of 24 nt small

RNAs. One of these (Zmdcl3b) was down-regulated while the other

(Zmdcl3a) was up-regulated (Table 2). These opposite responses

suggest that the two DCL3 paralogs may be functionally distinct.

This type of divergent gene expression pattern was also observed

for DRM protein in which one maize homolog was down-

regulated and another was up-regulated. In addition to DRM

protein, AGO4, DRD1, and MET1proteins function in the de novo

methylation pathway [20]. All maize homologs of these genes were

down-regulated (Table 2). CMT3, MET1, DDM1, HDA6,

SUVH4 function in the maintenance methylation pathway [20].

All maize homologs of these genes were down-regulated (Table 2).

DNA demethylation is thought to regulate epigenome dynamics in

opposition to the RdDM pathway. In Arabidopsis, ROS1 and

DME remove DNA methylation [20]. There are two homologs of

DME gene in maize and both were down-regulated as well

(Table 2). The expression levels of several of genes important for

epigenetic silencing (viz., met1, met3, three ago4 paralogs, and ddm1)

were tested via qRT-PCR with results that were consistent with

those obtained from RNA-seq (Figure 2). These observations

demonstrate that there is widespread down-regulation of compo-

nents in the RdDM pathway in the mop1 mutant, suggesting either

that MOP1 positively regulates the entire pathway, or that genes

involved in chromatin modification and DNA methylation are co-

regulated in maize.

In addition to mop1, mutations in two other maize genes are

known to affect the accumulation of both 24–26 nt siRNAs and

DNA methylation. rmr1 (required to maintain repression1) encodes a

SWI/SNF2 class chromatin remodeling protein. Mutations in rmr1

have dramatic effects on accumulation of 24–26 nt siRNAs,

maintenance of the repressed state of paramutant genes, and

methylation of Mu transposons [21,22]. Unlike the related DDM1

orthologs (Table 2), expression of rmr1 was not significantly

changed in the mop1 mutant. This observation is consistent with

the suggestion that RMR1 may act genetically upstream and

sometimes independently of RDR2 [22]. The second cloned gene

that affects 24–26 nt siRNA accumulation in maize is rmr6. This

gene encodes the conserved Pol IV largest subunit (RPD1) and is

required for paramutation [23]. Although expression of this gene

was reduced in the mop1 mutant, this change was not significant.

Widespread changes in gene expression following loss of
RDR2 activity

The finding that SAM morphology differs between mop1 mutant

and non-mutants led us to hypothesize that mop1 affects not only

the expression of TEs and components in RdDM pathway but also

genes important to the development of the SAM. To test this

hypothesis the Illumina/Solexa reads were mapped to the ‘‘filtered

gene set’’ of maize generated by the MGSP (see Materials and

Methods). Among reads that could be uniquely mapped to the

genome, 2.2 million (78%) from mop1 mutants and 3.2 million

(79%) from non-mutants aligned to gene models (Figure S3; Table

S5). At least one Illumina/Solexa read from at least one of the two

genotypes aligned to 24,743 of the 32,540 genes in the MGSP’s

filtered gene set (Table S5). Of these genes, 6,016 (24% of 24,743)

could be declared to be differentially expressed between the

Table 2. Differentially expressed genes in RdDM pathway.

Chromdb IDa Gene Nameb log2(FC)c FDRd

DCL102 dcl3a 1.2 8e-06

DCL104 dcl3b 20.5 1e-02

AGO104 ago4a 20.7 9e-21

AGO105 ago4b 21.7 6e-17

AGO119 ago4c 20.5 1e-06

CHR127 drd1 21.3 1e-11

DMT101 met1 21.0 3e-11

DMT106 drm1/2 20.7 3e-13

DMT102 cmt3a 21.0 3e-40

DMT105 cmt3b 20.7 4e-22

SDG118 suvh4/kyp 21.0 4e-16

HDA108 hda6 20.7 2e-09

CHR101 ddm1 20.5 8e-04

DNG101 dme1 21.0 4e-12

DNG103 dme2 21.7 9e-26

a ID used in Chromdb (http://www.chromdb.org).
b ID used in general RdDM pathway [20].
c log2 transformation of fold change as the relative abandunce of transcripts in
mutants/non-mutants. Positive value indicates the up regulation and negative
value indicates down regulation.
d The false discovery rate calculated using Benjamini and Hochberg’s
procedure [24] for the p-value from Fisher’s exact test.
doi:10.1371/journal.pgen.1000737.t002
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mutant and non-mutant pools at an estimated 5% FDR [24]. The

ratio of number of genes that were up-regulated in the mop1

mutant to those that were down-regulated was ,1:2 (Table S6).

