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ABSTRACT: Alzheimer's disease (AD) is a neurodegenerative disease in which genetic factors contribute 

approximately 70% of etiological effects. Studies have found many significant genetic and environmental 

factors, but the pathogenesis of AD is still unclear. With the application of microarray and next-generation 

sequencing technologies, research using genetic data has shown explosive growth. In addition to conventional 

statistical methods for the processing of these data, artificial intelligence (AI) technology shows obvious 

advantages in analyzing such complex projects. This article first briefly reviews the application of AI technology 

in medicine and the current status of genetic research in AD. Then, a comprehensive review is focused on the 

application of AI in the genetic research of AD, including the diagnosis and prognosis of AD based on genetic 

data, the analysis of genetic variation, gene expression profile, gene-gene interaction in AD, and genetic analysis 

of AD based on a knowledge base. Although many studies have yielded some meaningful results, they are still in 

a preliminary stage. The main shortcomings include the limitations of the databases, failing to take advantage 

of AI to conduct a systematic biology analysis of multilevel databases, and lack of a theoretical framework for 

the analysis results. Finally, we outlook the direction of future development. It is crucial to develop high quality, 

comprehensive, large sample size, data sharing resources; a multi-level system biology AI analysis strategy is 

one of the development directions, and computational creativity may play a role in theory model building, 

verification, and designing new intervention protocols for AD. 
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Introduction 

 

Alzheimer's disease (AD) is a neurodegenerative disease 

characterized by progressive exacerbation of dementia; 

finally, patients lose the ability to respond to their 

environment. Except for cholinesterase inhibitors and 

memantine, which can alleviate or stabilize symptoms for 

a limited time, there is currently no way to stop the 

progression of AD [1]. With the aging of the world's 

population, AD not only causes more personal and family 

suffering, but caregivers of patients with AD have a 

higher prevalence of depression and anxiety, and AD 

becomes a serious social burden [2]. It is estimated that 

currently one in 10 Americans (10%) aged 65 and older 

has AD. In 2019, there were approximately 5.8 million 

AD patients in the United States. By 2050, this number 

may grow to a projected 13.8 million in the US, and the 

number of people living with dementia will reach 131.5 

million worldwide [3-5]. Based on the age of onset, AD is 

classified as early-onset AD (EOAD) and late-onset AD 

(LOAD). EOAD accounts for approximately 5% of all 

AD cases and occurs in patients under 65 years old. 

Among them, less than half of the patients carry a causal 

mutation that manifests as an autosomal dominant 
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inheritance pattern, known as early-onset familial AD. 

LOAD accounts for approximately 95% of all AD cases 

and occurs in patients over 65 years old. Based on the 

existence of family aggregation, AD can also be divided 

into familial and sporadic cases. Familial cases are mainly 

EOAD, but there are also cases of LOAD. More than 90% 

of AD patients are sporadic cases that are usually also 

LOAD [6]. The etiology for most cases of AD remains 

unclear and is thought to be the result of a complex 

interaction between genetic and environmental factors 

involved in neurobiological and immunological processes 

[7, 8], but an estimated 70% of the risk is attributable to 

genetic factors [9-12]. Currently, the amyloid hypothesis 

is a prevalent theory of the pathogenesis of AD. This 

hypothesis holds that a variety of factors cause imbalance 

in the production and clearance of β-amyloid, leading to 

the accumulation of β-amyloid in the brain, which in turn 

leads to neuroinflammation and the formation of 

neurofibrillary tangles in neurons, that will eventually 

lead to neuronal dysfunction and death, but the detailed 

pathological process is unclear [13].  

One of the important goals of medical research is to 

discover the genetic and environmental factors that cause 

disease, namely, etiology studies, and the results can 

provide clues for researching the prevention and treatment 

of AD. Since the 17th century, Newton's methodology has 

been widely used in scientific research, including medical 

research, which emphasizes that the world’s apparent 

complexity can be solved by analyzing phenomena and 

simplifying them into the simplest components. In fact, 

we have achieved great success by utilizing this 

methodology. In the medical field, we have been able to 

successfully prevent and treat many diseases caused by 

one or several factors. For example, smallpox has been 

completely eliminated on Earth with the use of vaccines. 

However, currently, there are no solutions for the 

prevention and reversible treatment of certain complex 

diseases, such as AD, mainly because these diseases 

involve complex interactions between many factors, and 

the complexity of humans makes it impossible to use a 

simplified model to understand these diseases [14, 15]. In 

recent years, the rapid development of artificial 

intelligence (AI) technology has provided an opportunity 

to solve these problems involving massive data and 

ultracomplex structures that exceed the processing 

capabilities of the human brain [16-18]. In the field of AI, 

AD ranked fourth among all diseases in terms of the 

number of AI studies conducted [19]. AI adopts an 

integrative approach and model neurobiological 

components as functional modules of pathophysiology 

embedded within the complex, social dynamics that 

influence the phenomenology of neuropsychiatric 

disorders [20]. Because genetic factors are the main cause 

of most AD cases, they have been the focus of AD 

pathogenesis research. In recent years, with the 

widespread use of microarray and next-generation 

sequencing technologies, research using genetic data has 

shown explosive growth. This situation urgently requires 

the help of AI technology. Currently, genetic research on 

AD using AI technology is continuously increasing. 

Therefore, this article has conducted a comprehensive 

review of the research in this field and provides a 

perspective on the direction of future developments. 

 

Artificial Intelligence 

 

The use of tools could be considered to be an “extension” 

of the human body's natural function. In the same way, 

computers can act as “extensions” of the human brain’s 

functionality. With the rapid development of computer 

power, the acquisition of large amounts of data, and the 

theory of computation, AI has or almost “will surpass 

human performance in several domains” [21, 22]. 

Intelligence is and has been humanity’s most useful 

ability for thriving on earth. There is reason to believe that 

with the development of AI technology, human 

productivity will enter a new era. AI is used in a broader 

scope with many definitions from different perspectives, 

and the ones that are commonly accepted include that AI 

is a branch of computer science that enables computers to 

perform tasks that generally require human intelligence; 

another perspective is that AI is a system that perceives 

the environment and takes action with a maximal 

possibility to complete a task [23]. To achieve 

“intelligent” functions, a large number of algorithms, 

methods, or strategies have been developed, and the main 

approaches of AI technology are problem solving by 

searching, knowledge-based reasoning and planning, 

uncertain knowledge-based reasoning, and learning from 

examples. The methods or strategies of problem solving 

by searching include uninformed or heuristic searches, 

local searches, optimizations, evolutionary computations, 

and adversarial searches. Knowledge-based reasoning and 

planning include logic programming, automated 

reasoning and ontological engineering. Uncertain 

knowledge-based reasoning includes Bayesian networks, 

hidden Markov models, Kalman filters, a utility theory, 

and decision networks. Learning from examples is based 

on a mathematical/statistical classification and machine 

learning. Among them, machine learning is the most 

widely used AI technique in academia and industry [24, 

25].  

Machine learning is a subset of AI that focuses on 

designing a computer program that automatically 

improves through experience. It works with datasets by 

examining the data and learning patterns within it. Most 

machine learning approaches fall into two categories: 

supervised and unsupervised learning algorithms. 
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Supervised learning algorithms use labeled data, i.e., 

training data that have the correct result given an input, 

and these are best for classification and regression tasks. 

