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Neonatal period is the most vulnerable time for the occurrence of seizures, and neonatal
seizures often pose a clinical challenge both for their acute management and frequency of
associated long-term co-morbidities. Etiologies of neonatal seizures are known to play a
primary role in the anti-epileptic drug responsiveness and the long-term sequelae. Recent
studies have suggested that burden of acute recurrent seizures in neonates may also
impact chronic outcomes independent of the etiology. However, not many studies, either
clinical or pre-clinical, have addressed the long-term outcomes of neonatal seizures in
an etiology-specific manner. In this review, we briefly review the available clinical and pre-
clinical research for long-term outcomes following neonatal seizures. As the most frequent
cause of acquired neonatal seizures, we focus on the studies evaluating long-term effects
of HIE-seizures with the goal to evaluate (1) what parameters evaluated during acute
stages of neonatal seizures can reliably be used to predict long-term outcomes? and (2)
what available clinical and pre-clinical data are available help determine importance of
etiology vs. seizure burdens in long-term sequelae.
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INTRODUCTION

The incidence of seizures, 1.5–3/1,000 live births, is highest during the neonatal period (1, 2). Neona-
tal seizures remain a clinical challenge due to ambiguous presentations and, therefore, sometimes
the failure of immediate detection. The lack of evidence-based management protocols, and poor
outcomes add to that challenge (3). Most neonatal seizures are symptomatic rather than idiopathic
(2) (Figure 1), and 80–85% are predominantly accounted for by hypoxic–ischemic encephalopathy
(HIE), hemorrhage, metabolic disturbances, and infections (4, 5). Several mechanisms are known
to play a role in seizure initiation in the immature brain.

The immature brain has a higher seizure susceptibility due to multiple developmentally regulated
features (1). One of which is the now established excitatory and trophic effect of the GABAergic
system during cortical development (6, 7). Phenobarbital (PB) remains the first-line anti-epileptic
drug (AED) for neonatal seizures (5, 8), however, with an efficacy of less than 50% (9). Consideration
of other AEDs is (10) based on the underlying cause and characteristics of the seizures in neonates.
Among many, the use of levetiracetam has increasingly become viable, as studies have reported its
safety and efficacy on neonatal seizures associated with HIE and other etiologies (11). Increasing
evidence suggests that neonatal seizures are associated with adverse neurodevelopmental outcomes,
including epilepsy, cerebral palsy, developmental delay, and psychomotor deficits (12–14). However,
whether neonatal seizures can independently impact long-term neurologic outcomes, or are a
marker of the severity of underlying pathology, remains a topic of active debate (15, 16).
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FIGURE 1 | Neonatal seizure cause.

The lack of evidence-based treatments for neonatal seizures
stems both from poor estimation of acute seizure burdens in the
absence of continuous EEGs and the refractory nature of neonatal
seizures. Without this evidence, the ability to effectively study and
predict long-term neurodevelopmental effects of seizures remains
a challenge. Clinical and pre-clinical studies on the long-term
effects of seizures in neonates are needed to provide conclusive
insights on (1) which acutely determined parameters predict the
long-term sequelae of neonatal seizures, (2) how aggressively
should the acute seizures be treated, and (3) are the current pro-
active treatments like hypothermia and repeated doses of AEDs
neuroprotective in the long-run?

ETIOLOGY

Acquired
Hypoxic–Ischemic Encephalopathy
Hypoxic–ischemic encephalopathy, reported in 1–2/1,000 live
births, is the most prevalent underlying pathology for acquired
neonatal seizures (17). HIE-seizures in neonates accompany high
seizure burdens with frequent status epilepticus and electro-
graphic seizures (18). HIE-seizures in neonates are known for
their resistance to first-line AEDs like PB (19). The alternative
treatment options for refractory seizures, such as levetiracetam
and midazolam, have shown variable effects (20, 21).