Consistent with our finding that mop1 mutant SAMs differ

morphologically from non-mutant siblings (Figure 1; Table S1),

several key regulators of SAM development, including fasciated ear2

[25], terminal ear1-like 2 [26], outer cell layer4 [27] and liguleless3

(encoding a Knotted class 1 homeodomain protein) [28] were

differentially expressed (Table 3). The differential expression of

one of these genes, liguleless3, was validated via quantitative real-

time PCR (qRT-PCR) (Figure 2). This finding suggests that 24 nt

siRNAs play a role in regulating (directly or indirectly) the

expression of not only transposons, but also of genes.

Re-analysis of existing 24 nt siRNA data
The analyses described above demonstrate that loss of RDR2

function results in widespread changes in the accumulation of

transcripts from DNA TEs, retrotransposons and genes. As

expected based on a model in which RDR2 generates 24 nt

siRNAs that suppress expression, many TEs and genes were up-

regulated in the mop1 mutant. Interestingly, some DNA TEs and

many retrotransposons and genes were actually down-regulated in

the mop1 mutant, demonstrating new complexities in the

regulation of the expression of transposons and genes.

To explore this complexity we undertook a re-analysis of 24 nt

siRNAs isolated from immature ears of mop1 and non-mutant

plants [18]. Nobuta et al. reported that mop1 mutants accumulated

many fewer 24 nt siRNAs (as a proportion of all small RNAs) than

do wild-type [18]. Their analysis treated all 24 nt siRNAs as a

group. We extended their analysis by considering the effects of the

mop1 mutation on the accumulation of each individual species of

24 nt siRNAs in their data set. As such, our analysis enabled us to

identify specific RNA species that make up a significantly greater

proportion of the observed reads from one genotype than from the

other (see Materials and Methods).

Considering the union of mop1 mutant and non-mutant reads,

the Nobuta et al. data set contains .2.3M distinct 24 nt siRNA

species. Many of these are present at very low abundance and as

such it would not be possible to detect statistically significant

differences between the two genotypes even if such differences

exist. Of the 5% of RNA species for which 5 or more counts were

recorded in the union of the two genotypes (125,344/2.3M), we

found that 30% (38,564/125,344) of the 24 nt siRNAs were

differentially expressed between the two genotypes. Consistent

with the report of Nobuta et al., most of the 38,564 differentially

regulated species of 24 nt siRNAs (33,614) were down-regulated in

the mop1 mutant (Figure S4; Table S7). We term these ‘‘RDR2-

sensitive 24 nt siRNAs’’. Quite unexpectedly, 4,950 distinct

species of 24 nt siRNAs were significantly ‘‘up-regulated’’ in the

mop1 mutant (Figure S4; Table S7). Although some of these may

be actually up-regulated, others may simply be less down-

regulated in the mutant than are other species of 24 nt siRNAs

(see Materials and Methods). We have therefore termed these ‘‘up-

regulated’’ species ‘‘RDR2-resistant 24 nt siRNAs’’.

Discussion

RDR2 is an essential component of the heterochromatin

silencing pathway in multiple species [5,29] and functions in

DNA and histone methylation, the biogenesis of 24 nt siRNAs and

the silencing of repetitive DNAs [30]. The maize homolog of

RDR2, mop1, was originally identified as a mutant that functions

as an epigenetic regulator of a target gene via interactions with

upstream tandem repeats [7]. mop1 is also required for the

methylation of the terminal inverted repeats of Mu TEs and for the

maintenance of silencing of MuDR transposons [31]. Based on its

mutant phenotypes, it has been hypothesized that the mop1 gene

regulates many loci [8]. To test this hypothesis and to examine the

effect of RDR2 on the silencing of TEs in a large, complex

genome, we conducted RNA-seq experiments on SAMs of mop1

mutant and non-mutant seedlings. SAMs were selected for analysis

because they are responsible for the elaboration of all aerial organs

[13], they have a complex transcriptome [32], and our prior

analyses had revealed that multiple retrotransposons and mop1 are

all substantially up-regulated in SAMs as compared to seedlings

[15].

