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Abstract

Summary: Computational methods to predict protein–protein interaction (PPI) typically segregate into sequence-
based ‘bottom-up’ methods that infer properties from the characteristics of the individual protein sequences, or global
‘top-down’ methods that infer properties from the pattern of already known PPIs in the species of interest. However, a
way to incorporate top-down insights into sequence-based bottom-up PPI prediction methods has been elusive. We
thus introduce Topsy-Turvy, a method that newly synthesizes both views in a sequence-based, multi-scale, deep-
learning model for PPI prediction. While Topsy-Turvy makes predictions using only sequence data, during the training
phase it takes a transfer-learning approach by incorporating patterns from both global and molecular-level views of
protein interaction. In a cross-species context, we show it achieves state-of-the-art performance, offering the ability to
perform genome-scale, interpretable PPI prediction for non-model organisms with no existing experimental PPI data.
In species with available experimental PPI data, we further present a Topsy-Turvy hybrid (TT-Hybrid) model which
integrates Topsy-Turvy with a purely network-based model for link prediction that provides information about species-
specific network rewiring. TT-Hybrid makes accurate predictions for both well- and sparsely-characterized proteins,
outperforming both its constituent components as well as other state-of-the-art PPI prediction methods. Furthermore,
running Topsy-Turvy and TT-Hybrid screens is feasible for whole genomes, and thus these methods scale to settings
where other methods (e.g. AlphaFold-Multimer) might be infeasible. The generalizability, accuracy and genome-level
scalability of Topsy-Turvy and TT-Hybrid unlocks a more comprehensive map of protein interaction and organization
in both model and non-model organisms.

Availability and implementation: https://topsyturvy.csail.mit.edu.

Contact: bab@mit.edu or cowen@cs.tufts.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

We focus on the problem of predicting PPIs from sequence data
without the computational expense of multiple sequence alignments,
thus enabling genome-scale predictions. Classically, the physical
protein–protein interaction (PPI) prediction problem has been
studied in two settings: one, where we only have access to each pro-
tein’s amino acid sequence and must determine from the sequence
data alone if the two proteins bind (e.g. Chen et al., 2019;
Hashemifar et al., 2018; Sledzieski et al., 2021; Zhang et al., 2012).
The other infers new interactions from the global topological prop-
erties of known PPI connections using either a simple rule such as
‘proteins with many common interaction partners are likely to also
interact’, or more sophisticated diffusion-based network embed-
dings (e.g. Coşkun and Koyutürk, 2021; Cowen et al., 2017;
Devkota et al., 2020; Hamilton et al., 2018; Huang et al., 2020;
Kovács et al., 2019; Yuen and Jansson, 2020).

Our previous work introduced D-SCRIPT (Sledzieski et al.,
2021), a structure-aware deep-learning model for predicting protein
interactions. D-SCRIPT takes a bottom-up view, learning about pro-
tein interactions pair-by-pair through the lens of (inferred) protein
structure and, by leveraging a natural language based protein se-
quence representation, was shown to achieve state-of-the-art cross-
species generalizability. While we originally trained D-SCRIPT on
pairwise human PPI data, we pursue here the intuition that the
wealth of network-level global information available could poten-
tially improve predictive performance if integrated during the train-
ing phase. Unfortunately, we found scant guidance in the literature
for how to make use of both types of information simultaneously:
existing PPI prediction methods (such as those listed above) either
take exclusively a top-down or bottom-up approach, ignoring the
other approach entirely.

Here, we propose a new approach, Topsy-Turvy, that integrates
graph-theoretic (top-down) and sequence-based (bottom-up)
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approaches to PPI prediction in the training phase of our sequence-
based predictor. Topsy-Turvy introduces a multi-objective training
framework that takes a pair of protein sequences as input, with the
supervision provided by both experimentally determined PPIs (in the
same manner as D-SCRIPT), as well as with global topological
measures of protein pair compatibility. Importantly, it only requires
protein sequences as inputs when making predictions—network
information is used only during training. Since the trained Topsy-
Turvy model makes predictions using just sequence data, it is par-
ticularly valuable in non-model organisms where almost no PPI data
is available (Sledzieski et al., 2021). We also investigate whether
AlphaFold-Multimer (Evans et al., 2021), a very recent method for
protein-complex structure prediction, can instead be adapted to
solve our PPI prediction task; however, we found it to be 100 000
times slower than Topsy-Turvy. Due to its computational efficiency,
Topsy-Turvy is applicable in genome-wide prediction settings where
AlphaFold-Multimer would be infeasible.

While Topsy-Turvy requires no pre-existing experimental data
in the species of interest, for cases where some such data is available
(e.g. in worm or fly) we devise a hybrid model, TT-Hybrid, that is
able to take advantage of species-specific network data. TT-Hybrid
embodies a principled approach to combining the Topsy-Turvy se-
quence scores with GLIDE (Devkota et al., 2020) scores to make
PPI predictions; we chose GLIDE after benchmarking it against the
widely used node2vec (Grover and Leskovec, 2016) (Section 3.1).
We show that TT-Hybrid performs better than its competitors, or
just Topsy-Turvy or GLIDE alone.

This work has several key conceptual advances—(i) whereas the
D-SCRIPT algorithm showed that informative features generated by
a protein language model enable transfer learning of the structural
basis of interaction, we show that we can likewise transfer global
patterns of PPI organization by integrating a topological compatibil-
ity score into the loss function. (ii) We approach the synthesis of
bottom-up and top-down approaches as a multi-objective training
problem that balances between structural and topological considera-
tions when predicting PPIs. Except for the recent work of Yang et al.
(2020), such integrative approaches in prior work have been rare.
(iii) We provide a framework for accurately predicting PPIs in a var-
iety of settings—both cross-species, where no training data is avail-
able in the target species, as well as in species that have limited
experimentally determined PPIs.

