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A B S T R A C T

Surface disinfectants are regularly used in prophylactic and infection control measures. Concern has been raised
whether residues of sub-inhibitory disinfectant concentrations may constitute a selective pressure and could
contribute to the development of strains which are tolerant and/or resistant to biocides including antibiotics. The
current study investigated whether Staphylococcus (S.) aureus ATCC® 29213™ and ATCC® 6538™ would change
their growth characteristics and antimicrobial susceptibility profiles after prolonged treatment with sub-
inhibitory concentrations of sodium hypochlorite (NaOCl). NaOCl is a fast-acting disinfectant with a broad-
spectrum activity, inexpensive and widely used in healthcare and the food production industry. Minimum
inhibitory concentration (MIC) for NaOCl was determined by broth macrodilution according to the guidelines for
disinfectant efficacy testing provided by the German Veterinary Medical Society. Serial passages after 24 h and 72
h, respectively, in defined sub-inhibitory concentrations of NaOCl resulted in a number of phenotypic variants.
Two of these variants, derived from S. aureus ATCC® 29213™, showed elevated MICs of oxacillin and were
considered as in vitro-generated borderline oxacillin-resistant S. aureus (BORSA). Transmission electron micro-
scopy revealed a significantly thickened cell wall in these isolates, a phenomenon that has also been described for
Listeria monocytogenes after low-level exposure to NaOCl. Whole genome sequencing revealed an early stop codon
in the gene coding for the GdpP protein and thereby abolishing the function of this gene. GdpP represents a
phosphodiesterase that regulates gene expression, and loss of function of the GdpP protein has been described in
association with borderline oxacillin resistance. Our findings suggest that a mutation in the GdpP protein gene
and morphological changes of the cell wall were induced by repeated exposure to sub-lethal NaOCl concentra-
tions, and most likely accounted for a BORSA phenotype in two variants derived from S. aureus ATCC® 29213™.
1. Introduction

Exposure to low-level concentrations of biocides may trigger bacterial
adaptive responses or resistance against antimicrobial agents in vitro
(Thomas et al., 2000; Chapman, 2003; Karatzas et al., 2007; Randall
et al., 2007; Meyer and Cookson, 2010). This has been studied exten-
sively for triclosan, quaternary ammonium compounds, and chlorhexi-
dine (reviewed in Kampf, 2018). Furthermore, antibacterial biocides at
low concentrations induce horizontal gene transfer, thereby facilitating
the spread of antimicrobial resistance genes between bacteria in vitro
Speck).
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(Jutkina et al., 2018; Kampf, 2018). Inappropriate use of surface disin-
fectants (for example, incorrect concentration or excessive sub-inhibitory
biocide residues on surfaces) may constitute a selective pressure
contributing to the development of tolerant or resistant strains (Li et al.,
1997; Russell, 2001, 2004; Huet et al., 2008). Sodium hypochlorite
(NaOCl) is a strong oxidizing agent with a broad-spectrum antimicrobial
efficacy against a wide range of bacteria, including multidrug-resistant
bacteria (K€ohler et al., 2018). NaOCl is available worldwide, is favor-
able in terms of cost and benefit and is used for a wide range of appli-
cations, for example disinfection of surfaces, laundry, and drinking water
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(Rutala and Weber, 1997; Anonymous, 2013; Pereira et al., 2015). In the
European Economic Area/and or Switzerland, it is approved for use as a
biocide for human hygiene, disinfection, veterinary hygiene, food and
animal feeds, and drinking water (https://echa.europa.eu/de/substance-
information/-/substanceinfo/100.028.790). Likely concentrations at
which NaOCl (calculated as available chlorine) will be used as a
product-type 3 for veterinary hygiene vary between 2,000 mg/L (0.2%)
and 30,000 mg/L (3%) (Anonymous, 2017). Resistance to NaOCl is very
uncommon (reviewed in Kampf, 2018). Despite this, a minimum inhib-
itory concentration (MIC) of 4,100mg/L active chlorine (Salmonella spp.,
Staphylococcus (S.) aureus) and 8,200 mg/L (Enterococcus spp., Escherichia
coli, Klebsiella pneumoniae) was proposed to determine resistance
(reviewed in Kampf, 2018).

S. aureus is an important pathogen in human and veterinary medicine,
livestock production, and food processing. S. aureus is tolerant to desic-
cation and survives for months on dry surfaces (Kramer et al., 2006;
Kadariya et al., 2014). Only few studies exist regarding effects observed
after low-level exposure of S. aureus to NaOCl (Kusumaningrum et al.,
2003; Buz�on-Dur�an et al., 2017; Ujimine et al., 2017). Recently, biofilm
production by methicillin-resistant S. aureus (MRSA) induced by
sub-inhibitory concentrations of NaOCl has been demonstrated
(Buz�on-Dur�an et al., 2017). The present study investigated whether
repeated treatment of S. aureus by sub-inhibitory concentrations of
NaOCl would have an effect on antimicrobial susceptibility, growth
characteristics on sheep blood agar, and susceptibility to NaOCl.