The common algorithms include artificial neural 

networks, Bayesian networks, support vector machines, 

decision trees, random forests, and K-nearest neighbors. 

In contrast, unsupervised learning algorithms use 

unlabeled data, where the algorithm needs to find and 

learn inherent patterns within the dataset. The common 

algorithms include K-means, distance clustering, density 

clustering, hierarchical clustering and Markov chain. 

There are also some algorithms that combine supervised 

and unsupervised learning, for example, reinforcement 

learning [24, 26, 27]. Deep learning is an even more 

specific subset of AI and machine learning. Deep learning 

is a machine learning algorithm that simulates a human 

brain approach to solving problems. It consists of several 

“layers” each with a various number of nodes all 

interconnected in a network. Information is input into the 

first “layer” and goes through several linear 

transformations until it outputs a result at the end. It can 

be supervised, unsupervised or enhanced, depending on 

how it is applied [28]. Before AI, many projects were 

implemented with complicated rule-based algorithms, 

which would continuously grow more complicated as 

more anomalies were discovered in the data. We can 

continuously make more rules and algorithms to try and 

account for every possible oddity, but this becomes 

laborious and overcomplicated. However, a machine 

learning implementation can simply learn these patterns. 

Furthermore, machine learning will be able to discover 

additional patterns of increased complexity or abstraction 

within the data. As the quantity, quality, and 

diversification of data increases, the effectiveness of a 

machine to learn patterns and logic in it becomes more 

efficient. This expansion of data is especially noticeable 

in medicine because of the new approaches to collect large 

amounts of biological data, such as genomic and other 

omics biology datasets [29]. Therefore, AI will have a 

great future in the application of healthcare, including the 

prevention, detection, diagnosis, and treatment of 

diseases, the management of health systems, and the 

development of medical research [30, 31]. 

 

The Applications of AI in Medicine 

 

Shortly after the official naming of AI at a Dartmouth 

College meeting in 1956, research into the application of 

AI in the medical field began. The main research topic at 

that time was the Medical Diagnostic Decision Support 

System (MDDS). For example, Warner et al. developed a 

pioneering MDDS system that can be used to diagnose 

congenital heart disease [32, 33]. There was a period of 

low amounts of AI research from 1974 to 1993; however, 

due to the remarkable progress of computers and 

information technology in recent years, research on the 

application of AI in the medical field has become a hot 

topic [24]. Many information technology companies and 

research institutions are currently working on the 

development of AI technology in clinical medicine, health 

systems management, public health, and medical 

research. For clinical medicine, the development of 

computer vision, computer analysis of images and videos, 

and the combination of these with AI technology have 

significantly improved the classification and detection of 

images, and this is very beneficial for medical imaging. 

These technologies have been developed for imaging 

diagnosis in radiology [34], pathology [35], dermatology 

[36], ophthalmology [37], cardiology [38], neurology 

[39], gastroenterology [40], and surgery [41] have shown 

satisfactory results in many aspects. In addition, AI can 

predict the progress of disease and treatment effects by 

learning the health trajectory from a large number of 

patients. For instance, by using 18F-fluorodeoxyglucose 

PET of the brain, a deep learning algorithm for the early 

prediction of AD was developed, and this achieved 82% 

specificity and 100% sensitivity at an average of 75.8 

months prior to the final diagnosis [42]. Therefore, it is 

believed that the use of AI technology in clinical facilities 

may help improve the quality of medical practice, which 

is particularly helpful for physicians with insufficient 

training or experience, especially in developing countries 

with insufficient medical resources [43]. AI technology 

can also expand the reach of medical services; for 

example, patients can use a smartphone or smart watch 

application for self-care, and some applications are 

currently approved by the FDA. Precision medicine is 

based on the patient's genetics, environment, and lifestyle 

factors and is tailored to his or her personal healthcare 

plan and the clinical decisions for the patient. AI 

technology can analyze and process very large amounts of 

genetics, environment and lifestyle data, and this allows 

for the ability of precision medicine to be applied in 

clinical practice. In addition, it may play an important role 

in health system management and public health [17, 27, 

30, 44-46]. 

In the field of biomedical research, currently 

developed biological and medical technologies can 

extract a large amount of laboratory and clinical research 

data from complex biological processes, such as genomes, 

transcriptomes, proteomics, cytological images, chemical 

and biological macromolecular structures, interaction 

information, and clinical data from electronic medical 

records. AI technology can analyze and process large and 

complex biological data to help clarify the corresponding 

physiological and pathological mechanisms and then 

assist in designing and screening drug molecules and in 

designing and analyzing clinical trials. For research at the 
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gene level, AI can help to predict the binding affinities of 

transcription factors, DNA- and RNA-binding proteins, 

cis-regulatory/enhancer elements, DNA methylation sites, 

histone modifications, chromatin accessibility, 

transcription start sites, tissue-regulated splicing, special 

gene expression and translation efficacies, transcriptome 

patterns in a particular cell or condition, microRNA 

precursors and binding targets, variant calling, functional 

consequences of noncoding variants, and coding variants 

pathogenicity. AI can also help to identify long noncoding 

RNAs, generate protein-coding DNA sequences, and 

design DNA probes for protein binding microarrays. As 

the amount of genomic data grows exponentially, deep 

learning seems to be the best way to analyze these data 

sources and complete genomic modeling tasks; however, 

the prediction of complex human disease phenotypes is 

currently far from mature [47-50]. For protein level 

research, current AI technologies can predict the 

secondary structure, solvent-accessible surface area, 

solvent accessible surface area, protein contact maps, and 

disordered regions; however, the prediction of the tertiary 

protein structure is still challenging [51, 52]. For cell- and 

tissue-level research, automated high-content, high-

throughput imaging technology is not only a powerful tool 

for studying biomedical issues but also a tool used for all 

stages for developing target-based drugs. Specific 

functions of AI in image processing include signal 

denoising and enhancement, segmentation, label-less 

imaging, live cell imaging, imaging-based phenotype, 

single cell tracking, and modeling of reconstructed 

pedigree trees [53, 54]. With the application of AI 

technology in the chip laboratory, cell-based or organoid-

based assays, and automatic compound synthesis, it is 

possible to greatly accelerate the development of new 

drugs. AI can be used to analyze literature and high-

throughput compound screening data and to propose plans 

for initial molecular screening and automated chemical 

synthesis. After obtaining bioassay data, by updating the 

machine learning model, a new molecular optimization 

plan can be proposed, and the bioassay can be performed 

again. In this way, an automated drug development cycle 

based on AI design and high-throughput bioassay is 

formed [55]. Drug repurposing is a low-cost, rapid drug 

development pathway. AI technology can predict drug 

repurposing by analyzing large-scale transcriptomics, 

molecular structure data, and clinical databases [56]. 

Clinical trials are the bottleneck of new drug 

development, and researchers believe that the use of AI 

technology in the design and implementation of clinical 

trials can help solve this problem. By analyzing patient 

genetic and clinical data, AI can help select a subset of the 

population who may be sensitive to new drugs, and it can 

also help recruit subjects by matching patients and clinical 

trials. Combining AI technology with wearable sensors 

and noninvasive diagnostics during clinical trials can 

provide a mobile, real-time patient monitoring system and 

may predict the dropout risk of a particular patient [57]. 