In a cross-species setting, Topsy-Turvy achieves state-of-the-art
results, substantially improving upon the cross-species generaliz-
ability of PIPR (Chen et al., 2019), a deep learning method by
Richoux et al. (2019) and D-SCRIPT. We investigate Topsy-
Turvy’s improved performance, finding that it performs better not
only on interactions involving hub nodes in the target species but
even more so on low-degree nodes; this suggests that the measured
outperformance is not simply due to ascertainment bias (Carter
et al., 2013) (Sections 3.3 and 3.4). We also investigated Topsy-
Turvy’s usefulness in settings where sufficient PPI data exists so
that a putative interaction between two proteins could also be pre-
dicted using global methods. We show that TT-Hybrid’s principled
synthesis of the scores from the network-based GLIDE method
(Devkota et al., 2020) and Topsy-Turvy yields state-of-the-art per-
formance in this setting as well.

2 Materials and methods

2.1 Overview of Topsy-Turvy
Topsy-Turvy provides a general paradigm to integrate a bottom-
up sequence-based and top-down global method: for these two
components in Topsy-Turvy we choose D-SCRIPT for the
sequence-based prediction, and GLIDE for the network-base pre-
diction. We next briefly review D-SCRIPT and GLIDE. In Topsy-
Turvy, we adapt the D-SCRIPT model to synthesize the two by
adding to it a network-dependent loss term inferred from the
GLIDE model (Fig. 1).

2.2 Background: sequence-based prediction with

D-SCRIPT
To make bottom-up, structure-aware predictions of PPIs, we use
D-SCRIPT, a state of the art method for sequence-based PPI predic-
tion across species. Briefly, D-SCRIPT operates in two stages. First,
we generate a feature-rich representation of each protein using a
protein language model (PLM) (Bepler and Berger, 2019, 2021);
next, these features are combined using a convolutional neural net-
work to predict interaction. The Bepler & Berger PLM was chosen
to extract structurally relevant features. Leveraging it, the
D-SCRIPT architecture mimics the structural mechanism of protein
interaction and includes an intermediate representation that encodes
the intra-protein contact map. During inference, these predicted
contact maps were shown to substantially recapitulate ground-truth
binding mechanisms despite no structure-based supervision or
inputs. To achieve this, the training procedure for D-SCRIPT mini-
mizes a hybrid loss that contains terms measuring both the binary
cross-entropy of predictions ðLBCEÞ and the overall magnitude of the
contact map ðLMAGÞ which enables sparse and realistic contact map
prediction. The relative weight of these loss terms are balanced by a
hyperparameter k. We emphasize that D-SCRIPT requires only the
amino acid sequence of a protein pair to make predictions.

2.3 Background: network-based prediction with GLIDE
To make top-down, network-based predictions of PPIs in a species,
we use GLIDE (Devkota et al., 2020), a state-of-the-art method that
combines local (neighborhood-based) and global (spectral) graph-
theoretic techniques for quantifying the likelihood of an interaction
between every protein-pair in the network. As part of our initial
explorations, we also evaluated node2vec (Grover and Leskovec,
2016), another spectral approach for link prediction. However, we
found GLIDE to outperform node2vec substantially on the PPI link
prediction task (Section 3.1) and hence chose it as the link prediction
technique in this article. GLIDE combines a simple local score that
captures shared-neighbor relationships in the dense core with a
diffusion-based embedding that encapsulates the network structure
in the periphery. While local metrics accurately capture the likeli-
hood of links between proteins in the same local neighborhood, their
performance drops significantly as the distance between proteins
increases. The opposite is true for global metrics.

GLIDE incorporates both local and global metrics into a single
score in such a way that each metric is leveraged in the region of the
network where it is most accurate. We use Common Weighted
Normalized (CWN) as our local metric, and the inverse of the
Diffusion State Distance (UDSEDc) as our global metric while com-
puting the GLIDE score. For a more detailed description of CWN
and UDSEDc metrics, see the Supplementary Appendix S1.1.

Following Devkota et al. (2020), we compute the aggregate
GLIDE score between each pair of nodes as:

GLIDEðp; qÞ ¼ exp
a � uðp; qÞ
uðp;qÞ þ b

� �
CWNðp;qÞ þ uðp; qÞ (1)

where (p, q) is a candidate protein pair and
uðp; qÞ ¼ 1=UDSEDcðp; qÞ. We chose the default values of a and b
as suggested by Devkota et al. (2020) (a ¼ 0:1;b ¼ 1000). These
choices make the local embedding dominant, whenever available,
with the global embedding being used to break ties and order nodes
with the same local score. For the CWN local score, node-pairs with
no common neighbors will have CWNðp;qÞ ¼ 0 and only the global
u term will be used.

2.4 Network-dependent loss term
Topsy-Turvy retains the protein language model feature generation
and convolutional neural net architecture of D-SCRIPT, with
changes made to the training approach and loss function. To synthe-
size this model with link-based prediction, we introduce the add-
itional task of predicting GLIDE scores between proteins,
formulating it as an extra loss term in the objective. The entire
model is then trained end-to-end.
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In the original D-SCRIPT model, the loss function was a
weighted sum, L ¼ kLBCE þ ð1� kÞLMAG, that combined the binary
cross-entropy (BCE; Sledzieski et al., 2021) loss with a regulariza-
tion penalty related to the contact map’s magnitude. To incorporate
a network term, we add a sub-objective to the classification
component:

L ¼ kðLBCE þ gpLGLIDEÞ þ ð1� kÞLMAG (2)

where LGLIDE represents the loss when predicting GLIDE estimates
and 0 � gp � 1 is a hyperparameter indicating its relative import-
ance (at gp ¼ 0, the function reduces to the original D-SCRIPT
loss). To compute LGLIDE, we first generate GLIDE scores for
every negative training example by computing the component
CWN and UDSEDc scores on the PPI network defined by the posi-
tive examples in the training set. For a protein pair (p, q), the loss
LGLIDE is defined as

LGLIDEðp;q; gtÞ ¼ BCEð yðp; qÞ; 1GLIDEðp;qÞ�gt
Þ (3)

where gt > 0 is a hyperparameter, y(p, q) is Topsy-Turvy’s predicted
score for the protein pair (p, q). 1 is the indicator function corre-
sponding to the predicate GLIDEðp; qÞ � gt. This formulation cor-
responds to binarizing GLIDE scores at the score threshold gt and
then applying the standard BCE loss. For convenience, we define gt

in terms of a percentile cutoff on the distribution of GLIDE(p, q)
scores (i.e. 0 < gt < 100), rather than directly as a numeric
threshold.