2. Materials and methods

2.1. Bacterial strains and growth conditions

Experiments were conducted using S. aureus (SA) strains ATCC®
29213™ and ATCC® 6538™. Strain ATCC® 29213™ is the well char-
acterized quality control strain for antimicrobial susceptibility testing
(AST) (MIC determination and disk diffusion) recommended by EUCAST
(Anonymous, 2019). According to ATCC® strain characteristics, it is
susceptible to oxacillin (https://www.lgcstandards-atcc.org/produc
ts/all/29213.aspx?geo_country¼de#characteristics) and exhibits weak
β-lactamase activity (Anonymous, 2019). S. aureus ATCC® 6538™ is a
control strain according to DIN 58959-9 (Anonymous, 1997) and the
reference strain for disinfectant efficacy testing (Anonymous, 2019a).
Both strains were obtained from the Leibniz Institute DSMZ-German
Collection of Microorganisms and Cell Cultures (DSMZ; Braunschweig,
Germany). Cultures were grown overnight on Columbia sheep blood agar
(CSA) containing 7% blood (Oxoid Deutschland GmbH/Thermo Scien-
tific, Wesel, Germany) at 37 �C. AST was performed at a DIN EN ISO
15189 accredited diagnostic laboratory (amedes MVZ für Laborator-
iumsdiagnostik und Mikrobiologie Halle/Leipzig GmbH, Halle, Ger-
many) using VITEK®2 technology (bioM�erieux Deutschland GmbH,
Nürtingen, Germany) according to the EUCAST recommendations. Re-
sults were evaluated using clinical breakpoints given by EUCAST (http
://www.eucast.org/clinical_breakpoints/).
2.2. Determination of minimum inhibitory concentrations for NaOCl

MIC values for NaOCl were determined following the “Guidelines for
disinfectant testing”, provided by the German VeterinaryMedical Society
(DVG e.V.) (Anonymous, 2019a). The final concentrations tested were
0.01% (v/v), 0.02%, 0.03% and so on up to 0.1%, 0.25% and 0.5%
NaOCl (CAS-No. 7681-52-9; AppliChem GmbH, Darmstadt, Germany;
10%–14% active chlorine according to the manufacturer). Each con-
centration was tested in duplicate at two independent occasions. In brief,
screw cap tubes containing 2.5 mL double concentrated tryptic soy broth
(TSB) were filled up with 2.5 mL of double concentrated NaOCl. Subse-
quently, 50 μL of S. aureus (1.4–1.9� 109 colony-forming units (cfu)/mL)
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were added to each test tube. Preparations were mixed and incubated at
37 �C. After 72 h of incubation, turbidity was measured as an indicator of
bacterial growth. The lowest concentration with absence of growth was
interpreted as MIC.

2.3. Effect of sub-inhibitory NaOCl concentrations on growth
characteristics, susceptibility to NaOCl, and antimicrobial susceptibility

The following sub-inhibitory concentrations of NaOCl were arbi-
trarily defined: 0.01%, 0.005%, 0.0025%, 0.00125%, 0.0006%, and
0.0003%. Experiments were performed according to Karatzas et al.
(2007), but modified in that we chose two different contact times, i.e. 24
h and 72 h. The latter incubation time corresponded to NaOCl MIC
determination. Tubes were prepared and incubated at 37 �C as described
above. The initial inoculum for both strains was 8.5 � 108 cfu/mL. From
all tubes showing bacterial growth after the respective contact time, a 50
μL-aliquot was transferred to a freshly prepared tube containing the same
NaOCl concentration and further incubated (Figure 1). This was repeated
eight times after 24 h and twice after 72 h of incubation. From all tubes
showing bacterial growth at the end of each experiment, aliquots were
spread out on CSA using a 1 μL disposable loop. After 24 h of incubation
at 37 �C, colony morphology was noted and colonies of different
phenotype were separated on new CSA plates. Each of these isolates was
subjected to NaOCl MIC determination (Figure 1) and AST (amedes MVZ
für Laboratoriumsdiagnostik und Mikrobiologie Halle/Leipzig GmbH) as
described above. AST was further performed after two subcultures on
CSA. In addition, NaOCl MIC was determined after two serial passages in
TSB. Both were intended to test whether any observed changes in the
susceptibility patterns was robust. All isolates were stored at -80 �C for
further investigation (CRYOBANK™ tubes; MAST Diagnostika GmbH,
Reinfeld, Germany). As a control, the experiments using strains ATCC®
29213™ and ATCC® 6538™ as described above were additionally per-
formed using TSB without any supplementation.

2.4. Macrorestriction analysis

Macrorestriction analysis was performed using the original
S. aureus ATCC® 29213™ and two variant isolates (SA29213-A,
SA29213-B) with altered phenotypes to confirm the clonal identity.
SmaI and ApaI were used as restriction enzymes as described else-
where (Murchan et al., 2003; Kadlec et al., 2009).

