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Abstract: The CAR-T cell therapy has marked the dawn of new era in the cancer therapeutics and cell engineering techniques. The 
review emphasizes on the challenges that obstruct the therapeutic efficiency caused by cell toxicities, immunosuppressive tumor 
environment, and decreased T cell infiltration. In the interest of achieving the overall survival (OS) and event-free survival (EFS) of 
patients, the conceptual background of potential target selection and various CAR-T cell design techniques are described which can 
minimize the off-target effects, reduce toxicity, and thus increase the resilience of CAR-T cell treatment in the haematological 
malignancies as well as in solid tumors. Furthermore, it delves into cutting-edge technologies like gene editing and synthetic biology, 
providing new opportunities to enhance the functionality of CAR-T cells and overcome mechanisms of immune evasion. This review 
provides a comprehensive understanding of the complex and diverse aspects of CAR-T cell-based gene treatments, including both 
scientific and clinical aspects. By effectively addressing the obstacles and utilizing the capabilities of cutting-edge technology, CAR-T 
cell therapy shows potential in fundamentally changing immunotherapy and reshaping the approach to cancer treatment. 
Keywords: CAR-T cells, immune checkpoint inhibitors, gene therapies, gene editing, predictive biomarkers

Introduction
Chimeric Antigen Receptor (CAR)-T cell therapies have emerged as a viable strategy for the treatment of many forms of 
cancer. CAR-T cell therapy is categorized as an ex vivo gene therapy, wherein the patient’s T cells are genetically altered 
outside the body prior to reinfusion into the patient’s system, with the purpose of specifically targeting and eliminating cancer 
cells.1 This process enhances the immune system’s effectiveness in fighting against the disease.2 The efficacy of CAR-T cell 
therapy has facilitated the progress of other advanced therapy medical goods, showcasing the potential of gene therapy in the 
treatment of diverse disorders.3 The clinical studies of this groundbreaking therapy have demonstrated exceptional efficacy, 
especially in patients with hematologic malignancies.4 In addition, CAR-T cell therapy has demonstrated potential in the 
treatment of hematological malignancies, specifically B cell malignancies such relapsed or refractory diffuse large B cell 
lymphoma (DLBCL).5 The therapy possesses the capacity to produce enduring remission and potentially even eradicate 
specific forms of cancer, thereby presenting a newfound sense of optimism for patients with few treatment alternatives. The 
emergence of CAR-T cell treatments signifies a notable progression in the realm of cancer treatment, holding the capacity to 
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fundamentally transform our approach to and control of the disease. CAR-T cell therapies utilize the immune system and 
genetic engineering to provide a customized and focused method for treating cancer, overcoming the constraints of conven-
tional treatments.2 Moreover, the effectiveness of the therapy in addressing blood cancers has opened up possibilities for 
investigating its use in solid tumors, which pose a more intricate difficulty due to the diverse conditions within the tumor and 
its surroundings.4 This therapy seeks to augment the effectiveness of CAR-T cells by modifying the tumor microenvironment 
through the use of tumor-targeting nanozymes. These nanozymes have the ability to boost immune activation and improve the 
overall therapeutic efficacy of the treatment.6 Nevertheless, the broad implementation of CAR-T cell treatment is hindered by 
notable barriers, including immunity-related side events and prognostic heterogeneity.7 These tasks involve the management 
of potential negative effects like cytokine release syndrome and neurotoxicity, the improvement of manufacturing methods to 
guarantee consistent and high-quality cell products, and the resolution of the high cost and limited availability of these 
advanced medicines.2 Despite these obstacles, CAR-T cell therapy has exhibited notable advancements in the treatment of 
liquid malignancies, with a complete remission rate above 57%.8 Within the realm of gene therapy, CAR-T cell therapy 
signifies a notable progression in the discipline. Furthermore, current research is concentrated on improving the effectiveness 
of CAR-T cell therapy in solid tumors, addressing the immunosuppressive mechanisms present in the tumor microenviron-
ment, and devising techniques to counteract antigen escape and tumor relapse.4 CAR-T cell therapy, utilized in oncology, may 
treat autoimmune diseases. CAR-T cells targeting specific antigens show potential in systemic lupus erythematosus.9 In 2021, 
CAR-T therapy helped SLE patients achieve sustained remission. This therapy targets and depletes autoreactive B cells, where 
traditional treatments fail. Successful treatment of SLE implies implications in other autoimmune disorders, a major 
therapeutic development.10 Figure 1 represents the significant discoveries in the field of CAR-T cell therapies.