In formulating LGLIDE, we chose to binarize GLIDE scores and
compute a BCE loss, rather than keeping continuous-valued GLIDE
scores and using a different functional form for the loss. Doing so
allowed us to mimic the form of the existing BCE-based loss, letting
us calibrate the relative weights of LBCE and LGLIDE simply by gp.
Using GLIDE’s continuous scores would have made this calibration
difficult, since the un-normalized GLIDE scores are unevely distrib-
uted (for the human PPI training network: minimum¼0,
median¼0.31; 75th-percentile¼0.40; maximum¼2.71) and do
not follow a convenient closed form.

The addition of the GLIDE loss term to the model training
accounts for the observation that the original D-SCRIPT loss meas-
ures only pairwise interaction, and is unaware of global network
structure. Since the GLIDE score of a protein pair takes into account
local and global network properties, the GLIDE component of the
loss should incorporate network-wide information into the predic-
tions. Specifically, since D-SCRIPT prioritizes precision and is more
likely to miss true interacting pairs than GLIDE, the absence of

strong structural evidence of interaction could be supplemented by
strong network evidence.

2.5 TT-Hybrid
During inference, Topsy-Turvy requires only protein sequences as
input. When making predictions in a species where some PPI data is
also available, predictions from pre-trained Topsy-Turvy (trained on
data from another species) can be combined with GLIDE predictions
informed by the target species’ PPI network. We note that these
GLIDE scores are distinct from those corresponding to the training
species; the latter were used only during training. To take advantage
of the PPI network in the target species when available, we designed
TT-Hybrid that can be applied on query protein-pairs where both
GLIDE and Topsy-Turvy scores are available. We note that this
requires both proteins of the queried pair to be present in the target
species’ PPI network; otherwise, only Topsy-Turvy can be used. TT-
Hybrid computes a weighted sum of Topsy-Turvy and GLIDE pre-
dictions for a query protein-pair, with the score for a protein pair
(p, q) being:

TT�Hybridðp;qÞ ¼ 1 �GLIDEðp;qÞ þw � Topsy� Turvyðp; qÞ
(4)

For simplicity, we have set the weight of GLIDE scores to 1,
since only the relative weighting of the two scores matters. In this
article, we trained Topsy-Turvy on human PPI data and have eval-
uated it on other species. During the training phase, we held out
some human PPI data for validation. We calibrated w on this held-
out human data using logistic regression.

We started by selecting protein pairs corresponding to the edges
of the held-out human PPI subnetwork (see Section 3.2 for dataset
details). These pairs were labeled positive; negatively labeled pairs
corresponded to random pairs of proteins from the subnetwork. The
ratio of negative to positive examples was set to 10:1 to account for
the inherent class imbalance in PPI data (see Section 3.2 for discus-
sion). To avoid bias arising from data leakage, we also required that
none of the examples occur in the original training data for Topsy-
Turvy. We computed GLIDE and Topsy-Turvy scores for each pro-
tein pair, these methods having previously been trained on the rest
of human PPI data. We then fitted a logistic regression model that
sought to predict the label of a protein pair using its GLIDE and
Topsy-Turvy score. The TT-Hybrid calibration weight w is chosen
as the ratio of logistic regression coefficients, cTopsy�Turvy=cGLIDE.
Our computation yielded w¼0.3268, and we recommend the use of
this value when applying TT-Hybrid in other species, as is done in

Fig. 1. Topsy-Turvy synthesizes sequence-to-structure-based prediction using D-SCRIPT with network-based prediction using GLIDE. (A) D-SCRIPT uses a protein language

model to generate representative embeddings of protein sequences, which are combined with a convolutional neural network to predict protein interaction. It is supervised

using binary interaction labels from the training network and regularized by a measure of contact map sparsity. (B) GLIDE scores all possible edges using a weighted combin-

ation of global and local network scores which are learned from the edges already in the training network. (C) Topsy-Turvy is supervised with both the binary interaction

labels of the true (training) network and with the GLIDE predicted scores, thus integrating bottom-up and top-down approaches for PPI prediction into the learned Topsy-

Turvy model
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the results presented here. If enough PPI data is available in the tar-
get species that a portion of it can be set aside, the held-out portion
can be used to calibrate w specifically for the target species. To

avoid the risk of data leakage, however, the same set of PPIs should
not be used to both calibrate w and compute the GLIDE score inputs

to TT-Hybrid.

2.6 Hyperparameter selection and model training
The hyperparameters gp (the relative weight of GLIDE versus bin-

ary cross-entropy loss) and gt (the binarization threshold for
GLIDE scores) play a crucial role in Topsy-Turvy and we sought to
estimate them from cross-validation runs on the human PPI data-

set. We note that all Topsy-Turvy and TT-Hybrid results presented
in this article are from models trained on human data but eval-

uated on out-of-sample, non-human data. To perform the hyper-
parameter search, we did cross-validation runs on the entire
human PPI network, since GLIDE scores computed on smaller sub-

networks might not be representative of the full network’s charac-
teristics. Due to the computational expense of such runs, however,

we modified the standard grid-search approach. Initial, small scale
explorations suggested gt ¼ 90 to be a promising choice. We first
performed a grid search on gp, fixing gt to 90. This yielded gp ¼
0:2 as the suggested choice (Table 1a) and we then performed a
grid search for gt, with gp fixed to this choice. The second search
indicated gt ¼ 92:5 to be the best choice (Table 1b), and we ac-

cordingly chose gp ¼ 0:2; gt ¼ 92:5 as the hyperparameter settings
for Topsy-Turvy training.