2.5. Agar disk diffusion

In addition, agar disk diffusion was performed using penicillin (10 U,
Oxoid Deutschland GmbH/Thermo Scientific) according to CLSI stan-
dards for S. aureus ATCC® 29213™ and the two strains SA29213-A and
SA29213-B (CLSI, 2019). The zone edges of the penicillin inhibition
zones were evaluated according to the zone edge test (CLSI, 2019).

2.6. β-lactam susceptibility testing by broth microdilution

Additional broth microdilution was performed for S. aureus ATCC®
29213™ as well as its variants SA29213-A and SA29213-B according to
CLSI standards (CLSI, 2019) using ampicillin, amoxicillin/clavulanic
acid, penicillin, ceftiofur, cefquinome, cephalothin, cefazolin, cefotax-
ime, cefoperazone, and oxacillin.

2.7. Growth kinetics of S. aureus ATCC® 29213™ and its variants

A propagation assay was used to evaluate possible changes in the
fitness of SA29213-A and SA29213-B compared to S. aureus ATCC®
29213™. Bacteria were grown from cryo-stocks on CSA at 37 �C for 24 h.
A fresh overnight subculture (CSA, 37 �C) was used to perform growth
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Figure 1. Schematic presentation of the experi-
mental setup. Both S. aureus ATCC® strains were
inoculated into tryptic soy broth (TSB) containing
different concentrations of NaOCl. Turbidity after
the respective incubation time indicated bacterial
growth. From turbid cultures, a 50 μL-aliquot was
transferred to a freshly prepared tube containing
the same NaOCl concentration and further incu-
bated. This was repeated eight times after 24 h
and twice after 72 h of incubation, respectively.
At the end of each experiment, subcultures were
prepared on CSA, colony morphology was noted
and colonies of different phenotype were further
investigated. x% indicates a NaOCl concentration
of 0.01%, 0.005%, 0.0025%, 0.00125%,
0.0006%, and 0.0003%, respectively.
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kinetics. Cells were suspended in TSB resulting in an initial inoculum of
5.5 � 108 cfu/mL (S. aureus ATCC® 29213™), 5.8 � 108 cfu/mL
(SA29213-A), and 6.1 � 108 cfu/mL (SA29213-B), respectively. Each
suspension was used to inoculate 24 wells (100 μL/well) on a 96-well
flat-bottom microtiter plate (Sarstedt AG & Co., Nümbrecht, Germany).
The remaining wells were filled with TSB only and served as blank. The
plate was incubated over a period of 6 h at 37 �C without shaking.
Bacterial growth was measured every 15 min by recording the optical
density at 595 nm using a Multiskan Ascent (Thermo Labsystems, Hel-
sinki, Finland) microplate reader. Prior to recording, the plate was
shaken for 3 s at 480 rpm. The assay was performed twice.
2.8. Transmission electron microscopy (TEM)

S. aureus ATCC®29213™, SA29213-A, and SA29213-B were grown at
37 �C overnight in TSB. Thereafter, cultures were centrifuged at 300 x g
for 15 min and the supernatants were discarded. A total of 2.5 mL of
glutaraldehyde (2.5% in 0.1 M sodium cacodylate buffer with 0.1 M
sucrose, 1 mM CaCl2, pH 7.2) was added to the bacterial cell pellet,
gently mixed and incubated for 1 h at room temperature. Thereafter, a
1.2 mL-aliquot of each preparation was transferred to a tube, and
centrifuged (500 x g, 15 min) again. Supernatants were removed, pellets
rinsed in phosphate-buffered saline (PBS; pH 7.4) at room temperature
for 10 min. Centrifugation, removal of supernatants and rinsing in PBS
two times for 10 min was repeated twice for each bacterial isolate. Prior
to secondary fixation and embedding in resin 10 μL of each
glutaraldehyde-fixed bacterial cell pellet were injected into a LUMI-
Tainer™ microcapsule (diameter 3.5 mm) (LUM GmbH, Berlin, Ger-
many) for easier handling. Further processing for secondary fixation and
embedding was conducted as follows: osmification with 1% OsO4 (in 0.1
M cacodylate buffer with 1.5% potassium hexacyanoferrate (II) trihy-
drate; Sigma-Aldrich, St. Louis MO, USA) for 2 h, rinsing in distilled
water (five times for 7 min each), dehydration in ascending methanol
including propylene oxide as intermedium (twice for 10 min each), and
3

resin embedding in glycid ether 100™ (Serva, Heidelberg, Germany).
Ultra-thin sections (50 nm) were cut and collected on uncoated 300 mesh
nickel thin bar grids.