Effect of RDR2 on gene expression
We identified more than 6,000 genes whose expression differed

between mop1 mutant and non-mutant SAMs. These widespread

differences in gene expression are consistent with the multiple

developmental defects associated with the loss of mop1 function in

mutants [8].

Over several generations, maize lines that carry the mop1

mutation can accumulate a variety of epimutant phenotypes

(Lisch, unpublished data). In this study we controlled for the effects

of any segregating epi-alleles by analyzing RNA from pools of

mop1 and non-mutant SAMs. However, our discovery that genes

involved in a variety of silencing pathways including DNA

methylation, histone modification and RNA-mediated silencing,

are differentially regulated in the mop1 mutant complicates any

facile explanation for the origins of these phenotypes. Unlike rdr2

mutants in Arabidopsis, ddm1 and met1 mutants can have severe

effects on plant morphology [33], and the maize homologs of both

Table 3. Key regulators of SAM developments showing differential expression.

Gene IDa log2(FC)b FDRc SwissProt IDd Protein Name E-valuee Ref

GRMZM2G104925 20.76 5.00e-04 Q940E8 Fasciated ear2 0 [19]

GRMZM2G085113 20.86 1.62e-09 A9XIW7 Terminal ear1-like 2 protein 6e-138 [20]

GRMZM2G123140 20.50 1.05e-02 B3GW90 Putative HD-ZIP IV family transcription factor OCL4 0 [21]

GRMZM2G087741 0.50 6.09e-06 Q9SYT6 Knotted class 1 homeodomain protein liguleless3 0 [22]

a Refer to http://www.maizesequence.org.
b log2 transformation of fold change as the relative abandunce of transcripts in mutants/non-mutants. Postive values indicate up regulation and negative values
indicate down regulation.
c False discovery rate calculated using Benjamini and Hochberg’s procedure [24] for the p-value from Fisher’s exact test.
d Protein ID retrieved from SwissProt_Trembl database via blastp (1e-10 as cutoff).
e E-value from blastp search.
doi:10.1371/journal.pgen.1000737.t003
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of these genes are down-regulated in the mop1 SAMs. It is not clear

whether or not the down-regulation in the maize mop1 mutants of

so many genes involved in epigenetic regulation is consequential,

but it does suggest that many of the phenotypes that arise in mop1-

containing lines over multiple generations may not be the direct

result of the loss of RDR2 activity. The same may well be true for

at least some of the differences in gene expression that we

observed.

Effect of RDR2 on the accumulation of TE-derived
transcripts

RNA-seq data identified hundreds of DNA TEs and retro-

transposons that are differentially regulated in SAMs. Based on a

model in which RDR2 generates 24 nt siRNAs that silence DNA

TEs and retrotransposons, our expectation was that loss of RDR2

function in mop1 SAMs would result in the up-regulation of DNA

TEs and retrotransposons. Although we did observe that the

majority of differentially expressed DNA TEs (78%) were up-

regulated in the mop1 mutant, less than half of all differentially

regulated retrotransposons (32%) were up-regulated. This suggests

that at least some DNA TEs and retrotransposons are silenced via

distinct mechanisms.

RDR2–dependent silencing of pericentromeric TEs
Pericentric heterochromatin is rich in TEs in many species, and

these sequences are typically heavily methylated and associated with

large numbers of 24 nt siRNAs [2]. Consistent with its role in the

RdDM pathway loss of RDR2 function results in the up-regulation

of certain TEs, including Huck elements which are members of the

Ty3/Gypsy-like super-family of retrotransposons. Fluorescence in situ

hybridization (FISH) experiments reveal that although Huck

elements are dispersed along all chromosomes they are significantly

enriched in the vicinity of, but not in, centromeres [34]. Indeed, in

general Ty3/Gypsy-like sequences cluster in pericentromeric regions

across all grass species [35]. Our observations provide evidence that

at least one pericentromeric repeat (i.e., Huck) is transcriptionally

silenced via the RdDM pathway.