2.6.1 Additional implementation details

We implemented Topsy-Turvy in PyTorch 1.2.0 and trained with a
NVIDIA Tesla V100 with 32 GB of memory. Embeddings from the

pre-trained Bepler and Berger model were produced by concatenat-
ing the final values of the output and all hidden layers. Apart from
these pre-trained embeddings, Topsy-Turvy was trained end-to-end

and did not use pre-trained D-SCRIPT model weights. However, we
used the same hyperparameters as in Sledzieski et al. (2021) for the

relevant components of our model’s architecture: a projection di-
mension of d¼100, a hidden dimension of h¼50, a convolutional
filter with width 2wþ 1 ¼ 7, and a local max-pooling width of

l¼9. Furthermore, we used k ¼ 0:05 for calculating the training
loss, choosing it based on early, small-scale explorations. Weights

were initialized using PyTorch defaults. Model training parameters
were set within ranges commonly used in deep learning literature:
we used a batch size of 25, the Adam optimizer with a learning rate

of 0.001, and trained all models for 10 epochs.

3 Results

We start by presenting a comparative assessment of GLIDE and
node2vec for PPI link prediction; the results of this analysis moti-
vated our choice of GLIDE as the network-theoretic component of
the Topsy-Turvy model. We next evaluate the cross-species general-
izability of Topsy-Turvy, showing how incorporating network data
during training results in superior performance in other species,
using only sequence data for prediction. We note that in the typical
cross-species setting, purely network-based methods like GLIDE are
not applicable since they can only make predictions for pairs where
both proteins exist in the training PPI network and hence cannot be
applied to out-of-sample proteins. We therefore evaluated Topsy-
Turvy against methods that require only sequence-based inputs (like
D-SCRIPT), assessing if co-supervising Topsy-Turvy with topologic-
al information allows it to learn aspects of protein interaction that
carry across species. As we show, it does, and in subsequent analyses
we investigate various aspects of the comparison more deeply, also
addressing the issue of ascertainment bias in the evaluation network.
Lastly, we study how to best apply Topsy-Turvy in instances where
PPI data is available and GLIDE would be applicable directly. We
find that while GLIDE is broadly informative about the species-
specific network rewiring, better performance can be achieved by
TT-Hybrid, a combination of Topsy-Turvy and GLIDE.

3.1 Comparison of GLIDE and node2vec
In our initial explorations, we sought to identify the most appropri-
ate top-down PPI link prediction technique. Toward this, we com-
pared GLIDE to node2vec (Grover and Leskovec, 2016). The
node2vec algorithm, also a spectral approach, uses a biased random
walk procedure to construct low-dimensional node embeddings.
Following the original study, we trained a logistic regression classi-
fier on the Hadamard product of the node embeddings to predict the
existence of a link given two candidate proteins. We compared the
two methods on the Drosophila BioGRID network consisting of
3093 nodes and 25 427 edges. A certain fraction 1� p of the edges
were removed from the network (while protecting a random span-
ning tree to ensure connectivity), and the remaining subnetwork was
used to train the node2vec and the GLIDE models. The removed
edges were then used as positive test examples for evaluation. For
negative examples, we randomly sampled 254 270 node-pairs (or 10
times the positive edge count) that were not present in the original
network. The negative examples, like the positive edges, were also
separated into train and test sets using the same parameter p. The di-
mension of the node2vec embedding was set to 300, i.e. approxi-
mately 10% of the node count [following Cho et al. (2016); this is
also higher than the minimum value of 100, as prescribed by Grover
et al.]. We evaluated both node2vec and GLIDE for different values
of p (which correspond to varying levels of network sparsity), find-
ing that GLIDE outperformed node2vec consistently (Table 2).

3.2 Integrating network-level information improves

predictive performance
Datasets: We trained Topsy-Turvy on human PPI data and eval-
uated it on Mus musculus, Drosophila melanogaster,
Caenorhabditis elegans, Saccharomyces cerevisiae and Escherichia
coli. The dataset selection and pre-processing follows Sledzieski

Table 1. Hyperparameter search: cross-validation AUPR (area

under precision–recall curve) scores on full human PPI network for

(a) grid search for gp, with gt fixed to 90 (estimated from small-

scale explorations), (b) grid search for gt, with gp fixed to 0.2 [i.e.

the optimal value from (a)]

(a)

gp (with gt ¼ 90) AUPR

0.1 0.739

0.2 0.802

0.4 0.759

0.8 0.760

(b)

gt (with gp ¼ 0.2) AUPR

90 0.697

92.5 0.824

95 0.691

97.5 0.690

Note: The metrics reported in the tables are the validation AUPR scores

maximized over three epochs of training.

Table 2. GLIDE and node2vec comparison: AUPR scores for PPI

prediction on the Drosophila BioGRID network

p GLIDE node2vec

0.8 0.737 0.681

0.6 0.818 0.721

0.4 0.839 0.664

0.2 0.805 0.574

Note: Higher values of p correspond to a higher proportion of edges pre-

served in the training network. Bold entries represent best performance.
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et al. (2021): we sourced positive examples from the STRING data-
base (v11) (Szklarczyk et al., 2021), selecting only physical binding
interactions associated with a positive experimental-evidence score.
Our human PPI set consists of 47 932 positive and 479 320 negative
protein interactions, of which we set apart 80% (38 345) for train-
ing and 20% (9587) for validation (see Supplementary Appendix
S1.2 for details). For each of 5 model organisms (Table 3) we
selected 5000 positive interactions and 50 000 negative interactions
using this procedure, with the exception of E.coli (2000/20 000)
where the available set of positive examples in STRING was limited.
Each model was trained three times, with different random seeds,
and we evaluated the average performance across these runs. We
emphasize that Topsy-Turvy is trained end-to-end and does not use
a pretrained D-SCRIPT sub-component. For benchmarking, a separ-
ate D-SCRIPT model was trained and evaluated identically.

In Table 3, we report the area under precision recall curve
(AUPR) and area under receiver operating curve (AUROC) for each
model in each species. As our dataset and evaluation approach is the
same as in Sledzieski et al. (2021), we also include results reported
there for two other state-of-the-art sequence-based PPI prediction
methods, PIPR (Chen et al., 2019) and DeepPPI (Richoux et al.,
2019). We note that for unbalanced data, AUPR is generally consid-
ered the more representative metric. We also report the false positive
rate (FPR) at 10% and 50% recall, which measures the likelihood
that a protein pair predicted to interact is incorrectly classified—an
important metric in the case where high-likelihood pairs are then
tested experimentally. We find that Topsy-Turvy achieves the high-
est AUPR and AUROC of all the methods we evaluated in each of
five species, and has the lowest FPR at both recall levels. We also ob-
serve that Topsy-Turvy retains the structural interpretability of D-
SCRIPT: for each queried protein pair, the model also outputs a pre-
dicted inter-protein contact map for the putative binding between
the two proteins.