Although research on AI-based medical technology has 

developed rapidly and has broad application prospects, 

there are few examples of clinical applications. It can be 

said that AI-based medical technology is still in its infancy 

[30, 58]. 

 

Overview of Genetics Research on AD 

 

It is estimated that for AD cases other than early-onset 

familial AD, genetic factors may contribute at 

approximately 70% of the etiologic role [9, 10]. The 

genetic variations between individuals in the population 

include single nucleotide variations (SNVs), tandem 

repeat variations, small insertions and deletions, large 

segment deletions and duplications (copy number 

variations), chromosome rearrangements (duplication, 

deletion, inversion, and translocation), and aneuploidy or 

polyploidy (often causing major genetic diseases) [59]. 

The human genome is approximately 3.2 × 109 base pair 

(bp), of which the noncoding region accounts for 

approximately 99% of the entire human genome. The 

noncoding region also has important cellular regulatory 

functions and includes regulatory elements (promoters, 

enhancers, silencers, and insulators); production of 

transfer RNA, ribosomal RNA, microRNAs; long 

noncoding RNAs; formation of structural elements of the 

chromosome, including telomeres, satellite DNA, etc. 

[50, 60, 61]. To discover genetic variations associated 

with the development of AD in the human genome, four 

strategies have been applied: genetic linkage analyses, 

candidate gene/pathway association studies, genome-

wide association studies (GWAS), and next-generation 

sequencing (NGS)-based association studies [62]. 

Genetic linkage analysis is one of the earliest 

strategies for assessing the genetic basis of Mendelian 

traits. It maps genetic loci through genetic markers and 

segregation analysis in pedigrees [63]. Through genetic 

linkage analysis, causal mutations in three genes, amyloid 

precursor protein (APP), presenilin 1 (PSEN1), and 

presenilin 2 (PSEN2) were found in early-onset familial 

AD [57]. They are located on chromosomes 21, 14, and 1, 

respectively [64]. Individuals with Down syndrome carry 

an extra copy of chromosome 21, which is responsible for 

the pathological changes of EOAD [65].  

Candidate gene/pathway approaches are small-scale 

and low-resolution association studies based on existing 

knowledge of some genes. This approach has identified 

the apolipoprotein E gene (APOE) alleles as risk factors 

for late-onset AD. Although this method is not commonly 

used today, it is still valuable depending on the gene or 
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population, for example, when exploring polymorphisms 

with low allele frequencies [66, 67]. 

Based on advances in microarray technology, GWAS 

can assess the association of thousands of single 

nucleotide polymorphisms (SNPs) of a disease and 

provide information on genetic variations associated with 

the risk of certain diseases [68]. Certain international 

cooperation projects, such as the International 

Alzheimer's Disease Project (IGAP), have conducted 

large GWAS samples of LOADs involving tens of 

thousands of patients [69, 70]. 

GWAS has confirmed that APOE ε4 is the most 

important genetic risk factor for AD, but more susceptible 

loci have been reported recently and include ABCA7, 

ACE, ADAM10, ADAMTS1, ATP5H-KCTD2, BIN1, 

BZRAP1, CASS4, CD2AP, CD33, CELF1, CLU, COBL, 

CR1, DSG2, EPHA1, FBXL7, FERMT2, FRMD4A, 

HBEG F, HLA-DRB5-HLA-DRB1, INPP5D, IQCK, 

MEF2C, MS4A4E/MS4A6A, MTHFD1L, NME8, PFDN1-

HBEGF, PICALM, PTK2B, RANBP2, SCIMP, SLC10A2, 

SLC24A4-RIN3, SORL1, SPPL2A, TREM2, TRIP4, 

USP6NL-ECHDC3, WWOX and ZCWPW1 [11, 62, 71]. 

The GWAS data are available from the National Human 

Genome Research Institute - European Bioinformatics 

Institute (NHGRI-EBI) GWAS catalogue (www.ebi.ac.uk 

/gwas/). 

NGS uses revolutionary massively parallel 

sequencing technology that allows each base in the entire 

human genome to be quickly sequenced multiple times to 

provide comprehensive and accurate DNA data. 

Sequencing of all protein coding regions is called whole-

exome sequencing (WES), and sequencing of the entire 

genome is called whole-genome sequencing (WGS) [72]. 

Since GWAS requires a large number of samples to 

achieve statistical significance, it is difficult to find 

extremely rare variants that affect the risk of AD, but NGS 

can obtain subjects’ complete genomic sequence data; 

therefore, it is possible to capture all such variants. NGS 

has led to the discovery of a few mutant genes in some 

cases with unexplained EOAD, and includes NOTCH3, 

SORL1, TREM2, etc. [73-75]. In some very small 

population groups, NGS has also discovered a number of 

susceptibility loci related to the development of AD, but 

GWAS usually missed them, such as ARSA, CHMP2B, 

CSF1R, FSIP2, GRN, IGHG3, NCSTN, NOS1AP, PLD3, 

TM2D3, TTC3, ZBTB4, and ZNF655 [76-82].  

With the exception of APOE, all of the genetic 

variations described above have little effect on the 

pathogenesis of AD. To understand the etiology of AD 

other than early-onset familial AD, it might be necessary 

to consider the effect of multiple variants (additive 

effects), epistasis (multiplicative effects), and the 

interaction of genes with the environment. Genetic risk 

scores can be used to describe the synthetic effects of 

multiple variants on the pathogenesis of AD by 

calculating the number of disease-related alleles and their 

power to predict the risk of AD. A genetic risk score study 

based on an SNP dataset including 3,049 AD cases and 

1,554 controls showed that the maximum predictive 

accuracy for AD was 82% [83]. In epistasis studies, 

interactions were found in some genes that have never 

been associated with AD before, while the individual gene 

analyses did not show any effect, for example, the 

interacting SNP pair in KHDRBS2 and CRYL1 [84]. The 

results support that the epistasis effect also contributes to 

a portion of the heredity of AD. A review article by 

Raghavan and Tosto summarizes studies of gene-to-gene 

interactions in AD [85]. The concept of functional 

genomics attempts to link omics data such as genomics, 

transcriptomics, proteomics, and metabolomics to explain 

the complex process from genotypes to phenotypes at a 

comprehensive level. Functional pathway analysis 

showed that AD-related genetic variants were mainly 

enriched in APP metabolism, inflammation, lipid 

metabolism, tau protein binding, endocytic/vesicular-

mediated transport and synaptic function pathways [11, 

62, 70, 71, 86]. 

Many environmental factors have been found to 

increase the risk of AD, including brain trauma, low 

education levels, risk factors for cardiovascular disease, 

lifestyle (e.g., tobacco, alcohol consumption, exposure to 

greenery, and exercise) [87], air pollution [88], heavy 

metal exposure (e.g., mercury, manganese) [89, 90], 

pesticide exposure, etc. However, there is no evidence 

showing that these environmental risk factors alone are 

the cause of AD; it is speculated that they may trigger the 

pathogenesis of AD by interacting with the risk genes of 

an individual. Studies have evaluated the role of APOE 

genes in interacting with the environment. For example, if 

individuals have both the APOE ε4 allele and low physical 

activity, their risk of developing dementia is much higher 

than those having only one factor [91]. However, there is 

very little research data on the interaction between genetic 

variations and environmental risk factors [92]. 