RDR2–sensitive and RDR2–resistant 24 nt siRNAs
In Arabidopsis RNA gel blot experiments, the population of

24 nt siRNAs is almost entirely eliminated in the rdr2 mutant [5],

indicating RDR2 is required for the biogenesis of nearly all 24 nt

siRNA. In the maize mop1 mutant, the population of 24 nt siRNAs

is dramatically reduced, but not eliminated [18]. Via a re-analysis

of an existing small-RNA data set we identified .33,000 unique

‘‘RDR2-sensitive’’ and ,5,000 unique ‘‘RDR2-resistant’’ 24 nt

siRNAs that are ‘‘down-regulated and ‘‘up-regulated’’ in the mop1

mutant, respectively.

RDR2–independent silencing of DNA TEs and
retrotransposons

In contrast to elements such as Huck, the silencing of some types

of DNA TEs and retrotransposons (e.g., most Prem1 elements) does

not appear to require RDR2, as evidenced by the fact that they are

down-regulated in the mop1 mutant. The hypothesis that an

RDR2-independent heterochromatin silencing pathway exists in

maize is consistent with our previous observation that many

retrotransposon are significantly up-regulated (some .1,0006) in

SAMs as compared to seedlings even though mop1 transcripts

accumulate in SAMs to a level 1006higher than in seedlings. On

the other hand, because new retrotransposon insertions are quite

rare in maize [36], we considered the possibility that a significant

proportion of the retrotransposon-derived transcripts we detected

in SAMs are generated via RDR2 activity itself [37], which can

produce aberrant non-polyadenylated RNAs. If this were the case,

these species would indeed be lost in the RDR2 mutant (along

with associated siRNAs). However, because the procedures we

used to construct our RNA-seq libraries preferentially target

mRNA species this possibility seems unlikely.

We therefore considered other RDR2-independent mechanisms

for silencing DNA transposons and retrotransposons in a complex

genome such as that of maize. Because the expression of many

genes is affected by the mop1 mutant, it is possible, for example,

that some of these effects could be antagonistic to the direct effects

of mop1 on gene silencing. In addition, Lippman et al. [38]

reported that the epigenetic inheritance of different TEs differed

from mutant to mutant in Arabidopsis and proposed the existence

of distinct but interacting pathways responsible for transposon

silencing via siRNAs and histone modifications. Observations from

fission yeast offer a plausible possibility for an RDR2-independent

pathway. In this yeast, inhibition of histone deacetyltransferases

causes an inherited loss of heterochromatin [39]. Several genes

encoding histone deacetyltransferases (HDACs) were up-regulated

in the mop1 mutant. It is possible that enhanced expression of these

HDACs could enhance silencing of some TEs. Similarly, the

reduction in expression of the maize orthologs of ROS1 and

DME1, both of which are required for demethylation of a variety

of target genes in Arabidopsis [40], could result in the silencing of

a variety of genes in mop1 mutants. Hence, our observations in the

mop1 mutant of the down-regulation of some DNA TEs and many

retrotransposons, enhanced expression of genes in the HDAC

silencing pathway, and decreased expression of genes in the

demethylation pathway are consistent with the existence of

multiple silencing mechanisms, but suggest that these mechanisms

can potentially interact antagonistically.

Nobuta et al. reported that 22 nt small RNAs are highly

abundant in the mop1 mutant [18] and suggested that these small

RNAs may be the result of an alternative mode of heterochromatic

siRNA production that is independent of, and may even be

enhanced by, the loss of RDR2. Alternatively, or in addition, the

RDR2-independent silencing we observed could be the result of

the RDR2-resistant 24 nt siRNAs we identified. As discussed in

the Materials and Methods section, these RDR2-resistant 24 nt

siRNAs may actually be produced at higher levels in the mop1

mutant. If this were the case, then these RDR2-resistant siRNAs

could be responsible for the enhanced silencing of some of the

DNA TEs and retrotransposons we observed in the mop1 mutant.

If, on the other hand, the RDR2-resistant siRNAs are simply less

susceptible to loss of RDR2 function, they would need to be more

effective at silencing in the mop1 background to explain the

enhanced silencing of DNA TEs and retrotransposons we

observed. RDR2-resistant 24 nt siRNAs might, for example,

exhibit enhanced repressive activity in response to changes in

chromatin structure resulting from loss of RDR2 activity.