Runtime and memory usage: Topsy-Turvy took approximately
79 h to train for 10 epochs on 421 792 training pairs, and fits within
a single 32GB GPU. Running time and GPU memory usage, like in
D-SCRIPT, scales quadratically, OðnmÞ, with protein lengths n, m,
since Topsy-Turvy models the full n�m contact map as an

intermediate step. The prediction of new candidate pairs with a
trained model is very fast, requiring on average 0.02 s/pair. Since
Topsy-Turvy generalizes well across species, it needs to be trained
only once on a large corpus of data and can be used to make predic-
tions in a variety of settings. The additional run time for TT-Hybrid
is minimal (approx. 15 minutes, most of it for GLIDE) since it just
computes a weighted sum of predictions from Topsy-Turvy and
GLIDE. The actual computation of TT-Hybrid scores, provided that
the Topsy-Turvy and GLIDE results are already available, is a linear
time operation (less than 1 minutes for the candidate set with 10 mil-
lion pairs) since it is simply a weighted sum of the two.

3.2.1 Ablation study: using network-level information for negative

edge selection

Notably, Topsy-Turvy achieves greater cross-species generalization
even though network information is used only during training. We
hypothesize this may be partially due to GLIDE-based interaction
scores mitigating the impact of incorrect labels in training data. To
create negative training examples, we followed the common practice
of randomly selecting protein pairs not experimentally reported as
interacting (Chen et al., 2019; Hashemifar et al., 2018; Sledzieski
et al., 2021). However, it might be that such a pair actually does
interact but has not yet been experimentally assayed. In such cases,
the GLIDE score for the pair is likely to be high, thus improving the
supervision and training of Topsy-Turvy. To further investigate our
hypothesis, we evaluated an alternative approach to incorporating
network topology in the model, by modifying the set of negative
examples in the training set to reflect network information. Prior
work in PPI prediction has argued that better selection of negative
samples in the training set could improve the model, with Zhang
et al. (2018) exploring a random-walk distance on the PPI graph to
distinguish between and low- and high-confidence negative exam-
ples. We explored the strategy of selecting only protein pairs with
low GLIDE scores as negative examples, but found the performance
to be poorer than the baseline. Drilling down, we found that this
was due to a reduction in diversity of negative examples available
for training, since using graph-theoretic measures to select negative

Table 3. Topsy-Turvy improves upon D-SCRIPT (Sledzieski et al., 2021), PIPR (Chen et al., 2019) and DeepPPI (Richoux et al., 2019) for cross-

species PPI prediction

Species Model AUPR AUROC FPR

0.1 Recall 0.5 Recall

M.musculus PIPR 0.526 0.839 0.002 0.057

DeepPPI 0.518 0.816 0.0002 0.059

D-SCRIPT 0.663 6 0.05 0.901 6 0.02 0.002 0.014

Topsy-Turvy 0.735 6 0.03 0.934 6 0.01 0.001 0.009

D.melanogaster PIPR 0.278 0.728 0.007 0.197

DeepPPI 0.231 0.659 0.012 0.274

D-SCRIPT 0.605 6 0.06 0.890 6 0.02 0.003 0.022

Topsy-Turvy 0.713 6 0.05 0.921 6 0.02 0.001 0.011

C.elegans PIPR 0.346 0.757 0.002 0.148

DeepPPI 0.252 0.671 0.007 0.252

D-SCRIPT 0.550 6 0.08 0.853 6 0.04 0.003 0.032

Topsy-Turvy 0.700 6 0.04 0.906 6 0.03 0.001 0.011

S.cerevisiae PIPR 0.230 0.718 0.017 0.213

DeepPPI 0.201 0.652 0.018 0.288

D-SCRIPT 0.399 6 0.09 0.790 6 0.06 0.005 0.089

Topsy-Turvy 0.534 6 0.01 0.850 6 0.02 0.002 0.038

E.coli PIPR 0.271 0.675 0.005 0.246

DeepPPI 0.271 0.688 0.004 0.243

D-SCRIPT 0.513 6 0.09 0.770 6 0.03 0.002 0.040

Topsy-Turvy 0.556 6 0.09 0.805 6 0.07 0.001 0.038

Note: All species were evaluated using models trained on a large corpus of human PPIs. For D-SCRIPT and Topsy-Turvy, we report the average and standard

deviation of results from three random initializations. For PIPR and DeepPPI, we report here the results from the study in Sledzieski et al. (2021) where the same

evaluation scheme and data was used. For all datasets, there is a 1:10 ratio of positive to negative pairs, which means a random baseline would have an AUPR of

0.091 and an AUROC of 0.5. Bold entries represent best performance.
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examples restricts us to nodes occurring in the training PPI network
(Supplementary Fig. SA.1 and Appendix S1.3). In contrast, our in-
corporation of GLIDE scores in the objective allows us to handle a
broader set of negative examples.

3.3 Cross-species improvement is not limited to hub

nodes
Noting that Topsy-Turvy makes use of global PPI organization in
the training phase but makes predictions solely using sequence data,
we sought to characterize the kind of topological knowledge being
learned by the trained model. Specifically, we investigated if the per-
formance improvement of Topsy-Turvy over D-SCRIPT was limited
to certain categories of proteins/nodes.

Since network-based methods work by learning network con-
nectivity patterns, and some network structure is conserved across
species, such methods tend to work well for proteins that already
have many known interactions. Thus, it could be possible that the
outperformance of Topsy-Turvy comes exclusively or primarily
from, say, hub nodes whose interactions may be better conserved
across species. To investigate this, we evaluated human-PPI trained
Topsy-Turvy and D-SCRIPT on physical interactions in
D.melanogaster, sourcing the latter from BioGRID (we found
BioGRID’s fly PPI annotations clearer than STRING’s). Limiting
ourselves to fly proteins that occur in the PPI network, we parti-
tioned the fly evaluation set into four sub-groups by degree: each pu-
tative edge (p, q) was grouped as perMpq ¼ maxðdðpÞ; dðqÞÞ, where
d(p) and d(q) are the degrees of p and q in the fly PPI network, re-
spectively. Thus, the sub-group corresponding to M� 21 consists
of putative interactions where at least one of the proteins is a hub-
like protein.