Epigenetics focus on mechanisms that affect gene 

expression without altering DNA sequences, including 

DNA methylation, histone modifications, chromatin 

remodeling and noncoding RNA regulation. Epigenetic 

modifications are influenced by external and internal 

environmental factors, such as age, lifestyle, disease 

status, pollution [93]. Many studies have reported 

epigenetic changes in the brains of AD patients, for 

example, changes in DNA methylation levels in COASY, 

SPINT, BRCA1, and PLD3 promoter regions, APOE CpG 

islands and HOXA gene clusters, an overall reduction in 

DNA methylation in the cortex and hippocampus, 

increased histone deacetylase (HDAC) 6, decreased class 

III HDACs, changes in miRNAs (miR-29 family, 
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miRNA-7, miRNA-9-1, miRNA-23a/miRNA-27a, 

miRNA-34a, miRNA-125b-1, miRNA- 146a, and 

miRNA-155) and long noncoding RNA (BC200 RNA) 

levels in the AD brain. These findings have been 

summarized in some reviews [62, 94]. 

It has been reported that some mitochondrial 

haplogroups and single nucleotide polymorphisms affect 

the risk of AD, but due to the small sample size and lack 

of validation, the contribution of mitochondrial genetic 

variation to AD risk is inconclusive [95, 96]. 

As mentioned above, most cases of AD are thought to 

be caused by complex interactions between multiple 

genetic variations and environmental risk factors. High-

quality large-scale databases and powerful bioinformatics 

methods may be the main ways to help understand this 

complex interaction, specifically the global-scale AD 

research shared database and AI technology. Some 

important data sharing resources in AD research are: 

Alzheimer’s Disease Genetics Consortium (ADGC, 

www.adgenetics.org), Alzheimer’s Disease Sequencing 

Project (ADSP, www.niagads.org/adsp/content/home), 

Alzheimer’s Disease Neuroimaging Initiative (ADNI, 

http://adni.loni.usc.edu/), AlzGene (www.alzgene.org), 

Dementias Platform UK (DPUK, https://portal. 

dementiasplatform.uk/), Genetics of Alzheimer’s Disease 

Data Storage Site (NIAGADS, www.niagads.org/), 

Global Alzheimer’s Association Interactive Network 

(GAAIN, www.gaain.org/), and National Centralized 

Repository for Alzheimer’s Disease and Related 

Dementias (NCRAD, https://ncrad.iu.edu) [97, 98]. 

 

The Applications of AI in AD Genetic Analysis 

 

AI technology, mainly machine learning algorithms, has 

shown to be efficient for large data analysis of high-

dimensional complex systems. Currently, machine 

learning has been used in the studies of diagnosis and 

prognosis of AD based on genetic data, the analysis of 

genetic variations, gene expression profiles, gene-gene 

interactions in AD, and genetic analyses of AD based on 

a knowledge base. 

 

Diagnosis and Prognosis 

 

In earlier times, AI algorithms were used to make 

predictions for the diagnosis and prognosis of AD by 

analyzing patient genetic information. Takasaki et al. 

published two papers in 2008 and 2009 that studied 

centenarians and other patients in Japan with AD and 

Parkinson's disease. 

In the first paper, they used a radial basis function 

(RBF) network to analyze mitochondrial single nucleotide 

polymorphisms (mtSNPs) at specific locations in 

mitochondrial DNA and found that different types of 

subjects have unique mtSNPs. Japanese patients with AD 

are closely related to the G2a haplogroup. The second 

paper showed that in addition to the G2a haplogroup, 

Japanese AD patients were associated with B4c1 and 

N9b1 haplogroups. The authors believe that this analysis 

method can be used for the preliminary diagnosis to 

predict the possibility of someone developing AD or 

several other diseases [99, 100]. In 2011, Wei et al. 

developed a model-averaged naïve Bayes (MANB) model 

that performs better than previous models in predicting 

LOAD patients with 312 to 318 SNPs in 1,411 patients. 

The area under the receiver operating characteristic curve 

(AUC) reached 0.72. In addition, the model performs 

better when trained and tested with high-dimensional 

genomic data. The results support that MANB can be used 

to predict AD from genome-wide data [101]. 

In a recent study, Xu et al. created a support vector 

machine (SVM) algorithm to analyze gene-encoded 

protein sequences instead of patient genotype data. The 

algorithm was tested with 279 AD-related protein 

sequence data and 1,463 non-AD-related data from the 

UniProt database, and the prediction accuracy reached 

85.7%. However, the weakness of this study is that it does 

not distinguish protein sequence information between 

early-onset familial AD and other types of AD [102]. 

Wang et al. also used the SVM classifier to analyze the 

microarray gene expression dataset from the NCBI GEO 

database (www.ncbi.nlm.nih.gov/geo) to generate a gene 

coexpression network to identify possible AD diagnostic 

biomarkers. They identified a cluster of 44 genes as 

potential biomarkers [103]. 

Varatharajah et al. developed a multivariate model 

based on machine learning algorithms (SVM, multiple 

kernel learning), which integrates demographics, 

biomarkers of cerebrospinal fluid (CSF), magnetic 

resonance imaging (MRI), positron emission tomography 

(PET), a psychological test score for cognition and 

cognitive resilience, and top AD-related genes that have 

been validated (including a total of 94 potential predictive 

factors) to identify patients with mild cognitive 

impairment (MCI) who will progress to AD within three 

years. By analyzing 135 participants from the ADNI, their 

prediction accuracy rate was an astonishing 93% [104]. 

The above research shows that the analysis of genetic data 

based on machine learning methods to predict the 

prognosis and risk stratification of AD has certain value, 

but if combined with imaging data, its accuracy will be 

greatly improved. 

 

Analysis of genetic variations in AD 

 

Since the use of GWAS to explore the genetic variation of 

AD, very high-dimensional SNPs have been generated, 

and most of these SNPs are irrelevant to AD. A study 

http://www.niagads.org/adsp/content/home
http://adni.loni.usc.edu/
http://www.alzgene.org/
http://www.niagads.org/
http://www.gaain.org/
http://www.ncbi.nlm.nih.gov/geo
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published by Wu et al. in 2012 proposed an effective 

stratified sampling method using a decision tree and 

Breiman random forest generation method to classify 

SNPs into multiple groups from an AD case-control 

dataset containing 380,157 SNPs [105]. Nguyen et al. also 

recognized the value of the random forest algorithm for 

identifying genetic variation from the GWAS dataset. An 

improved random forest method with quality-based two-

stage sampling was tested on a Parkinson and an AD 

GWAS SNP dataset; the results showed that this method 

was effective in selecting subgroups of SNPs, and the 

performance was even better than traditional ones [106]. 