Thirty cells of each preparation with nearly equatorial cut surfaces
were chosen to determine cell wall thickness. Digital TEM images were
taken at a final magnification of ✕20.000 using a Zeiss EFTEM Libra
120™ (Zeiss, Oberkochen, Germany) and were analyzed with the TEM-
based image analysis software (iTEM). For each cell, measurements
were performed at five cell wall positions by two investigators, inde-
pendently. To evaluate differences in cell wall thickness between the
three strains, a linear mixed effects model was fitted to the data. The
strain and an indicator of the person who took the measurements were
treated as fixed covariates, and the model included random intercept for
each cell. The model allowed for evaluator-specific variance of the
random intercepts. The model was compared to other candidate models
using likelihood ratio tests. The goodness of fit of the model was assessed
by inspection of its residuals. Results are expressed as means � standard
deviation (SD). P-values were computed using the fitted model, treating
the parental strain as a reference. Differences were regarded as signifi-
cant for P< 0.05. Analyses were performed using R, version 3.4.1 (R Core
Team, 2019). Mixed effects models were fitted using the R package nlme.
2.9. Whole genome sequencing and sequence analysis

S. aureus ATCC® 29213™ as well as its variants SA29213-A and
SA29213-Bwere subjected to whole genome sequencing (WGS). For DNA
extraction the QIAamp® DNA Mini Kit (QIAGEN, Hilden, Germany) was
used with some modifications. To lyse the staphylococcal cell wall, 25 μL
lysostaphin solution (0.1 mg/mL) was added to the cells prior to incu-
bation for 25 min at 37 �C. After this, 75 μL TE buffer and 25 μL pro-
teinase K (0.1 mg/L) were added and incubation continued for 25 min at
37 �C. 75 μL PBS and 2 μL RNAse (2 μg/μL) were added and slightly
mixed. Then the protocol for the kit was followed starting with the
addition of AL buffer. The Nextera XT library preparation kit (Illumina
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Inc., San Diego, USA) was used for the preparation of the WGS libraries
according to the manufacturer's recommendations. The 2�300 bp
paired-end sequencing in 40-fold multiplexes was performed on the
Illumina MiSeq (Illumina Inc., San Diego, USA) platform. SPAdes 3.14.0
(Nurk et al., 2013) was used for de novo assembly of the raw reads. The
sequence of S. aureus ATCC® 29213™was used as reference to which the
variants SA29213-A and SA29213-B were mapped with Bowtie2 (Lang-
mead and Salzberg, 2012). The obtained sequences were annotated using
RAST annotation server (Aziz et al., 2008) and compared to each other
and with S. aureus ATCC® 29213™ reference (NZ_LHUS00000000). The
nucleotide sequences were analyzed using Geneious v 11.1.4 (Bio-
matters, Auckland, New Zealand). Regarding the reduced oxacillin sus-
ceptibility, the sequences of the three strains in question were compared
for the proteins GdpP, FemA, FemB, MgrA, MprF (using S. aureus NCTC
8325 (NCBI:txid93061) as a reference) and FemC (GlnR), FemD (GlmM),
CcpA as well as the penicillin binding proteins (PBP) 1, 2, 3 and 4 (using
S. aureus Mu50 (NCBI:txid158878) as a reference). Regarding the
phenotypic differences in the hemolysis patterns of the three strains,
sequences of the three strains in question were compared for the proteins
of the bicomponent gamma-hemolysins (HlgA, HlgB and HlgC) (using
S. aureus Mu50 (NCBI:txid158878) as a reference) as well as
alpha-hemolysin (Hla) and delta-hemolysin (Hld) (using S. aureus
NCTC8325 (NCBI:txid93061) as a reference).

3. Results

3.1. Phenotypic characteristics of S. aureus ATCC®29213™ and ATCC®
6538™

On CSA, S. aureus ATCC®29213™ grew in medium-sized, smooth,
golden-yellow colonies with a narrow zone of complete hemolysis
(Figure 2 A) and was susceptible to all antimicrobial agents tested except
benzylpenicillin (Table 1). The MIC value determined for NaOCl was
0.07%. S. aureus ATCC®6538™ revealed medium-sized, smooth, golden-
yellow colonies with a clear zone of complete hemolysis. The strain was
susceptible to all antimicrobial agents tested (Table 1) and exhibited a
NaOCl MIC value of 0.1%.

3.2. Effect of sub-inhibitory concentrations of NaOCl on growth
characteristics, susceptibility to NaOCl, and antimicrobial susceptibility