Even though baseline D-SCRIPT is not explicitly informed about
network structure, it too demonstrated better performance as M
increased. This may be due to the information encoded in the fre-
quency with which each protein appears in the positive examples D-
SCRIPT is trained on. Because of that, along with stronger conserva-
tion of PPIs involving hub nodes (Brown and Jurisica, 2007; Fox
et al., 2009), some network aspects can be implicitly learned by a
purely sequence-based approach like D-SCRIPT. This also illustrates
one of the core points of this article—the connection between
bottom-up and top-down views of protein interaction.

We also observed that Topsy-Turvy improved upon D-SCRIPT
in each sub-group, indicating that the outperformance is not only
coming from high-degree nodes. While Topsy-Turvy also achieves
its highest performance on theM� 21 sub-group, its improvement
over D-SCRIPT is not limited to the highest-degree hub nodes. In
fact, the relative AUPR improvement of Topsy-Turvy over D-
SCRIPT is 2.22-fold when M is in the 2–20 range, compared to a
1.31-fold improvement for hub nodes (M� 21) (Table 4). Topsy-
Turvy thus not only improves predictive performance for high-
degree nodes, but the GLIDE loss term additionally informs the
model about global structure, leading to improvement for more
sparsely connected nodes.

3.4 Topsy-Turvy’s improved performance is unlikely to

be driven by ascertainment bias
In the setting where bottom-up sequence methods are compared to
top-down network-based methods (or synthesis approaches like
Topsy-Turvy), issues of ascertainment bias (Carter et al., 2013) in
the available ground truth network data become particularly acute.
The issue is a simple one: existing PPI network data in all organisms
[with the possible exception of recently described HuRI (Luck et al.,
2020)] is biased toward pairs of proteins a biologist decided to ex-
perimentally test for interaction, and biologists are more likely to in-
clude proteins already known to be of interest, or nodes that are
already adjacent to other previously studied nodes in the network.
The result is that nearly all ground-truth existing networks will
over-estimate the performance of methods that incorporate network
information, and under-estimate the performance of methods that
utilize only sequence information, since missing edges are more like-
ly to be falsely scored as negatives for the sequence-based methods.
When comparing network methods against network methods, or se-
quence methods against sequence methods, the respective alternative
is likely to be similarly biased, making it less of a concern. However,
when comparing methods across both types of information, address-
ing the bias becomes more important.

Our results in Section 3.3 begin to address the issue of ascertain-
ment bias. Although the BioGRID D.melanogaster network is not
fully unbiased, if the improvement of Topsy-Turvy over D-SCRIPT
were coming only from this bias, we would expect to see dispropor-
tionate improvement in the dense core of the network, where inter-
actions are most likely to be experimentally tested. Instead, we see
improvement across the network, which suggests that Topsy-
Turvy’s cross-species performance gains come from successfully
learning global network organization properties rather than suffer-
ing from ascertainment bias. We discuss the issue of this bias and
how it might be addressed by future methods further in Discussion.

3.5 Comparison with AlphaFold-Multimer
We next investigated if recent advances in protein structure deter-
mination (Jumper et al., 2021) that have enabled extremely high-
quality protein complex structure prediction (in particular,
AlphaFold-Multimer), could be leveraged for PPI prediction. While
these methods were not designed to directly address if two proteins
interact—they only predict the putative complex structure assuming
an interaction—we investigated if AlphaFold-Multimer could
nonetheless be adapted for our PPI prediction setting. From
AlphaFold-Multimer results, we obtained their reported ipTM
(interface predicted template modeling) score, a value between 0
and 1, that was shown in the original study to be correlated with the
quality of the docked complex (DockQ score). For each candidate
protein pair, we compute its mean ipTM score over the five
AlphaFold-Multimer models. In our evaluations, we used this score
as a predictor of protein interaction and assessed AlphaFold-
Multimer on PPIs from the STRING D. melanogaster testing set
used in Section 3.2.

We find that AlphaFold-Multimer is several orders of magnitude
slower than Topsy-Turvy, requiring an average of 6 h per pair
(AlphaFold-reported time, min¼2.87 h, mean¼5.89 h,
max¼12.97 h) compared to 0.02 seconds per pair for Topsy-Turvy
(hardware described in Section 2.6.1). Of the total AlphaFold-
Multimer runtime, an average of 3.22 h were spent on feature gener-
ation (min¼1.62 h, max¼8.34 h) and 2.66 h were GPU time spent
on model computation (min¼1.16 h, max¼4.64 h). We note that
feature generation time cannot necessarily be amortized over input
pairs, since an important part of adapting AlphaFold to protein
complexes is the proper alignment of paired multiple sequence align-
ments (MSAs) for each candidate protein pair. Thus, AlphaFold-
Multimer is infeasible for genome-scale de novo PPI prediction for
organisms with limited experimental data.

We compared AlphaFold-Multimer PPI predictions with those of
Topsy-Turvy in a small-scale study, constrained by the computation-
al requirements of AlphaFold-Multimer. We selected 18 candidate
pairs that span the range of Topsy-Turvy scores as well as ground-