Therapeutic hypothermia (TH) has become a standard practice
for treating neonates with HIE, based on the evidence from pre-
clinical and clinical studies that documented reduced brain injury
inHIE-neonates that underwentTH (22–26). Clinical studies have
documented that TH significantly reduced mortality and short-
term morbidity, and improved AED efficacy in neonates with
HIE (27–30). However, a recent study has reported no significant
difference in survival or functional outcome by TH in neonates
hospitalized for cardiac arrest (31). The long-term benefits of TH
and its effect on chronic outcomes as related to neonatal seizures
are awaiting further evaluation.

Pre-clinical modeling allows a thorough evaluation of both
acute seizure burdens and the efficacy of treatment protocols with
in vivo and in vitro experiments. Efficacies of AEDs are known
to be model specific (32–34) and, therefore, caution must be
exercised whenmaking interpretations for translational purposes.
Hypoxia is an important component of HIE, and its effect in a
developing brain has been studied in a model of neonatal hypoxia
(35). Global hypoxia (3–4% O2) in P10–12 rats induced acute
seizure burden that wasmild and age dependent, with no reported
brain injury. A long-term study in this model further reported
an increased seizure susceptibility to flurothyl-induced seizures
but no significant association with neurobehavioral consequences
(36). More recent study on this model reported an emergence of
spontaneous seizures at juvenile period and significant prevalence
of epilepsy at P180 evaluated by EEG (37). Ischemia represents
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another important cause of HIE. A newer model of neonatal
ischemia-alone was characterized in P7, P10, and P12 mice. In
contrast to the hypoxiamodel, ischemia-alone resulted in a status-
like seizure burden and PB-resistance associated with neuronal
injury (38). Another well-studied model for HIE is the com-
bination of hypoxia and ischemia (HI; Rice–Vannucci model),
which has widely been used to study neonatal HIE (39). In P7
rats, HI-induced seizures continued up to 48 h, with significantly
decreased background EEG power (40). Lastly, chemoconvulsants
have also been used to recapitulate the high-seizure load seen
in neonatal HIE (41, 42). Seizures in brain slices, induced by
kainic acid or Mg2+, displayed high seizure severity with status-
like seizure activity and PB-resistance (42, 43). In vivo studies of
chemoconvulsants, pilocarpine (44) and pentylenetetrazol (45),
were also conducted in neonatal rats, but the seizure severity was
not quantitated in either study. The characteristics of the seizures
studied in these models differ by severity, response to AEDs, and
the resultant neuronal injury (33). The long-term co-morbidities
were evaluated in only a subset of these studies (Table 1), which

is a drawback of some of the models being used and that needs
further investigation.

Acquired Non-HIE
CNS Infection (Neonatal Bacteremia and Meningitis)
Neonatal meningitis, occurring in every 0.25–1/1,000 live births,
is a condition in which seizures are often detected (54) and long-
term sequelae, such as hydrocephaly, brain edema, and subdural
effusion, follow. Escherichia coli and group B Streptococcus are typ-
ical pathogens for bacterial meningitis and ~25% of neonates with
meningitis suffer neurologic complications (55). Administration
of dexamethasone, a steroid medication as an adjunct is included
in current standard therapy, with minimal side effects reported
clinically. (56).However, the data for seizure burdens, AEDs given,
and evidence of injury are not readily available to allow evaluation
of long-term neurologic outcomes for current management pro-
tocols. Additionally, dexamethasone has been shown to increase
neuronal injury following asphyxia in preterm fetal sheep, despite
later onset and shorter duration of acute seizures (57).

TABLE 1 | Pre-clinical studies of neonatal seizures and their long-term parameters.