Hamed et al. applied SMV classifiers with different 

kernels to analyze the ADNI-1 dataset, and the results 

confirmed that the APOE, ABCA7, BIN1, CD2AP, CD33, 

CLU, CR1, MS4A6A, and PICALM loci found in previous 

GWAS were highly correlated with AD [107]. To address 

the challenge of individual data privacy concerns in the 

collaborative studies of GWAS from different 

institutions, Li et al. developed a processing framework 

that performs a sparse learning method (lasso regression 

analysis) in a distributed manner. Their method could 

exclude irrelevant features and rank SNPs that affect AD 

through risk without any privacy issues. An empirical 

study of SNP datasets from three independent institutions 

identified some risk SNP-associated genes for the 

diagnosis of AD, including APOE, CD69, and PHACTR3 

[108]. To improve the accuracy of identifying AD risk 

variants in the GWAS dataset, Lancour et al. suggested 

incorporating previously known information about AD 

candidate genes into the analysis. They developed an 

SVM approach that integrated genetic and network scores 

by propagating GWAS risk scores in a protein-protein 

interaction network to prioritize specific candidate disease 

genes from the ADGC GWAS dataset. A number of new 

AD risk candidate genes were predicted using this 

combination method. The top ten genes included CR2, 

SHARPIN, PTPN2, C4B, TUBB2B, EPS8, PSMC3, 

STRAS, HSPA2, and STUB1. Pathway analysis showed 

that the ranking genes based on this combination approach 

were significantly enriched in AD-related pathways, 

including immune response, aging and hippocampal 

development [109]. 

With the development of brain imaging technology, it 

has been found that certain changes in the brain structure 

and function can occur for years before the clinical 

diagnosis of AD [110]. Many researchers have analyzed 

the association between brain imaging changes and 

genetic variations, and this is called neuroimaging 

genetics. Since 2004, the ADNI project funded by the 

United States National Institutes of Health and 

pharmaceutical companies has tracked and collected 

clinical, imaging, genetic, and biochemical biomarker 

data for AD patients, and it has become one of the most 

important AD brain imaging data sharing resources. 

Wang et al. conducted a study in 2012 that used the 

sparse multimodal multitasking learning method to 

analyze imaging and GWAS genetic data from the ADNI 

database to identify AD-sensitive biomarkers. They were 

able to predict disease status and identify a range of 

phenotypes and genetic biomarkers, the latter included 

APOE, DAPK1, ENTPD7, SORCS1, BIN1, PICALM, 

SORL1, LOC651924, PRNP, and IL1B [111]. Another 

group used a parallel version of the random forest 

algorithm to produce an AD risk gene ranking by 

associating GWAS data with multiple quantitative 

neuroimaging traits from the ADNI database. The top 10 

genes within 10k bases of the top-risk SNPs include 

TOMM40, APOE, PICALM, PVRL2, NTNG2, NTM, 

SLC12A1, MEF2D, CD109, UNC5B, and DPYD [112]. 

Sparse canonical correlation analysis (SCCA) can be 

used to identify the multivariate associations between 

multiple SNPs and neuroimaging traits. Du et al. created 

two structural SCCA models to analyze the associations 

between genetic markers within the APOE gene and 

magnetic resonance imaging (MRI) and amyloid imaging 

data retrieved from the ADNI database. They found that 

the APOE ε4 allele rs429358 was strongly associated with 

damage to the right hippocampus and amyloid burden in 

the frontal region [113, 114]. Hou et al. used a multitask 

learning model to perform regression analysis on SNP and 

MRI datasets of ADNI, and they found several risk 

genetic variants of AD related to APOE, BCR, NPC2, and 

RFTN1 genes [115]. 

Certain genes may play a tissue-specific role in the 

pathogenesis of AD. The network-wide association study 

(NetWAS) method can apply machine learning 

algorithms to tissue-specific functional interaction 

networks to prioritize analyzing the results of GWAS. 

Song et al. used this method to analyze the ADNI GWAS 

dataset with the hippocampal volume as the phenotype 

and found that the protocadherin alpha gene cluster 

(PCDHA) may be a suspicious gene [116]. The above 

studies have studied the association between genetic 

variations and static neuroimaging phenotypes at a single 

time point without considering the dynamics of 

phenotypic changes. Hao et al. hypothesized that these 

changing phenotypes could explain the dynamic 

neurodegeneration process and proposed a “temporally 

constrained group sparse canonical correlation analysis 

framework” that was trained with time series data from 

the ADNI database. They also focused on SNPs near the 

APOE gene and found that this model could detect 

stronger associations than previous SCCA models, 

confirming that the loci rs76692773 and rs2075649 were 

top ranking; however, the longitudinal method questioned 
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the impact of the risk locus rs429358 on the deterioration 

of AD [117]. 
 

Table 1. Genetic risk factors for AD revealed by AI analysis exclusively 

 
Genetic risk factors for AD Biological processes [https://www.genecards.org/] 

ANKRD36C [118] Ion channel inhibitor activity 

BCR [115] Protein tyrosine kinase activity, macrophage functions,   

C4B [109] Inflammation 

CACNA1C [118] Voltage-dependent calcium channel 

CD109 [112] Inflammation 

CD69 [108] Inflammation 

CLCN3 [118] Voltage-gated chloride channel 

CR2 [109] Inflammation 

DAPK1 [111] Apoptosis modulation and signaling 

DHRSX [118] Autophagy 

DPYD [112] Uracil and thymidine catabolism. 

ENTPD7 [111] Oxidative stress and DNA damage 

EPS8 [109] Regulator of axonal filopodia formation in neurons 

FGF14 [118] Nervous system development 

GALNT18 [118] O-linked oligosaccharide biosynthesis 

GFRA1 [118] Glial cell line-derived neurotrophic factor receptor family 

HSPA2 [109] Molecular chaperone implicated in a wide variety of cellular processes 

IL1B [111] Inflammation 

ITGBL1 [118] EGF-like protein family 

LOC101928478 [118] Long intergenic non-protein coding RNA 

LOC442028 [118] Long intergenic non-protein coding RNA 

MAF1 [118] Repression of RNA polymerase III-mediated transcription in response to 

changing nutritional, environmental and cellular stress conditions 

MEF2D [112] Cell growth, survival and apoptosis 

NIPA1 [118] Magnesium transporter that may play a role in nervous system 

development and maintenance. 

NPC2 [115] Transport of cholesterol 

NTM [112] Neural cell adhesion molecule 

NTNG2 [112] Neurite outgrowth of both axons and dendrites 

OR11H4 [118] Odorant receptor 

PCDHA [116] Cell surface proteins of neurons and synaptic junctions 

PHACTR3 [108] Nuclear scaffold in proliferating cells 

PPA1 [118] Respiratory electron transport and ATP synthesis 

PRNP [111] Neuronal development and synaptic plasticity 

PTPN2 [109] Cell growth, differentiation and mitotic cycle 

PVRL2 [112] Cell junction organization and adherens junction 

RFTN1 [115] Inflammation 

RIMS1 [118] Synaptic vesicle exocytosis 

SHARPIN [109] Inflammation 

SLC12A1 [112] Sodium-potassium-chloride cotransporter 

SORCS1 [111] Neuropeptide receptor activity 

SORCS2 [118] Receptor for the precursor forms of NGF and BDNF 

STRAP [109] kinase activity 

STUB1 [109] Inflammation 

TUBB2B [109] Isoform of tubulin 

UNC5B [112] Axon guidance 
 

WGS data provide a new impetus for revealing 

extremely rare mutations affecting AD risks that GWAS 

cannot determine. Yang et al. explored a WGS database 

retrieved from ADNI through the Lasso regression, which 

included 6 million valid SNPs, baseline volumes of 

entorhinal cortex and hippocampus and their volume 

changes within 24 months. The top genes associated with 

the risk SNPs for the baseline volume of entorhinal cortex 

and hippocampus were APOE, ANKRD36C, GALNT18, 

GPC6, LOC442028, MAF1, OR11H4, PPA1, and RIMS1. 