Potential sources of RDR2-resistant siRNAs include novel

combinations of sense/anti-sense transcripts and transcribed

inverted repeats. In maize retrotransposons are often present in

vast nested arrays [36]. Enhanced transcription of these nested

retrotransposons (due perhaps to loss of RDR2-dependent

silencing) could result in the production of novel combinations

of sense and antisense RNAs that could be processed into

biologically active siRNAs even in the absence of RDR2. Thus,

the effects of the mop1 mutant on a given transposon family may be

a reflection not just of its sequence, but of the physical distribution

of that family within the genome. With that in mind, it is

interesting to note that the one family of DNA TEs with a high

proportion of up-regulated members (CACTA elements) exhibits a
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distinct chromosomal distribution relative to the other families of

DNA transposons. CACTA elements are significantly more likely to

be found in gene-poor, heterochromatic regions of the genome

than are all other DNA TEs [16].

In addition, dosage effect has been reported in the maize Activator/

Dissociation (Ac/Ds) and Mutator transposon families [41–44],

demonstrating that the regulation of the TE transposition is complex;

similar complexity likely contributes to our observation of the down-

regulation of TEs in the mop1 mutant. For example, some of the

changes in expression of TEs and genes observed in this study could

be due to epigenetic interactions between TEs and genes. In several

cases it has been demonstrated that expression of TEs can reduce

expression of nearby genes [45–49]. For example, de-repression of

an LTR retrotransposon flanking the BONSAI gene in Arabidopsis in

a ddm1 mutant background results in epigenetic silencing of BONSAI

[50]. This process involves the production of BONSAI-specific

siRNAs. Given our observation that DNA TEs, which tend to be

preferentially located in gene-rich regions of the genome are likely to

be up-regulated in the mop1 mutants, it is possible that many of the

negative effects on gene expression are due to similar interactions

between genes and nearby TEs. To more comprehensively analyze

the relationship between levels of gene expression, siRNA

production, and DNA methylation, it will be necessary to analyze

all of these variables in a single tissue. Further, given the number of

variables involved, a clear understanding of cause and effect

relationships between RDR2 activity and expression will require

detailed analyses of individual transposons, retrotransposons and

genes.

Materials and Methods

Genetic stocks, plant growth conditions, genotyping, and
RNA–seq

The mop1-1 allele used in this study has been described

previously [12]. This mutant is within a mixed genetic back-

ground, including both the highly inbred a1-mum2 minimal Mutator

line [51] and the Mutator line from which mop1-1 was first derived

[8]. The mop1-1 mutation in this background was maintained

through several generations via sib crosses, self fertilizations, or

back-crosses with the a1-mum2 stock. Although the progenitors of

this line contained active MuDR elements, these elements were no

longer present in the line used for this study, which lacked

detectable Mutator activity.

This genetic background is distinct from that analyzed by

Nobuta et al. [18]. Importantly, the family used in these

experiments is closely related to a mop1 mutant lineage that gave

rise to a large number of unique morphological phenotypes not

previously observed in mop1 mutant plants (Lisch, unpublished

observation). Given this, and given the dramatic differences in TE

composition between maize inbred lines, direct comparisons of

transcript data between the current data set and that of Nobuta et

al. should be treated with caution.

A plant having the genotype mop1-1/mop1-1 was crossed to

Mop1/mop1-1 heterozygote and the resulting progeny kernels

planted in growth chambers (PGW-40, Percival Scientific, http://

www.percival-scientific.com). Temperature and light cycles were

set as 25 degrees for 15 hours of light and 20 degrees for 9 hours

of dark. During the light period the light intensity at the surface of

the growth medium was maintained between 650 and

800 umol m22 sec21.