Study Model Species Age of
insult

Chronic ages
evaluated

Acute
EEG seizure

Long-term
EEG seizure

Injury Long-term comorbidities

Stafstrom
(6)

Kainic acid Rat PND 5, 10,
20, and 30

3months N.E Evaluated Evaluated N.E
CA3 cell loss in
P20 and 30

Jensen
et al. (36)

Perinatal
hypoxia

Rat PND 5, 10,
and 60

1–2months N.E N.E N.E Water maze, open field, handling
tests, susceptibility to flurothyl

Lee et al.
(46)

Tetanus-
toxin

Rat PND 9–11 Up to 6months N.E N.E Evaluated Chronic EEG abnormality
No injury

Huang
et al. (47)

Flurothyl Rat PND 0–9 3months 50 seizures N.E N.E Increased seizure susceptibility
to flurothyl, impaired memory,
change in HC morphology

Santos
et al. (48)

Pilocarpine Rat PND 7–9 3months N.E N.E Evaluated Reduced exploratory skills
No injury CA1 hyperexcitability

Xiu-Yu
et al. (44)

Pilocarpine Rat PND 1, 4,
and 7

P49 N.E N.E Evaluated Altered neurogenesis
No injury

Kadam
et al. (49)

Perinatal HI Rat PND 7 6months N.E N.E Evaluated Mossy fiber sprouting
Cortical lesions Cortical dysgenesis

Kadam
et al. (49)

Perinatal HI Mouse PND12 P33–39 N.E N.E Evaluated Rotarod, T-maze alteration, open
field, cylinder testHemi: 34%

HC: 61%

Kadam
et al. (49)

Perinatal HI Rat PND 7 2–12months N.E Evaluated Evaluated N.E
Hemi: 30–78%

Rakhade
et al. (37)

Perinatal
hypoxia

Rat PND 10 3–6months N.E Evaluated Evaluated Significant prevalence of epilepsy
No injury Increased mossy fiber sprouting

in CA3 HC

Lugo et al.
(50)

Flurothyl Mouse PND7–11 P40 N.E N.E N.E Deficits in HC-dependent
memory and social behavior

Kang et al.
(38, 51)

Ischemia Mouse PND 7, 10,
and 12

N.E Evaluated N.E Evaluated N.E
P18

Bernard
et al. (52)

Kainic acid Rat PND 7 P6090 N.E N.E N.E Abnormal social interaction and
restricted interests

Peng et al.
(53)

Perinatal HI Mouse PND 7 11–12months N.E Evaluated Evaluated N.E
11–12month
Hemi: 44–69%

N.E, not evaluated; HC, hippocampus.
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CNS inflammation is known to exacerbate seizure activity
and the associated neuronal injury. The condition of prenatal
intrauterine infection has been studied in a model of bacte-
rial endotoxin lipopolysaccharide (LPS)-induced inflammation in
perinatal rodents. Perinatal LPS exposure was reported to increase
seizure susceptibility to chemoconvulsants in rats as adults (58).
Similarly, it was also shown to have pro-convulsive and epilepto-
genic action in a rapid kindling model of neonatal seizures (59).
In a long-term, in utero inflammation induced by a single-dose
injection of LPS in CD1 pregnant mice resulted in behavioral
abnormalities, chronic brain inflammation, neuronal loss, and
impaired sleep structures in rodents (60, 61).

Hemorrhage/Trauma
Intracranial hemorrhage occurs in 3.8/10,000 live births and rep-
resents ~15% of seizures reported in the neonatal period (62).
Infants with intracranial hemorrhage are at high risk for seizures,
regardless of the etiology of hemorrhage. Parenchymal injury was
independently predictive of acute seizures, and severity of acute
seizures predicted later seizures (63).

Currently, no pre-clinical neonatal models are available to
examine the association between intracranial hemorrhage and its
acute seizure burdens and the long-term outcomes.

Metabolic Disorders
Neonatal seizures and epileptic encephalopathy, although rare, are
associated with various inborn errors of metabolism (64) which
include hypoglycemia and hypocalcemia. However, there is a lack
of clinical or pre-clinical studies that provide insights about the
acute quantifiable parameters associated with or co-morbidities
caused by neonatal seizures due to metabolic causes.