The top genes associated with the risk SNPs for the 

volume changes of EC and Hip were BACE2, CACNA1C, 
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CLCN3, DHRSX, FGF14, GFRA1, ITGBL1, 

LOC101928478, NIPA1, SORCS2, and VAT1L. Many of 

them had never been reported and required further 

validation. There were also many SNPs whose associated 

genes could not be identified [118]. Yang et al. further 

expanded their research by using a novel two-level 

structured sparse regression model that introduced 

sparsities in both nucleotide-level and gene networks. The 

analysis of WGS SNP and neural image data from ADNI 

showed that this method could effectively predict the risk 

SNVs associated with AD risk genes [119]. From the 

results of the above 14 papers, we understand that using 

machine learning algorithms to analyze the SNP data of 

GWAS and WGS can detect new genes and SNVs that 

may be related to AD risk (Table 1). 

 

Analysis of the Gene Expression Profile in AD 

 

Genetic variations alone or in combination with 

environmental factors can alter gene expression profiles 

in brain cells, cause abnormalities in the metabolism of 

certain proteins, and ultimately lead to pathological 

changes in AD. Studying changes in gene expression 

levels in cells of the brain is helpful to discover key genes 

and pathways related to the pathogenesis of AD, which 

may be targets for therapeutic intervention. High-

throughput microarray and RNA-sequencing (RNA-Seq) 

based on next-generation sequencing technology can 

create a detailed view of the transcriptome of cell or tissue 

samples. Due to the high dimensionality and complexity 

of the data, they are hindered from gaining significant 

information about the biological processes of a specific 

disease. As a result, many studies have shifted from 

traditional statistical methods to machine learning 

methods for data analysis, effectively revealing complex 

biological characteristics. 

In 2011, Kong et al. developed two unsupervised 

machine learning algorithms (independent component 

analysis, ICA, and nonnegative matrix factorization, 

NMF) to analyze the microarray dataset of the 

hippocampal gene expression of control and AD samples. 

They found that changes in expression levels of many 

genes in the hippocampus of AD patients were related to 

metal metabolism and inflammation [120]. Scheubert was 

able to find relevant genes by using a wrapper approach 

of genetic algorithm and support vector machine 

(GA/SVM), which performed more efficiently by finding 

sets of genes that are less repetitive and more significantly 

attributed to AD. Through analyzing a dataset consisting 

of six different brain regions from 87 AD patients and 74 

healthy control samples, they identified some new 

candidate biomarkers for AD, including LOC642711, 

PRKXP1, LOC283345, SST and LY6H [121]. Panigrahi et 

al. applied an integrative systems biology approach to 

identify candidate genes and important biological 

processes among AD and aging. Supervised learning 

software and a self-organizing map implemented with an 

unsupervised artificial neural network were used to 

analyze three separate microarray datasets, and these 

included the CA1 region of the hippocampus, frontal lobe 

and blood mononuclear cells from AD and aging patients. 

Ten major classes of transcription factors and unique 

miRNA targets were identified as regulatory processes for 

AD in this study [122]. As the number of available 

microarray databases increases, many studies strive to 

find more significant genes using different methods or 

algorithms, such as the random forest method used by 

Nishiwaki et al. and the two-stage classifier consisting of 

relevance vector machine (RVM), SVM, random forest 

and extreme learning machine (ELM) classifiers 

developed by Miao et al. These methods both identified 

some candidate genes related to AD [123, 124]. 

Li et al. studied the relationship of gene expression 

changes in blood and brain tissues by analyzing four blood 

and one brain tissue gene expression dataset. They found 

that more than 77% of genes have the same regulatory 

direction in different tissues and disease states. SVM, 

random forest and logistic ridge regression (RR) models 

showed that mitochondrial dysfunction, the NF-kappa B 

signaling pathway and iNOS signaling were important 

dysregulation pathways in the pathogenesis of AD [125]. 

It is currently known that controlling transcription 

through microRNA molecules is a key process in the 

development of late-onset AD. Armananzas et al. 

proposed a new method to integrate gene expression data 

and sequence predictions with a machine learning 

method. They analyzed two microRNAs and two gene 

expression datasets in temporal lobe samples and found 

some previously unreported the regulation of AD-related 

microRNAs, including miR-106a, miR-504, and miR-

142-3p [126]. 

Recent studies began using a more complicated 

approach, and many of these researchers believe that 

unconventional and complicated algorithms should be 

used to find any additional genes that play a role in AD. 

Martinez-Ballesteros et al. combined decision tree 

classifiers, quantitative rules and hierarchical clustering 

methods and completed training on multiple carefully 

prepared gene expression datasets. However, they also 

considered additional sources, such as a repository of 

already relevant AD genes, gene ontology, and a literature 

review or expert knowledge, to validate their results. They 

found that the expression of 90 genes in patients with AD 

were significantly different from that of controls [127].  

RNA-Seq uses next-generation sequencing 

technology to check the presence and quantity of all RNA 

in a sample, including alternative gene-splicing 

transcripts, posttranscriptional modifications, gene 
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fusions, mutations, miRNA, tRNA, and ribosome 

profiles. In comparison, the weaknesses of hybrid-based 

microarrays are that they can only detect predesigned 

sequences and that the quantitative range is relatively 

narrow [128, 129]. Mukherjee et al. proposed an iterative 

multiview classifier using the logistic regression method. 

They used this classifier to analyze an RNA-seq dataset of 

2,114 samples from seven different brain regions of 1,100 

patients to identify potential AD risk (driver) genes. They 

found that the highest ranked genes contained several 

genes closely related to AD, consistent with previous 

reports and that the results of the RNA-Seq data could be 

well verified by the GWAS data. Enrichment analysis 

found that in addition to well-known processes (such as 

immune response and amyloid processing), there are other 

processes (such as endocytosis, scavenger receptor 

activity and peptidase activity) that could lead to a new 

understanding of the mechanism of AD development 

[130]. Luo et al. conducted a small sample study using 

logistic regression classifiers by combining RNA-Seq 

data, a database from Online Mendelian Inheritance in 

Man (OMIM, www.omim.org/), and protein-protein 

interaction networks. The RNA-Seq dataset contains 9 

AD subjects and 8 control subjects (GSE53697). They 

found that candidate AD genes were enriched in seven 

AD-related pathways, which included the NOD-like 

receptor signaling pathway, neurotrophin signaling 

pathway, and GnRH signaling pathway [131]. In 

summary, the 10 studies presented in this section show 

that the use of machine learning to analyze transcriptomes 

generated by microarrays and RNA-Seq can help discover 

genes and pathways that play important roles in the 

pathogenesis of AD. 