In experiments with serial passages after 24 h of incubation, growth of
S. aureus ATCC® 29213™ occurred at 0.0003%, 0.0006%, 0.00125%,
and 0.0025%. In contrast, growth also occurred in 0.005% NaOCl in
experiments with serial passages after 72 h of incubation. Changes in
colony morphology were visible in both experimental setups. Besides
typical S. aureus ATCC® 29213™ colonies, eight different phenotypes
with and without hemolysis were found (Table 2). Antimicrobial sus-
ceptibility profiles of all strains were identical except for oxacillin, lev-
ofloxacin, fosfomycin, and linezolid (Table 1). Strains SA29213-A
(Figure 2 B) and SA29213-B (Figure 2 C) exhibited decreased suscepti-
bility to oxacillin (MIC �4 mg/L) with an at least 16-fold increase in the
MIC values compared to S. aureus ATCC® 29213™ (Table 1). Two
Figure 2. A-C. Colony appearance of S. aureus grown on Columbia sheep blood aga
obtained after serial passages in 0.005% NaOCl. (C) Variant SA29213-B obtained af
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subcultures on CSAwere performed to prove whether these changes were
reversible. MICs decreased to 2 mg/L (i.e. susceptible) after the first
subculture but were consistent with the first result (i.e. resistant, �4 mg/
L oxacillin) after the second subculture on CSA. The MICs determined for
NaOCl ranged from 0.07% to 0.09% (Table 2). The agar disk diffusion
test for S. aureus ATCC® 29213™, SA29213-A, and SA29213-B revealed
a zone diameter of 20 mm for penicillin (Figure 3 A–C). Thus, all three
strains were classified as penicillin resistant (CLSI, 2019). The corre-
sponding zone edges were sharp, which indicated the presence of a
β-lactamase (CLSI, 2019). Broth microdilution also confirmed that the
original strain and the two variants were resistant to penicillin. The MICs
of the two variants were 2 mg/L compared to 1 mg/L for the original
strain. However, it should be noted that deviations of þ/- one dilution
step are within the acceptable range for AST (CLSI, 2018a). The oxacillin
MIC of the original strain was 0.25 mg/L compared with 1 mg/L for both
variants. This corresponded to an increase of the MIC by two dilution
steps, although the variants would still be considered as susceptible
(CLSI, 2019). A slight increase in the MICs was also seen for ampicillin,
amoxicillin/clavulanic acid, ceftiofur, cephalothin, cefazolin, cefotaxime
and cefoperazone, whereas no change was seen among the MICs for
cefquinome (Supplementary Table 1). Growth curves of S. aureus ATCC®
29213™ and its two variants are shown in Figure 4. After a short lag
phase, a distinct increase in cell density corresponding to an increase in
optical density was noticed for S. aureus ATCC® 29213™. In contrast,
growth of SA29213-A and SA29213-B seemed to be impaired as
demonstrated by a less steep growth curve and lower cell densities.
Figure 4 summarizes average values obtained from two independent
growth experiments.

S. aureus ATCC® 6538™ grew at concentrations up to 0.01% NaOCl
in both experimental setups. Colony morphology also varied (Table 2),
but the antimicrobial susceptibility profiles of the four derived variants
(Table 1) closely resembled that of the original strain S. aureus ATCC®
6538™. MICs for NaOCl were identical to the values determined initially
(0.1 mg/L) with the exception of SA6538-c and SA6538-d. For both, the
MICwas 2.5-times higher, but decreased to 0.1% after one passage in TSB
(Table 2).

Control experiments performed in TSB did not result in changes of
colony morphology for both S. aureus strains, ATCC® 29213™ and
ATCC® 6538™. The antimicrobial susceptibility profiles revealed a
slight increase in MICs e.g. for levofloxacin or erythromycin (Supple-
mentary Table 2), but overall strains showed resistance patterns identical
to the original strains. The MIC determined for NaOCl at the end of the
experiments was 0.05% and 0.06%. Detailed results can be taken from
Supplementary Table 2.

3.3. Macrorestriction analysis

Macrorestriction analysis using SmaI and ApaI revealed indistin-
guishable pulsed-field gel electrophoresis (PFGE) patterns for S. aureus
ATCC® 29213™ and variants SA29213-A and SA29213-B (Figure 5,
Supplementary Figure 1 and Supplementary Figure 2).
r for 24 h at 37�C. (A) Parental strain ATCC® 29213™. (B) Variant SA29213-A
ter serial passages in 0.005% NaOCl.



Table 1. MIC values of both ATCC® S. aureus strains and their variants obtained by Vitek®2 analysis.

Antibiotic substance Minimum inhibitory concentrations (mg/L)

S. aureus strains and variants

ATCC®
29213™

SA29213-A SA29213-B SA29213-C SA29213-D SA29213-E SA29213-F SA29213-G SA29213-H ATCC®
6538™

SA6538-a SA6538-b SA6538-c SA6538-d

Benzylpenicillin �0.5b �0.5b �0.5b 0.25b �0.5b �0.5b �0.5b �0.5b �0.5b �0.03a 0.06a �0.03a �0.03a �0.03a

Oxacillin �0.25a �4b,* �4b,* �0.25a �0.25a 0.5a �0.25a �0.25a 0.5a �0.25a �0.25a �0.25a �0.25a �0.25a

Gentamicin �0.5a �0.5a �0.5a �0.5a �0.5a �0.5a �0.5a �0.5a �0.5a �0.5a �0.5a �0.5a �0.5a �0.5a

Levofloxacin 0.25a �0.12a �0.12a �0.12a 0.25a 0.5a �0.12a �0.12a �0.12a �0.12a 0.25a �0.12a �0.12a �0.12a