Cortical Malformations
Developmental malformations of the brain are a cause of neonatal
seizures with later development of refractory epilepsy (65). The
majority of patients suffer developmental disabilities and epileptic
seizures following cortical malformations at early ages (66). No
clinical reports are available to evaluate acute parameters and
long-term outcomes of seizures related to cortical malformations,
possibly due to the variability of seizure locus and the seizure
onset. Yet, epilepsy surgery has been reported to improve long-
term seizure outcome in patients with focal cortical dysplasia (67).

The pathophysiology of cortical malformation has been char-
acterized in neonatal freeze-lesion model in which microgyrus
were surgically induced and hyperexcitability were observed
(68). Long-term comorbidities associated with this model were
reported in studies that evaluated long-term epileptogene-
sis (55, 69).

Neonatal Seizures – Genetic
Benign Familial Neonatal Seizures
Benign familial neonatal seizures constitute a small subset of
neonatal seizures, often resulting in relatively favorable outcomes
with spontaneous remission and normal psychomotor devel-
opment (70, 71). The prevalent mutations identified include
KCNQ2/3 and SCN2A, critical genes for ion channel subunits
(72). Recent study onKCNQ2mutation-positive families reported

variable seizure onset and burden, although a higher seizure
load at neonatal period suggested higher chance of developing
seizures later in life (73). KCNQ2 mutations were also associated
with epileptic encephalopathy, and KCNQ2 encephalopathy often
manifests refractory seizures, cortical abnormalities, and severe
neurodevelopmental delay (74–76).

Kcnq2 knock-out mice were lethal at perinatal stage, but con-
ditional deletions of KCNQ2 channels induced neuronal hyper-
excitability in cortical and CA1 pyramidal neurons with abnormal
electrocorticogram activity and early death (77). Kcnq2 deficiency
resulted in a significant downregulation of KCNQ3/5 protein
expression levels, highlighting the critical function of KCNQ2 in
maintaining normal neuronal excitability.

Tuberous Sclerosis Complex
Tuberous sclerosis complex (TSC), caused by mutations in TSC1
or TSC2, affects 1 in 6,000 live births (78). During early infancy,
the majority of TSC patients manifested seizures that were refrac-
tory and recurring after remission (79). Brain MRIs of TSC
patients have revealed focal cortical dysplasia (80), which often
suggested worse neurodevelopmental outcomes such as epilepsy,
cognitive impairment, and autism spectrum disorders (81, 82).
TSC patients develop autism phenotypes, including cognitive
deficits and anxiety (83). Longitudinal studies documented that
the earlier and the more severe seizures predicted worse intel-
lectual development (84, 85), this may be associated with long-
term abnormal white matter development (86). Additionally, TSC
tubers have been classified as sub-types based on their MRI prop-
erties. Type C cortical tubers are more likely to be associated
with infantile spasms and epilepsy and associated with a worse
phenotype (87). Therefore, both EEG and MRI may be good
predictors for long-term prognosis for TSC.

Pre-clinical studies using conditional knock-out models of
TSC1 or TSC2 have reported hyperactivation of mTORC1 sig-
naling along with developmental abnormalities and lower seizure
threshold (88, 89). However, very few of the rodent models elicit
spontaneous seizures and, therefore, their impact on outcomes
remains unknown.

Long-Term Co-Morbidities:
Seizure Severity, and Injury
The long-term neurodevelopmental sequelae of neonatal seizures
are prevalent (2). Nevertheless, very few clinical studies have
evaluated the long-term outcomes of neonatal seizures by acute
seizure burden and etiology (15). The severity of etiology, seizure
burden, and brain injury are known to significantly affect the
chronic outcomes, but distinguishing and understanding the role
of each individual parameter on the long-term outcomes without
standardized protocols across study centers are not feasible.