 

Gene-gene Interaction in AD 

 

As mentioned above, gene-gene interactions have 

significant roles in the pathogenesis of AD. Machine 

learning algorithms have been used in studies of SNP 

epistatic interactions, transcript interaction networks and 

metabolic pathways. In 2011, Jiang et al. created a 

combinatorial epistasis learning method with a Bayesian 

network. They evaluated the performance of this method 

with different parameters on simulated datasets and a real 

Alzheimer’s GWAS dataset, and the results showed that 

this method is feasible [132]. Later, Jiang et al. combined 

Bayesian network and information gain algorithms to 

further improve the method. They analyzed a GWAS 

LOAD dataset that included 859 AD and 552 control 

cases. The results not only were consistent with previous 

reports but also indicated new interactions, i.e., APOE / 

GAB2 interactions involving more loci [133]. Han et al. 

also used a Bayesian network-based method to detect 

epistatic interactions from the same GWAS LOAD 

dataset as Jiang et al. They found two SNPs (rs1931565 

and rs4505578), and their interactions with APOE might 

increase the risk of LOAD [134]. 

Granados et al. first used a multidimensional 

dimensionality reduction (MDR) algorithm to perform 

epistasis analysis on 12 AD-related SNPs. The dataset 

used was composed of 196 AD cases and 92 controls 

[135]. Zieselman et al. also recognized the value of MDR, 

and they used a quantitative multifactor dimensionality 

reduction (QMDR) method to analyze the SNP-SNP 

interactions on the GWAS LOAD dataset from ADNI. 

They found statistically significant synergistic 

interactions between several SNPs, but the results were 

not repeated in another independent dataset [136]. To 

address the combinatorial explosion problem of large-

scale GWAS datasets, Moore et al. introduced a method 

that combined expert knowledge and MDR methods to 

examine high-order gene-gene interactions. Expert 

knowledge from databases (such as gene ontology) or 

literature sources (such as PubMed) was used to filter 

gene datasets before the analysis. They applied this 

method to the GWAS dataset from ADNI and identified a 

set of interacting genes related to AD [137]. 

Another machine learning algorithm, iterative sure 

independence screening (SIS), can analyze very large 

datasets with more predictors than observations. An 

interaction analysis was performed by Hibar et al., which 

screened all possible SNP-SNP interactions that affected 

regional brain volumes from 534,033 SNPs in a GWAS 

dataset from ADNI. They found a significant SNP-SNP 

interaction between rs1345203 (probably related to 

histone acetylation) and rs1213205 (probably related to 

DNase I cleavage), which could explain 1.9% of the 

changes in the temporal lobe volume [138]. 

There are also many studies using machine learning 

methods to analyze transcript interaction networks. In an 

earlier study, Armananzas et al. used ensemble Bayesian 

network classifiers to build transcript interaction networks 

based on transcript profiling from entorhinal cortex and 

dentate gyrus samples in six AD and six control cases in 

2012. Studies have found that some key transcripts in the 

network, such as S100A10, RPS3A, MED8, may have an 

important significance for the pathogenesis of AD [139]. 

The combinatorial optimization-based machine learning 

algorithm proposed by Ponzoni et al. was used to analyze 

the functional interconnection of two gene expression 

datasets in AD and control brain tissue. This approach 

provided both a global view of interconnections between 

different functional blocks and a specific molecular 

network of interest. The previously unreported AD-

related pathways obtained by this method included the 

citrate cycle, pyruvate metabolism, MAPK signaling, 

peroxisome, VEGF signaling, focal adhesion, 

http://www.omim.org/
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aldosterone-regulated sodium reabsorption, carbohydrate 

digestion and absorption [140]. 

Zafeiris et al. designed an integrated artificial neural 

network (ANN) pipeline for biomarker discovery and 

verification in AD. By analyzing a gene expression 

microarray dataset (E-GEOD-48350) consisting of no less 

than 80 cases and at least four brain region samples, they 

generated a large and complex interaction dataset 

consisting of 500 gene probes and 1,000 predicted 

interactions, which could be used as a reference system to 

further examine genes of interest. Driver analysis 

produced a list of the most influential and most influenced 

genes that may be the source of imbalances in the 

metabolic system and therefore the most likely driver and 

treatment target for the disease [141]. Similar to the study 

by Zafeiris et al., Park et al. proposed a random forest-

based algorithm to classify important gene-gene 

interactions. They tested the trained algorithm on an AD 

gene expression dataset (GSE15222). As a result, 3,366 

AD-associated gene-gene interactions were identified, 

and functional enrichment analysis showed that several 

AD-related pathways were significantly enriched [142]. 

Maj et al. took a different approach to study potential 

biological associations in different tissues with AD. They 

first applied a tissue-specific gene expression prediction 

model to predict the gene expression profiles of 42 

nongender-specific tissues based on the genotypes of 808 

samples from GWAS datasets of ADNI, which included 

controls, mild cognitive impairment subjects and AD 

patients. Then, the association between the AD cognitive 

decline and predicted tissue-specific gene expression was 

analyzed by different supervised and unsupervised 

machine learning methods. The advantage of using 

predicted transcriptome data is that it only reflects the role 

of genetic components and avoids environmental 

influences. Since epistatic interactions play a major role 

in the regulation of biochemical pathways, this study 

focused only on the analysis of regulatory networks, not 

univariate analyses. The results suggested that the 

inflammatory and regulatory processes in gut-brain-

related tissues had a potential effect on the cognitive 

decline [143].  

Machine learning has also been used in the study of 

metabolic pathways. Coppede et al. were skeptical about 

the impairments in folate metabolism potentially being a 

risk for AD and used ANN to analyze 30 genetic and 

biochemical variables related to folate metabolism on a 

dataset that included 40 LOAD cases and 40 matching 

controls. Upon analyzing the results, they created a 

semantic connection map that could show complex 

biological associations between variables to differentiate 

AD cases from controls. The study found that certain 

variables (such as the TYMS and DNMT3B genotypes) 

may play an important role when considering the 

interaction of multiple variables in this pathway [144]. 

From the above 13 studies, it can be concluded that 

machine learning has significant advantages in analyzing 

and mapping complex networks of genetic and metabolic 

interactions. 

 

Genetic Analysis Based on a Knowledge base 

 

Most studies that used machine learning to decipher the 

pathogenesis of AD analyzed genetic or other medical 

information (such as brain imaging) from various original 

AD databases. However, there are few studies looking for 

alternative methods to help this development. These 

studies used AI technology to identify genes associated 

with AD risk by analyzing an established biological 

knowledge base. 

Jamal et al. tried to find AD susceptible genes by 

employing eleven machine learning algorithms to analyze 

several open-source knowledge bases. The integrated 

topological properties of the AD-related genes were 

extracted from the protein-protein interaction networks 

(OPID, STRING, MINT, BIND and InTAct databases), 

sequence features (UniProt database) and functional 

annotations (DAVID and two additional Swiss-Prot 

functional annotation terms). They also used molecular 

docking methods to screen interactions between known 

drugs for AD and newly acquired AD-related proteins 

[145]. In addition, Huang et al. used an SVM method to 

integrate the information from an AD gene knowledge 

base (AlzGene) and the brain-specific gene network data 

from GIANT, and then they analyzed more than 20,000 

genes in a catalog of human genes and genetic disorders 

(OMIM). The candidate gene list of 832 genes generated 

in this study might provide a comprehensive reference for 

AD gene research [146]. Text mining tools can facilitate 

the literature search process. Singhal et al. proposed a 

machine learning method that could automatically extract 

disease-gene-variation information from biomedical 

literature. They extracted the above information about ten 

important diseases, including AD, from all PubMed 

abstracts. After a comparison study with the UniProt 

knowledge base, the author believed that the method has 

practical value [147]. From this, we know that the 

integrated analysis of the knowledge base can provide 

some important research clues. 