Erythromycin �0.25a �0.25a �0.25a �0.25a �0.25a �0.25a �0.25a �0.25a �0.25a �0.25a �0.25a �0.25a �0.25a �0.25a

Clindamycin �0.25a �0.25a �0.25a �0.25a �0.25a �0.25a �0.25a �0.25a �0.25a �0.25a �0.25a �0.25a �0.25a �0.25a

Vancomycin �0.5a �0.5a �0.5a �0.5a �0.5a �0.5a �0.5a �0.5a �0.5a �0.5a 1a 1a �0.5a 1a

Teicoplanin �0.5a �0.5a �0.5a �0.5a �0.5a �0.5a �0.5a �0.5a �0.5a �0.5a �0.5a �0.5a �0.5a �0.5a

Tetracycline �1.0a �1.0a �1.0a �1.0a �1.0a �1.0a �1.0a �1.0a �1.0a �1.0a �1.0a �1.0a �1.0a �1.0a

Tigecycline �0.12a �0.12a �0.12a �0.12a �0.12a �0.12a �0.12a �0.12a �0.12a �0.12a �0.12a �0.12a �0.12a �0.12a

Rifampicin �0.5a �0.5a �0.5a �0.5a �0.5a �0.5a �0.5a �0.5a �0.5a �0.5a �0.5a �0.5a �0.5a �0.5a

Fosfomycin �8a 16a �8a �8a �8a �8a �8a �8a �8a �8a �8a �8a �8a �8a

Fusidic acid �0.5a �0.5a �0.5a �0.5a �0.5a �0.5a �0.5a �0.5a �0.5a �0.5a �0.5a �0.5a �0.5a �0.5a

Mupirocin �2a �2a �2a �2a �2a �2a �2a �2a �2a �2a �2a �2a �2a �2a

Linezolid 2a 1a 1a 2a 2a 2a 2a 1a 2a 2a 2a 1a 2a 2a

*Both isolates were repeatedly tested and results for oxacillin varied between 2 mg/L (i.e. interpreted as susceptible) and �4 mg/L (i.e. interpreted as resistant).
a Values interpreted as susceptible.
b Values interpreted as resistant.

Table 2. Phenotypic characteristics of S. aureus-derived variants obtained after serial passages in sub-inhibitory NaOCl concentrations.

Strain NaOCl concentration (v/v) Serial passage after Colony morphology on CSA Variant MIC value for NaOCl determined after

culture on CSA 1st passage in TSB 2nd passage in TSB

ATCC® 29213TM 0.005% 72 h tiny, yellow, narrow hemolysis SA29213-A 0.08% 0.07% 0.07%

0.005% 72 h tiny, yellow, very narrow hemolysis SA29213-B 0.08% 0.07% 0.07%

0.005% 72 h medium-sized, lutescent, narrow hemolysis SA29213-F 0.08% 0.09% 0.08%

0.0025% 72 h small, lutescent, no hemolysis SA29213-E 0.08% 0.08% 0.07%

0.0006% 72 h convex, yellow, distinct hemolysis SA29213-C 0.08% 0.08% 0.07%

0.0025% 24 h medium-sized, yellow, narrow hemolysis SA29213-H 0.08% 0.07% 0.07%

0.0025% 24 h medium-sized, yellow, no hemolysis SA29213-D 0.08% 0.08% 0.08%

0.00125% 24 h small, yellow, weak hemolysis beneath the colony SA29213-G 0.07% 0.07% 0.09%

ATCC® 6538TM 0.01% 24 h tiny, yellowish, no hemolysis SA6538-a 0.1% not done not done

0.005% 24 h small, yellow, no hemolysis SA6538-b 0.1% not done not done

0.01% 72 h small, convex, yellow, no hemolysis SA6538-c 0.25% 0.1% not done

0.0025% 72 h small, convex, yellowish, distinct hemolysis SA6538-d 0.25% 0.1% not done

At the end of each experiment (i.e. eight times serial subculture after 24 h and two serial subcultures after 72 h of incubation, respectively) subcultures were prepared on
CSA from every tube showing bacterial growth. Cultures were grown at 37 �C for 24 h and colony morphology was assessed thereafter. Each colony with a different
phenotype was separated on CSA. CSA – Columbia sheep blood agar (7% blood), NaOCl – sodium hypochlorite, MIC –minimum inhibitory concentration, TSB – tryptic
soy broth.

Figure 3. A-C. Results of the penicillin disk diffusion test. A – S. aureus ATCC® 29213™; B – variant SA29213-A; C – variant SA29213-B.
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3.4. Transmission electron microscopy

Morphological changes in S. aureus SA29213-A and SA29213-B were
examined by TEM and compared to S. aureus ATCC® 29213™. TEM
micrographs of representative cells are shown in Figure 6 A-C. The mean
5

cell wall thickness of S. aureus ATCC® 29213™ was 18.96 nm (95% CI:
17.70–20.22). SA29213-A and SA29213-B exhibited a significantly
thickened cell wall phenotype of 26.30 nm (95% CI: 25.04–27.56, P ¼
1.89 � 10�12) and 21.11 nm (95% CI: 19.85–22.37, P ¼ 0.018),
respectively.