Table 4. Cross-species performance of D-SCRIPT and Topsy-Turvy,

subdivided by node degree in target species

Model Overall AUPR AUPR by maximum degree

2� 5 6� 10 11� 20 � 21

D-SCRIPT 0.356 0.030 0.067 0.118 0.475

Topsy-Turvy 0.538 0.073 0.168 0.237 0.622

Note: Both methods were trained on human PPI data and tested on fly

(BioGRID). The analysis is limited to protein pairs where both proteins occur

in the fly PPI graph. In addition to overall AUPR, we also group each protein

pair by the maximum of the degrees of its nodes in the fly PPI network. Both

methods improve as maximum degree increases, and Topsy-Turvy consistent-

ly outperforms D-SCRIPT across all subsets—especially so for putative inter-

actions between low-degree nodes. Bold entries represent best performance.
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truth labels: six protein-pairs each with high (� 0:8), medium
(0:25 � ŷ < 0:8) or low (� 0:25) Topsy-Turvy prediction scores,
with three truly interacting and three non-interacting pairs in each
subset. We note that distribution of Topsy-Turvy scores on these
pairs is not representative of their full-sample distribution; for ex-
ample, we expressly included examples where Topsy-Turvy was
very confident but wrong, even though such instances comprise a
small part of the broader distribution (89.8% of Topsy-Turvy scores
are < 0.05). We found general agreement between AlphaFold-
Multimer and Topsy-Turvy’s predictions (Pearson’s q ¼ 0:310),
though there were examples where each method correctly predicted
an interaction that the other missed. Full results are available in
Supplementary Appendix S1.7. Compared to Topsy-Turvy,
AlphaFold-Multimer’s scores seem calibrated for fewer false posi-
tives and more false negatives. In particular, AlphaFold-Multimer
only scored two pairs with probability � 0:8 both of which were
true positives and also had high Topsy-Turvy scores; all other pairs
were scored under 0.45. On three Topsy-Turvy false positives where
it was highly confident but incorrect, AlphaFold-Multimer ipTM
scores were low (mean¼0.3676). Conversely, AlphaFold-Multimer
had substantial false negatives, missing three true interactions pairs
that Topsy-Turvy correctly identified with medium or high prob-
ability. For pairs that Topsy-Turvy scored low, AlphaFold-Multimer
agreed with it, with low ipTM scores (mean¼0.365).

These results suggest that Topsy-Turvy and AlphaFold-Multimer
can each fill a valuable niche for predicting PPIs. Due to its low
FPR, AlphaFold can be used to verify shortlisted interactions and ac-
curately determine their complex structure. However, due to its run
time constraints, it is infeasible to use for genome-scale predictions,
a domain for which Topsy-Turvy would be more suitable.
Additionally, the ipTM score is more a measure of complex stability
than a predicted probability of interaction. Future work could seek
to adapt the AlphaFold-Multimer architecture to explicitly address
the PPI prediction task. For example, the calibration of interaction
scores could be improved using insights gained from complete cross-
docking approaches (Lopes et al., 2013). Recently, Dequeker et al.
(2022) have described physics-based energy, interface matching and
protein sociability as useful metrics for identifying the likely partners
from an all-versus-all docking study.

3.6 Integrative methods are applicable even in species

with some available PPI data
We have shown that human-trained Topsy-Turvy improves on
human-trained D-SCRIPT when predicting PPIs in an organism
using only sequence information (Sections 3.2–3.4). In non-model
organisms, there might not be any experimentally tested physical
interaction data—this is the situation for which D-SCRIPT was
designed, and for which we have thus far tested Topsy-Turvy.
However, we are also interested in applying Topsy-Turvy to predict
PPIs in the case where some sparse network does exist in the species
of interest. Specifically, we ask the following question: if some net-
work edges exist in the target species of interest, should one use a
purely network-based method, or a synthesis method like Topsy-
Turvy when predicting new PPIs? Sequence-based synthesis methods
are necessary to attach previously unseen proteins to an existing net-
work, but either method could be used to predict new interactions
between proteins already in the network. Here, we show that a hy-
brid of Topsy-Turvy and GLIDE (TT-Hybrid, Section 2.5) improves
upon either method alone in the case where some sparse network is
available.

We consider situations where both proteins in the pair of interest
occur in the PPI network, so that a network-only prediction can be
made. Here, we evaluate GLIDE, Topsy-Turvy and TT-Hybrid on
the D.melanogaster BioGRID network, which has been partitioned
to measure the performance on networks of varying sparsity charac-
terized by a parameter p 2 f0:8;0:6;0:4;0:2g. More specifically, p
describes the fraction of total edges in G used to construct a subset
network Gp ¼ ðV;EpÞ. Full details on the construction of Gp are in
Supplementary Appendix S1.4. Characteristics of the sparse

network datasets are described in Supplementary Appendix S1.5.
The sparsified network Gp is then used to compute GLIDE scores.

To construct the test set at different P-values, we (a) selected the
set of positive edges Sþp as all edges in G left out during the construc-
tion of Gp, i.e. Sþp ¼ EnEp, and (b) randomly sampled negative
examples from the set ðV � VÞnE to obtain S�p . The test set Sp ¼
Sþp [ S�p was used to evaluate the performance of D-SCRIPT and
Topsy-Turvy (trained on human), and GLIDE (trained on Gp)
(AUPRs in Supplementary Appendix S1.6). We also broke down the
analysis into subsets of the evaluation set, based on shortest-path
distance d in Gp connecting the two proteins. Our intuition here was
to check the relative performance of these methods on closely- ver-
sus distantly connected proteins. Detailed descriptions of the train-
ing network Gp and the test datasets Sp are provided in
Supplementary Tables SA.1 and SA.2.

Upon initial investigation, we found that while GLIDE
outperformed Topsy-Turvy overall, their relative performance on a
protein pair depended on the shortest-path distance between the
proteins (Supplementary Table SA.3). Since GLIDE performance is
primarily driven by hubs, to more clearly investigate relative
performance we then performed the same set of evaluations
after removing any edges incident upon hubs [i.e. (u, v) where
ðdegreeðuÞ � 21Þ _ ðdegreeðvÞ � 21Þ]. We then observed that
Topsy-Turvy was stronger on nearly every subset of data (Fig. 2).
However, GLIDE still performed better than Topsy-Turvy overall.

These results indicate that while GLIDE is able to separate PPIs
by their network distance (which strongly correlates with whether
or not there will be a reported interaction), once separated by net-
work distance, Topsy-Turvy is able to finely organize similarly dis-
tant proteins using the information gleaned from sequence and
structure. Thus, we introduced TT-Hybrid, which uses GLIDE and
Topsy-Turvy to partition PPIs both coarsely and finely. We show in
Table 5 that TT-Hybrid improves upon either component method
alone, achieving the highest overall AUPR on the fly network at all
levels of sparsity (with hub nodes included).