 

Perspective for the Future 

 

The computing power and capabilities of developing 

technology increase exponentially every year. These new 

technologies have enabled the analysis of complex 

biological processes and diseases with extraordinary size 

and numerous dimensions. Especially for complex 

diseases, including AD, analysis in a single or few 
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dimensions prevents us from capturing the exact causes 

and factors associated with these diseases. Thus, efficient 

but complicated methods must be employed to combine 

multiple data types to pinpoint specific factors of a disease 

[16]. To the best of our knowledge, research papers on the 

genetics of AD using AI methods have only appeared in 

the last ten years, and many of them have focused on the 

exploration of research methods. In recent years, with the 

continuous increase in available public databases and the 

improvement of computer capabilities, research papers in 

this area have gradually increased. However, in general, 

the databases used for AI research are relatively limited, 

and few studies have applied a comprehensive analysis at 

multiple levels of genes, proteins, metabolism, and 

environmental factors. The conclusions of most studies 

are only to provide a reference for further research. Few 

studies have carried out a biological verification of the 

findings or proposed a verification scheme; in addition, 

few studies have proposed a theoretical framework for the 

pathogenesis of AD based on the results obtained [30, 58]. 

Regarding the use of AI technology to study the genetic 

factors of AD and the pathogenesis of AD, current 

challenges, possible solutions and future development 

directions are discussed below. 

(1) High quality, comprehensive, large sample size, 

and data sharing resources: the quality of the original data 

resources is the basic condition for obtaining correct 

results; comprehensive, large-sample data resources can 

improve researchers' ability to spot weak factors; in 

addition, shared data resources can provide opportunities 

for more research teams to participate in AD research. The 

ANDI database is a very successful example of this. Other 

large shareable databases have been listed above and 

include ADGC, ADSP, EMBL-EBI, GAAIN, NCBI, 

NIAGADS, etc. However, the majority of these data come 

from only developed countries and do not include major 

populations in developing countries. It is believed that 

future international cooperation will also promote the 

improvement and development of these shared databases 

[98]. For genome and gene expression databases, WGS 

and RNA-Seq based on next-generation sequencing can 

detect nonpredesigned sequences; thus, these have more 

advantages than microarray-based databases. We believe 

that such databases will play a more important role in the 

future. The organism as a whole is a complex system of 

genes, proteins, cells, individuals and environmental 

factors (including various physiological and biochemical 

conditions of the internal and external environments, 

including living conditions, lifestyle, social psychology, 

etc.) at different levels. Establishing and improving the 

dynamic database of the corresponding genome, 

epigenome, transcriptome, proteome, metabolome, 

microbiome and other internal and external environmental 

factors are the future development directions. Currently, 

the ability to collect data from internal and external 

environmental factors is still very limited. It is believed 

that with the development of nanotechnology [148], 

wearable devices [149], the Internet of things [150], 

smartphone applications [151], and other technologies 

[152], these dynamic databases will also be 

established. In addition, knowledge bases, including 

AlzGene and UniProt knowledge base, also play a vital 

role. 

(2) Multilevel system biological analysis strategy: 

AD is the result of the complex interactions between 

genes and the environment. Therefore, the study of its 

pathogenesis needs to include the interaction between the 

genome and environmental factors, as well as the 

epigenome, transcriptome, proteome, metabolome, and 

microbiome, in related cells and tissues. A section in this 

article specifically discusses the study of genes and gene 

interactions by AI technology. Indeed, these studies have 

also found many meaningful interactions for the 

pathogenesis of AD. Systems biology is an 

interdisciplinary research area that uses holistic methods 

to analyze complex interactions in biological systems 

through mathematical models [153]. We believe that this 

analysis strategy of systems biology combining various 

aspects of information will continue to progress with 

incredible advances in computing power, new AI 

algorithms and availability of data. Ultimately, a 

comprehensive AI analysis system can be established, 

which will be of great significance for a thorough 

understanding of the pathogenesis of complex diseases 

such as AD [16, 154]. 

(3) Theoretical summary and verification of AI 

analysis results: Conclusions from most of the studies 

presented in this article only indicate that certain genes or 

pathways may be related to the pathogenesis of AD, and 

these only provide a reference for further research. Can 

the study of the pathogenesis of AD using AI technology 

only reach this stage? Of course not. The goal of 

theoretical research is to be able to propose a verifiable 

model of the research object. For simple objects, such as 

the motion of objects, this theoretical model can be 

expressed using very simple mathematical formulas, but 

for complex diseases, such as AD, due to the interaction 

of many factors, it can be speculated that this theoretical 

model must be a complex model built on a computer 

program [155]. Can the establishment of such a theoretical 

model only depend on the creativity of human thinking? 

Can AI help us build these complex models? We have 

reason to believe that AI technology can help. In fact, 

although computational creativity is still in its infancy, it 

is also one of the important branches of the rapid 

development of AI. It is committed to making computers 

have the ability to play independent creators or co-

creators. Its application researches include literature and 
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art creation (such as stories, poetry, paintings, musical 

works, games), problem solving, and system design, etc. 

[156, 157]. Some form of machine learning has been used 

in almost all the studies presented in this article. Although 

this method has indeed reached a certain level of 

practicality, machine learning is only a small part of AI 

technology. We boldly speculate that a more 

comprehensive AI technology including computational 

creativity and machine learning can not only help us make 

accurate diagnosis and prediction, but also help us analyze 

the research results, propose new hypotheses or 

theoretical models, design feasible verification schemes, 

and new intervention protocols. AI technology will bring 

humanity into a new era [56, 71, 158]. 

 

Concluding Remarks 

 

Most cases of AD are the result of a complex interaction 

of multiple genes and environmental factors, and 

traditional genetic analysis methods were successful in 

discovering many of the significant genes and factors for 

the pathogenesis of AD. In recent years, with the 

development of large databases such as GWAS, gene 

expression array, WGS, and RNA-Seq, the analysis and 

exploration of data by conventional statistical methods 

have shown certain limitations. AI technology (machine 

learning algorithms) has been applied to the analysis of 

genetic variations, gene expression profiles and gene-

gene interactions of AD in the past 10 years and has 

produced some meaningful results. Although it is still at a 

relatively preliminary stage, we believe that with the 

continuous improvement of high-quality, comprehensive, 

large sample size, data sharing resources, applying 

multilevel system biological analysis strategies, and 

incredible advances in computing power, a 

comprehensive analysis system can eventually be 

established and help to fully understand the pathogenesis 

of AD. In the future, computational creativity may play a 

role in building and verifying a theory model and 

designing new intervention protocols for AD. 
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