Figure 4. Growth of S. aureus ATCC® 29213™ (filled circles), SA29213-A (filled triangles), and SA29213-B (open boxes) monitored by determining the optical
densities at 595 nm in TSB at 37 �C without shaking. Experiments were performed in duplicate and error bars represent the standard deviation.
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3.5. Sequence analysis

The analysis of the proteins associated with reduced oxacillin sus-
ceptibility revealed no differences in the amino acid (aa) sequences of
FemA, FemB, FemC, FemD, MgrA, CcpA and MprF as well as the peni-
cillin binding proteins (PBP) 1, 2, 3 and 4. However, compared to the
original strain S. aureus ATCC®29213™, both variants, SA29213-A
(bioproject PRJNA613990, acc. no. JAAVNA000000000) and
SA29213-B (bioproject PRJNA613990, acc. no. JAAVMZ000000000),
exhibited a change from Glutamin (Q) to a stop codon at position 139 in
the 656 aa GdpP protein. Regarding the hemolysin proteins HlgA, HlgB,
HlgC, Hla and Hld, no aa sequence differences between the original strain
and the two variants were observed.

4. Discussion

S. aureus is an important opportunistic pathogen in humans, com-
panion animals, and livestock. It survives on inanimate dry surfaces for
months (Kramer et al., 2006), which highlights the necessity of proper
surface disinfection measures. Exposure of bacteria to low concentrations
of a disinfectant (e.g. inappropriate dilution, remnants of the disinfec-
tant) might rapidly select for decreased susceptibility against this biocide
or even to antibiotics (Loughlin et al., 2002; Thomas et al., 2005; SCE-
NIHR, 2010). It has been demonstrated in vitro that a sub-lethal (often
sub-inhibitory) biocide concentration decreases bacterial susceptibility
to that biocide and modifies the antimicrobial susceptibility profile, but
does not necessarily trigger clinical antimicrobial resistance (SCENIHR,
2009; SCENIHR, 2010).

In this study, the effect of sub-inhibitory concentrations of NaOCl on
growth characteristics, susceptibility to NaOCl and antibiotic suscepti-
bility patterns of two S. aureus strains was examined. Prolonged treat-
ment with sub-inhibitory concentrations resulted in the development of
colonies with noticeable differences in phenotype in that some colonies
were smaller, discolored, and with impaired hemolysis. The character-
istic color of S. aureus is mediated by carotenoids which are rapidly
destroyed by NaOCl (Marshall and Wilmoth, 1981; Siems et al., 1999)
resulting in chromogenic variants. Moreover, NaOCl stress has been
associated with degradation of chromosomal DNA, alteration of proteins
and disruption of the cell membrane (Aboualizadeh et al., 2017; Ujimine
et al., 2017). It could be assumed that NaOCl-induced degradation of
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chromosomal DNA may be related to the morphological changes
described here. There was no change in MICs to NaOCl in NaOCl-adapted
strains except for two variants obtained from S. aureus ATCC® 6538™
(i.e. SA6538-c and SA6538-d). Both strains showed a 2.5-times decrease
in susceptibility to NaOCl but this was reversible by one passage in TSB,
suggesting a temporary and not genetically fixed adaptation process.
Similar findings have been reported elsewhere (Bansal et al., 2018; Gao
and Liu, 2014). Treatment of bacteria with sub-inhibitory concentrations
of NaOCl might contribute to the emergence of antibiotic resistance
(Molina-Gonz�alez et al., 2014; Obe et al., 2018). This is supported by our
findings in that two phenotypic variants of S. aureus ATCC® 29213™, i.e.
SA29213-A and SA29213-B, showed in vitro borderline-resistance against
oxacillin (MIC of �4 mg/L and 2 mg/L). In accordance to others (Moli-
na-Gonz�alez et al., 2014) this phenomenon was strain-dependent as it
was not seen in isolates derived from S. aureus strain ATCC® 6538™. It
should briefly be mentioned that MIC values for oxacillin determined by
VITEK®2 technology distinctly varied from those determined by broth
microdilution (Supplementary Table 1). This might be associated with
the different testing methods used and has been previously described
(Scholtzek et al., 2019). Macrorestriction analysis excluded a laboratory
contamination with another S. aureus strain and confirmed the clonality
of SA29213-A, SA29213-B, and S. aureus ATCC® 29213™.
Borderline-resistant S. aureus (BORSA) are characterized by oxacillin
MICs at or just above the susceptibility breakpoint (Chambers, 1997).
Several mechanisms have been hypothesized to explain borderline
resistance in mecA-negative S. aureus, including hyperproduction of a
β-lactamase, amino acid substitutions in penicillin-binding proteins
(PBPs), or mutations in regulating genes that lead to PBP4 over-
production (McDougal and Thornsberry, 1986; Tomasz et al., 1989;
Argudín et al., 2018). Recently, plasmid-encoded methicillin resistance
conferred by mecB has also been described in S. aureus (Becker et al.,
2018). S. aureus ATCC® 29213™ is characterized as oxacillin-susceptible
and exhibits oxacillin MICs ranging between 0.12 – 0.5 mg/L (CLSI,
2018b). Furthermore, a GenBank database search found no entries for
methicillin-resistance genes in S. aureus ATCC® 29213™. Therefore,
these genetically determined resistance mechanisms could be excluded in
our strains. Another mechanism causing reduced susceptibility to
oxacillin is the upregulation of multiple-drug efflux pumps as described
for S. aureus after multiple-exposure to benzalkonium chloride (Huet
et al., 2008). Unfortunately, this aspect could not further be investigated