4 Discussion

We have presented Topsy-Turvy, a new method that integrates
top-down global view of PPI organization into a bottom-up se-
quence-based PPI prediction model. The neural network design of
Topsy-Turvy builds upon the architecture of D-SCRIPT and, like
the latter, includes a bottleneck layer designed to model the inter-
protein contact map, thus offering interpretability and insight into
the mechanism of interaction. We show that Topsy-Turvy is highly
accurate in a cross-species context, and applicable to species with
few or no known protein interactions. For cases where PPI data is
available in the target species, we present TT-Hybrid, that can lever-
age this additional information for more accurate predictions.

Topsy-Turvy thus improves upon the state-of-the-art in PPI pre-
diction broadly—both in species without available PPI data and in
those with PPI data. For the former, it is able to transfer knowledge
of network structure from other species, leading to more accurate de
novo predictions. For the latter, it improves prediction coverage as
well as accuracy. For instance, even in well-studied species like
human, mouse, and fly, there remain many proteins with no charac-
terized PPIs [24.9%, 44.9% and 19.8% of proteins in the three spe-
cies, respectively (Pray, 2008; Serres et al., 2001)]. Topsy-Turvy can
be used to attach these hitherto uncharacterized proteins to existing
PPI networks. Since GLIDE and other network methods are limited
to predicting links between proteins that both already exist in the
network, they cannot be used for putative interactions involving
such proteins. When both proteins do exist in the PPI network, the
hybrid approach TT-Hybrid that combines GLIDE with Topsy-
Turvy performs better than either approach alone, with the former
achieving a coarsely accurate network-theoretic organization and
latter fine-tuning it locally. Here, we hypothesize that GLIDE con-
fers species-specific network information unable to be transferred by
Topsy-Turvy due to network rewiring.

The TT-Hybrid results also give some hint as to what Topsy-
Turvy might be learning from including a network loss term in the
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training stage. As shown in Figure 2, the GLIDE network score helps
segregate proteins into buckets that give a macro range of potential
probabilities that an edge exists, while the bottom-up sequence ap-
proach does best at ranking the specific pairs within each bucket.
This is not the first time we have seen network-based information
assist in making sequence-level information more accurate; the
Isorank network alignment algorithm (Singh et al., 2007) also
receives a gain in performance in discovering orthologs by a global
top-down network similarity score that augments the bottom-up
pairwise sequence score.

In this regard, Topsy-Turvy presents an approach to an often-
faced challenge in systems biology: how to resolve the dichotomy
between a bottom-up and top-down view of the same biological
phenomenon? Considered at the molecular level, protein interaction
is a purely physicochemical process. However, these proteins pri-
marily function through their interactions. With proteins performing
most of the functions in the cell, evolution constrains the space of
possible protein folds, resulting in emergent properties at the net-
work level. The approach embodied by Topsy-Turvy and TT-
Hybrid could be more generally applied to situations where
network-theoretic and molecular views need to be integrated. To

make a social interaction analogy, D-SCRIPT and other sequence-
based bottom-up methods are learning features that make two peo-
ple likely to be compatible as friends, but not global organization of
the friend network that would indicate if those two people share
enough mutual friends to be likely to have had the opportunity to
meet at the same event.

While we took steps to rule out the effect of ascertainment bias,
this remains an important question in both the training and evalu-
ation of link prediction methods. In this work, we sourced PPIs from
the STRING database where data from a variety of assays has been
conglomerated. An unbiased, all-versus-all screen as exemplified by
the Human Reference Interactome (HuRI) database (Luck et al.,
2020) offers the promise of addressing ascertainment bias in the spe-
cific case of yeast two-hybrid (Y2H) screens. However, to test
Topsy-Turvy in our transfer-learning context, we would also need
similar unbiased Y2H screens in a different species.

By approaching integration of orthogonal information sources
as a multi-objective learning problem, Topsy-Turvy lays the
groundwork for incorporation of additional data modalities. For
instance, while the GLIDE score incorporates both global and
local scores, it would be possible to directly supervise Topsy-
Turvy with global and local loss terms, each with a respective
hyper-parameter to finely control their effects. Loss terms that
quantify protein functional similarity (Ghersi and Singh, 2014) or
interface similarity (Budowski-Tal et al., 2018; Gainza et al.,
2020) could be added to the framework to further inform
predictions. Topsy-Turvy demonstrates that a general, scalable
framework that allows us to transfer both low-level (sequence-to-
structure) and high-level (network topology) insights across
species can enable researchers to fill in the missing links in our
knowledge of biological function.
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Fig. 2. Comparing Topsy-Turvy and GLIDE in situations when both can be used. GLIDE was trained on a subset of the fly PPI network (e.g. training on 80% of PPIs when

p¼0.8); Topsy-Turvy was trained on human PPI data and had no access to fly data for training. Both methods were evaluated on held-out positives as well as a randomly

sampled set of negative examples, where pairs containing proteins with degree �21 on the subset networks were removed from the held-out examples during testing; the ana-

lysis is limited to proteins in the fly PPI network. In addition to reporting overall AUPR, we also group each protein-pair in the evaluation set by their shortest-path distance in

the training network

Table 5. TT-Hybrid improves upon both of its constituent compo-

nents on in-species prediction

Sparsity GLIDE Topsy-Turvy TT-Hybrid Random

p¼ 0.8 0.380 0.038 0.387 0.004

p¼ 0.6 0.437 0.079 0.451 0.009

p¼ 0.4 0.412 0.105 0.423 0.014

p¼ 0.2 0.318 0.133 0.354 0.019

Note: We generated partitions of the fly network of varying sparsity, using

the sparsified networks as training for GLIDE. Sparsity p corresponds to the

proportion of edges retained in the training network (p¼ 0.8 is the least

sparse). Topsy-Turvy was trained on human PPIs. TT-Hybrid combines the

predictions from both GLIDE and Topsy-Turvy. Here, we report the AUPR

of each method on the held out edges removed from each network subset. We

also show the AUPR of the random control; due to varying class imbalances,

AUPR scores increase slightly with increasing sparsity. Bold entries represent

best performance.
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