The underlying etiology has been determined to be one of
the main prognostic factors for long-term sequelae in survivors
of neonatal seizures (5, 90, 91). HIE, hemorrhage, CNS infec-
tion, and cerebral malformations are known to be associated
with adverse outcomes compared to other etiologies of neona-
tal seizures (90) (Figure 1). Grades of neonatal encephalopathy
assessed by encephalopathy scores or Sarnat staging are often
used to predict neurodevelopmental outcome (92). The effect of
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hypothermia on improved AED efficacy was shown to depend on
the severity of HIE, effective only in neonates with moderate, but
not in severe HIE. (93). However, the standardized methodology
for identifying the severity of HIE is not uniform. Additionally,
severe HIE tends to associate with higher seizure burdens, as is the
case in the study by Srinivasakumar et al. Therefore, it is difficult to
conclude that etiologywas the solemain factor and seizure burden
did not exacerbate the encephalopathy.

Neonatal seizures are a significant risk factor for long-term
sequelae, especially in the setting of HIE (17). The recurrent
seizures themselves appear to cause additional neurodevelopmen-
tal consequences beyond that due to the underlying etiology (94).
Prolonged seizures were shown to worsen brain damage in HIE
brain (95, 96); indicating seizures themselves may have a harmful
effect. HIE associated with status epilepticus frequently results in
adverse neurodevelopmental outcomes (97, 98). The severity of
clinical seizures comprehensively measured by seizure frequency,
onset, EEG abnormalities, and number of AEDs used, was inde-
pendently associated with the brain injury in HIE-neonates (95,
99). The temporal profile of electrographic seizure burdens in
neonatal HIE has also been evaluated (18). Differential outcomes
associated with the differential timing of onset of seizures, how-
ever, are not clear from these studies. Hence, increasing evidence
suggests that neonatal seizures need to be controlled, to lessen the
long-term co-morbidities above and beyond those associated with
the underlying etiology alone (100, 101). Additionally, seizures in
a developing brain can beget seizures (102, 103), and, therefore,
it is difficult to delineate the role of the underlying etiology vs.
prolonged repetitive seizures under these conditions.

Neonatal seizures, especially those that are PB resistant, signif-
icantly correlate to moderate–severe brain injury rather than mild
or no injury (104). This study found that, the efficacy of a single
dose of 20mg/kg PB significantly differed by the severity of injury.
Seizures were readily controlled in neonates with mild or no
injury, whereas only 30%of neonates withmoderate–severe injury
responded to PB. Similarly, the severity of brain injury dictated
the seizure burden recorded by video-EEG (93). The presence
of brain injury and status epilepticus were highly predictive of
the development of epilepsy later on in life (105). Neonatal MRI
has demonstrated its possible clinical use for early identification
of preterm babies at risk for later cognitive impairment (106).
Similar protocols scanning neonates with seizures will help assess
long-term outcomes more reliably.

The risk factors that can be used as parameters for predicting
chronic outcomes of neonatal seizures remain unclear. A large
cohort study at a tertiary center by Nunes et al. reported that
the development of postnatal epilepsy and global developmental
delay are common following neonatal seizures (107). For both
co-morbidities, low birth weight, abnormal postnatal EEG and
neuroimagingwere also significant risk factors. Follow-upMRIs at
1 and 2 years of age with no evidence of lesion has been reported
(108) to indicate better prognostication compared to those with
detectable lesions. In a similar study, evaluating risk factors for the
long-term sequelae following neonatal seizures, low Apgar score
at 5min, cesarean section, time of seizure onset, seizure type, and
the abnormal background EEG were independently predictive of
worse long-term outcome following neonatal seizures (90, 109).

In line with this observation, lack of EEG recordings for seizure
burden quantitation seems like a critical limitation for the inter-
pretations made by studies where EEG seizure burden was not
known (15). The identification and quantification of neonatal
seizures are heavily dependent on quantitative EEG (15, 110),
which remains the gold standard for determining seizure burdens.
Additionally, other parameters such as initial injury severity, acute
AED efficacy, and follow-up imaging can help provide important
insights to help assess role of seizures in long-term outcomes.
The severity of etiology, seizure burden, and brain injury can all
affect the long-term outcomes of neonatal seizures. The grading
of etiology at acute stages reflects the degree of brain injury
and seizures are a significant risk factor for later brain injury as
assessed by MRI (104, 111).