At 14-days after planting SAMs were collected using the PALM

MicroBeam System (115V Z, P.A.L.M. Microlaser Technologies,

http://www.palm-microlaser.com). Plants homozygous and het-

erozygous for the mop1-1 mutant allele were distinguished using

two pairs of primers: a pair of mop1-specific primers consisting of

RDRF3 (sequence: 59-TCTCCACCGCCCACTTGAT-39) and

RDRR2 (sequence: 59-ATGGCCAGCAGGGTGTCGCAGAT-

39) and a primer pair consisting of the Mutator TIR primer

Mu-TIR (59-AGAGAAGCCAACGCCAWCGCCTCYATTTC-

GTC-39) and the mop1-specific primer RDRF3. Twelve mop1-1/

mop1-1 and ten Mop1/mop1-1 SAMs were used to form mop1

mutant and non-mutant pools. Collected SAM tissues were used

for RNA extraction, RNA amplification and synthesis of double

stranded cDNAs according to our previous published procedures

[15]. These procedures preferentially target polyadenylated

transcripts. Illumina/Solexa libraries were constructed using these

double stranded cDNAs following Illumina/Solexa’s standard

protocol for genomic library preparation. The resulting libraries

were sequenced on the Solexa 1G Genome Analyzer at the

Michael Smith Genome Sciences Centre (Vancouver, BC,

Canada). Each library was sequenced using 2 lanes on a Solexa

flow cell. The Gene Expression Omnibus (GEO) database (http://

www.ncbi.nlm.nih.gov/geo) accession number for the data used in

the paper is GSE16789.

Alignments of RNA–seq to the maize reference genome
and TEs

The resulting Solexa reads were aligned to the maize B73

reference genome (Release 4a.53) (http://www.maizesequence.

org) with the short read aligner NOVOALIGN (http://www.

novocraft.com) using 32 base sequences. Low quality bases located

at the end of reads were trimmed and only reads that mapped

uniquely to the genome with a maximum of two mismatches

including insertion/deletion (indel) across 32 bases were used for

subsequent analyses. The ‘‘filtered gene set’’, a collection of high-

quality gene models developed by the MGSP, was projected onto

the B73 reference genome.

In addition, the Illumina/Solexa reads were also aligned

directly to the DNA TE families and retrotransposon subfamilies.

Due to the repetitive property of the TEs, each read is allowed to

be mapped to multiple DNA TE families or retrotransposon

subfamilies but each read is only counted once within each family

or sub-family with same alignment criteria as used for alignments

to the reference genome.

The 386 chromatin-associated genes were mapped to the maize

B73 reference genome using criteria of 95% identity and 90%

coverage. Reads that uniquely mapped to the reference genome

were projected onto each of these chromatin-associated genes

allowing us to detect differential expression.

Identifying differential expression via a likelihood ratio
test and Fisher’s exact test

Two statistical procedures to identify differentially expressed

genes were compared and evaluated: a likelihood ratio test based

on a Poisson model (below) [52] and Fisher’s exact test. Although

the two procedures produced similar p-values (R = 0.9; Figure S5),

the Fisher’s exact test was more conservative. It was therefore

selected for use in this study.

The likelihood ratio test analysis generally followed the

procedure described in Marioni et al. [52]. For each gene, the

number of reads from the mop1-1 mutant sample and the non-

mutant sample were modeled as independent Poisson random

variables with mean lmCm for mutant and mean lnCn for non-

mutant, where Cm and Cn denote counts of the total number of

mapped reads for the mutant (2,156,241) and non-mutant

(3,248,869) samples, respectively. It is straightforward to show

that the likelihood ratio statistic for testing the null hypothesis of
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H0: lm = ln is T = 2{km log (km/Cm)+kn log(kn/Cn)2k log(k/C)},

where km is the number of mutant reads for the gene in question,

kn is the number of non-mutant reads for the gene in question,

k = km+kn, and C = Cm+Cn. This statistic is distributed approxi-

mately as a chi-square random variable with 1 degree of freedom

when the null hypothesis of no differential expression is true. Thus,

p-values were obtained by comparing the observed statistic for

each gene to the chi-square distribution with 1 degree of freedom.

Ideally, sequencing would have been carried our separately for

multiple independent biological replications of each genotype so

that over dispersion relative to the Poisson distribution could have

been assessed and accounted for using an analysis like that

proposed by Robinson and Smyth [53]. Note that our qRT-PCR

validation and analysis (discussed below) was based on separate

measurements of independent biological replications.

Detection of RDR2–sensitive and –resistant 24 nt siRNAs
Each species of 24 nt siRNAs was tested whether the

proportions in the library between mop1 mutant and non-mutant

were significantly different via Fisher’s exact test. Because we are

able to measure only the abundance of each species in a genotype

relative to the total number of reads for that genotype, it is difficult

to formally distinguish 24 nt siRNAs that are up-regulated in the

mutant from those that make up a significantly greater proportion

of the observed reads only because of the absence of many other

24 nt siRNA species in the mop1 mutant, thereby making them

proportionately more abundant. For the purposes of this study we

therefore carefully define up-regulation to mean that a particular

species is significantly more abundant in one sample of reads than

in another. It is important to note that this does not necessarily

mean that the number of RNA molecules of that particular species

increases on a per cell basis.

qRT–PCR validation and data analysis
Primer design for qRT-PCR was conducted as described [54].