Figure 5. SmaI and ApaI fragment patterns obtained after PFGE analysis. M –

SmaI-digested S. aureus strain NCTC 8325, pt – S. aureus ATCC® 29213™, A –

variant SA29213-A, B – variant SA29213-B. The full, non-adjusted PFGE images
of SmaI- and ApaI-digestions can be found as Supplementary Figure 1 (SmaI) and
Supplementary Figure 2 (ApaI). Figure 5 was composed of the five lanes taken
from the middle part of each gel image.

Figure 6. A-C. Comparison of cell wall thickness of SA29213-A and SA29213-B with
following strains are shown: A – S. aureus ATCC® 29213™; B – variant SA29213-A; C
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in our study. Borderline oxacillin resistance can be attributed to β-lac-
tamase hyperproduction (McDougal and Thornsberry, 1986; Maalej
et al., 2012; Hryniewicz and Garbacz, 2017; Scholtzek et al., 2019).
S. aureus ATCC® 29213™ possesses the blaZ gene (GenBank accession
number NZ_MOPB01000048) which encodes a penicillin-hydrolyzing
class A β-lactamase. Penicillin agar disk diffusion with the interpreta-
tion of the zone edges confirmed the presence and the expression of a
β-lactamase, not only in S. aureus ATCC® 29213™, but also in the two
derived isolates tested. Interestingly, no differences in the zone diameters
were seen between S. aureus ATCC® 29213™, SA29213-A and
SA29213-B. Therefore, the expression of the β-lactamase is unlikely to be
the reason of the reduced oxacillin susceptibility. As β-lactam antimi-
crobials interfere with bacterial cell wall synthesis, the decreased sus-
ceptibility to oxacillin of SA29213-A and SA29213-B might be associated
with substantial reorganization of the staphylococcal cell wall, which
was significantly thicker in the two variants as compared to S. aureus
ATCC® 29213™. Heterogeneity of the cell wall thickness after NaOCl
treatment was also found in TEM observations by Ujimine et al. (2017).
Moreover, the decreased oxacillin susceptibility might also be associated
with the mutation resulting in an early stop codon in the gene coding for
the GdpP protein and thereby abolishing the function of this gene. GdpP
represents a phosphodiesterase that regulates gene expression, and loss
of function of the GdpP protein has been described in association with
borderline oxacillin resistance (Griffiths and O'Neill, 2012). This protein
comprises two functional domains: The GGDEF domain containing a
diguanylate cyclase, which confers the capacity to synthesize the second
nucleotide messenger cyclic di-GMP. The DHH domain harbors the
phosphodiesterase characteristic catalytic DHH motif and imparts hy-
drolysis of cyclic di-AMP, a secondmessenger molecule which is involved
in cell wall synthesis and homeostasis, and is essential for the growth and
cell viability of many Gram-positive bacteria including S. aureus (Corri-
gan et al., 2011; Huynh and Woodward, 2016; Fahmi et al., 2017;
Commichau et al., 2018). Impaired growth was also seen in both variants
of S. aureus ATCC® 29213™. Cell wall changes after low-level exposure
to NaOCl were also described for Listeria monocytogenes, another
Gram-positive bacterial species (Gao and Liu, 2014; Bansal et al., 2018).
Similar morphological and biological changes, including decreased
growth rate, less or no hemolysis, have been described for vancomycin-
and teicoplanin-resistant S. aureus, adaptive resistance to amikacin, and
treatment of S. aureus with erythromycin and acriflavine (Nishino, 1975;
Cui et al., 2003; McCallum et al., 2006; Kawai et al., 2009; Dai et al.,
2012; Yuan et al., 2013). Our findings may suggest that a mutation in the
gene for the GdpP protein and morphological changes of the cell wall
induced by NaOCl most likely accounted for a borderline oxacillin
resistance phenotype in the two S. aureus ATCC® 29213™ variants.
Survival of such variant strains in certain environmental niches may
constitute a possible threat to susceptible populations, particularly in
healthcare.
the parental strain S. aureus ATCC® 29213TM. Thin-section micrographs of the
– variant SA29213-B. Final magnification x20,000. Scale bar indicates 200 nm.
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