Using Pre-Clinical Models to Determine
Long-Term Co-Morbidities Following
Neonatal Seizures
In a hypoxia model of neonatal seizures, an increased seizure
susceptibility was detected at 2months post-hypoxia, but no neu-
robehavioral consequences or neuronal cell death (112) (Table 1).
In another study using combined HI, the long-term effects of
seizures weremonitored with radio-telemetry for up to 12months
after seizure induction in P7 rats (49). This study reported that
perinatal HI resulted in brain injury that ranged from 30 to 78%
and temporally progressive epilepsy. However, the injury severity
did not correlate to the severity of seizure rates of the chronic post-
stroke epilepsy. But more importantly, the study showed that if the
perinatal HI insult did not result in an infarct injury, no epilepsy
was detected in such rats even with 1 year of continuous moni-
toring. One similar study using neonatal HI model has recently
shown that brain injury can develop at later stages, 11months post
HI insult (53). Motor seizures were identified only in animals with
cystic infarct, but none in the animals without infarct.

In pre-clinical models using chemoconvulsants (flurothyl and
kainic acid), seizures in P7–11 rodents led to impaired social
interaction and learning tested at P60 (50, 52), supporting the
notion that the early life seizures may be associated with autism
spectrum disorder and intellectual disability (113). By contrast,
mTOR pathway was shown to be involved in the development of
autistic-like behavior and chronic epilepsy in a model of neonatal
hypoxia induced at P10 (114).

CONCLUSION

Lack of evidence-based or standardized clinical protocols for
neonatal seizure management, poor efficacy of currently used
AEDs, and dearth of clinical studies looking at long-term comor-
bidities, specifically by neonatal seizure severity and etiology,
remain. Pre-clinical models have become the focus of research for
investigating effects of neonatal seizures and novel therapeutics to
subdue them efficaciously (51, 115, 116). The need for new pre-
clinical models that are translationally viable is a critical need in
the field (117). Since neonatal seizures are predominantly sub-
clinical, EEG recording of electrographic seizures is crucial for
estimating the true seizure burdens. Acute EEG seizure burdens
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are a good indicator of the severity of HIE. Additionally, eval-
uation of amplitude EEG (aEEG), with its potential benefit of
easier application and interpretation, may enhance clinical man-
agement of neonatal seizures and prognosis of the outcomes
(118). aEEG, a bedside neurophysiology tool that uses a limited
number of channels to record raw EEG signal, is easy to record
and interpret, without input from a neurologist. However, the
limited sensitivity for seizure detection by aEEG makes con-
ventional EEG the most reliable and globally used diagnostic
and quantitative measure for neonatal seizures. Follow-up MRIs
are a reliable indicator of the associated long-term brain injury.
Diverse underlying etiologies of neonatal seizures may result in
different types and severities of seizures, and, therefore, various
long-term outcomes. Certain non-HIE related seizures may not
result in severe long-term co-morbidities and, hence, etiology
plays a critical role. However, lack of long-term data following
rigorous acute standardized monitoring and treatment protocols
hinders our ability to comprehensively understand these differ-
ences. Better pre-clinical modeling of neonatal pathologies that
lead to neonatal seizures is already a benchmark set by the NIH
(117, 119). As related to this review, the important guidelines

highlighted for future pre-clinical studies are (1) whether the
model recapitulates clinical comorbidities associated with neona-
tal seizures and (2) if available, whether certain treatments
can prevent or reverse such consequences. The development
of treatments to prevent long-term co-morbidities in patients
at risk from a neonatal brain insult is a major unmet clinical
need (100).
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