RNA samples independent from those used in the RNA-seq

experiment were extracted from four biological replications from

mop1-1/mop1-1 and Mop1/mop1-1 (3 SAMs pooled within each

replicate per genotype) by using the same procedure as the RNA-

seq experiment. To prepare the cDNA template, combined

oligodT and random hexamers was used to perform reverse

transcription reactions at 55uC for 1 hour with SuperScript III. A

reverse transcription without SuperScript III was conducted to

control for genomic DNA contamination. qRT-PCR was

conducted on an Mx4000 multiplex quantitative PCR system

(Stratagene). RNA from a human gene (GenBank accession

no. AA418251) was spiked into each reaction as an external

reference for data normalization. Genotype-specific Ct values for

each gene and control were calculated and then the DDCt was

computed. For each gene, DDCt across 4 biological replications

was used to conduct a t-test in R (www.r-project.org) [55].

Supporting Information

Figure S1 Overall expression fold changes of mutant versus

non-mutant for differentially expressed DNA TEs. In this analysis

all members of each differentially expressed super-family were

treated as a group. The percentage of reads that match each

super-family among all mapped reads in each genotype was

calculated and the fold change was computed as the ratio of the

percentage of mutant versus non-mutant for each super-family.

Found at: doi:10.1371/journal.pgen.1000737.s001 (0.22 MB TIF)

Figure S2 Overall fold changes of mutant versus non-mutant for

differentially expressed retrotransposons. In this analysis all

members of each differentially expressed family were treated as

a group. The percentage of reads that match each family among

all mapped reads in each genotype was calculated and the fold

change was computed as the ratio of the percentage of mutant

versus non-mutant for each family.

Found at: doi:10.1371/journal.pgen.1000737.s002 (0.24 MB TIF)

Figure S3 Distribution of numbers of mapped reads across

tested genes.

Found at: doi:10.1371/journal.pgen.1000737.s003 (0.29 MB TIF)

Figure S4 RDR2-sensitive and RDR2-resistant 24 nt siRNAs in

wild-type and mop1 mutants. The log2 transformation of read

counts in non-mutant (x-axis) versus mop1 mutant (y-axis) for each

species of the 4,950 RDR2-resistant 24 nt siRNAs (green dots)

and the 33,614 RDR2-sensitive 24 nt siRNAs (red dots) were

plotted.

Found at: doi:10.1371/journal.pgen.1000737.s004 (0.36 MB TIF)

Figure S5 p-value comparison between likelihood ratio test and

Fisher’s exact test.

Found at: doi:10.1371/journal.pgen.1000737.s005 (0.27 MB TIF)

Table S1 mop1 mutants and non-mutants have distinct SAM

morphologies.

Found at: doi:10.1371/journal.pgen.1000737.s006 (0.01 MB PDF)

Table S2 List of differentially expressed DNA transposon

families.

Found at: doi:10.1371/journal.pgen.1000737.s007 (0.03 MB PDF)

Table S3 List of differentially expressed retrotransposon sub-

families.

Found at: doi:10.1371/journal.pgen.1000737.s008 (0.04 MB PDF)

Table S4 List of differentially expressed chromatin-associated

genes.

Found at: doi:10.1371/journal.pgen.1000737.s009 (0.66 MB

DOC)

Table S5 Alignment of RNA-seq reads to genome and genes.

Found at: doi:10.1371/journal.pgen.1000737.s010 (0.01 MB PDF)

Table S6 List of differentially expressed genes and related

annotation.

Found at: doi:10.1371/journal.pgen.1000737.s011 (7.02 MB

DOC)

Table S7 List of RDR2-sensitive and RDR2-resistant 24 nt

siRNA.

Found at: doi:10.1371/journal.pgen.1000737.s012 (1.63 MB PDF)

Table S8 Primer sequences used for qRT-PCR experiment.

Found at: doi:10.1371/journal.pgen.1000737.s013 (0.01 MB PDF)
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