Emerging Targets for CAR-T Cell Therapy and Next-Generation 
CAR-T Engineering
The immunotherapies centered on the application of triggered and genetically persuaded T cells have transfigured the 
area of superior precision targeting in cancer treatment. Among the various forms of T cell transfer strategies, the CAR-T 
cells provoke an intention of targeting cell death with the help of single-chain variable fragment (scFv) that aim at 
tumors.11 This strategy causes the abolition of supposedly indistinguishable malignant cells, thereby resulting in 
tremendous improvements in cancer subjects.12 CAR-T cells possess the capability of navigating the T cell specificity 
towards the antigens by means of fusing the binding domains of antibodies towards T cell CD3-like signaling proteins.13 

CAR-T cell immunotherapy, notably with the use of anti-CD19 CAR-T cells, has been proven to be effective in treating 

Figure 1 Timeline of the development of CAR-T cell therapies.
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various hematological cancers.14 At present, American and European Drug Agencies (Food and Drugs Administration 
and European Medicines Agency) have permitted four distinctive CD19-targeting, as well as one BCMA-targeting CAR- 
T product, respectively.15,16 These treatments are implemented to cure abnormal B cell malignancies.17–19

In the field of leukemia, targeting CD19 was efficacious because of the effortless approachability to cancerous targets as 
well as the uniform expression of CD19 on the expendable population of B cells. In 2017, US FDA approved Kymriah™ 
(Tisagenlecleucel) and Tecartus™ (Brexucabtagene autoleucel), the first cell-based therapeutic treatment in the form of CD19- 
targeted CAR-T cells against B cell malignancies.20 Despite its terrific attainments in B cell malignancies, the immune- 
refereed toxicities inside the TME can cause morbidity and mortality, which sublimit the prevalent use of this therapy in solid 
tumors. One of the barriers is linked through the loss of tumor-associated antigens (TAAs).21 In 1993, Eshhar described the 
earliest CARs, which were comprised of scFv joined solitary to the CD3 complex. These “first generation” CAR-T cells 
proliferated poorly and were unable to facilitate complete tumor remission. Eventually, CAR-T schemes involved the merging 
of the scFv to a T cell receptor (TCR) domain, CD28 or CD137 Endo domains.14 An assimilation of costimulatory domains 
with the CD3ξ signaling tail circumvents the requisite for outward primary and secondary commencement indicators, which 
begin cytotoxicity and cytokine emission upon T cell engagement.11,14,21 The finest molecular strategies of the CARs can be 
accomplished by the virtue of conceivable variability of modular protein domain constituents. Over the period, the evolution in 
protein engineering of CARs caused significant improvements in its designs with respect to adaptation in the ectodomain, 
transmembrane domain, linker and hinge regions for better efficacy at treating various cancers.22

Despite attaining the beneficial stimulatory effects in the patients of various malignancies, the application of CAR-T 
therapy could not be achieved in a wider range of treatments due to its associated toxicity, safety issues and obstructed 
programmability.23–26 These limitations can be relieved by means of engineering strategies to build better CAR-T cells 
by implanting array of antigen detection capabilities and engineering adaptor reliant approaches.25 CAR protein 
expression can be regulated with the help of protease-based apparatuses. A protease merged to the CAR severs the 
target spot in cis position to detach a degron. This process brings stability to the structure of a CAR protein, which leads 
to the ON state of its expression.27,28 Whereas the presence of the protease inhibitor foils elimination of degron, that 
initiates CAR degradation and switches OFF the system.28,29 The CAR protein can be divided into two domains.21

To acquire the complete functionality of CAR-T activity, dimerizing remedies are required. Its activity and specificity can 
be coordinated with the help of diverse protein toggles. For example, the switchable CARs (sCARs) hold a bi-orthogonal tag, 
like peptide neoepitope (PNE), that can be steered to tumor antigens by supplementing an antigen-binding fragment 
exclusively for a tumor antigen.30 The synthetic Notch receptor method involves identification of numerous TAAs to stimulate 
CAR-T system.31 The attachment of an antigen causes structural modification in the synNotch receptor that triggers the 
delivery of transcription factor to initiate expression of another antigen of interest with respect to CAR protein.32 The 
inhibitory CAR (iCAR) technique obliges detection of a TAA in the absenteeism of a healthy-tissue antigen to gain necessary 
CAR-T cell stimulation.33 Fei et al evaluated a PD-1-founded anti-HLA-DR iCAR, which regulated inhibition of NK cells 
against HLA-DR expression for various malignancies.34 Zhang et al reported the development of a novel BAFF-R CAR-T cell 
product based on single-domain antibody.35 Bangayan et al developed a dual-inhibitory domain CAR (DiCAR) that integrates 
two immune cell inhibitory signaling domains to selectively control CAR-T cell cytotoxicity and enhance inhibition 
effectiveness in comparison to an iCAR containing only a single PD1 domain.36 The tandem bispecific CARs involve dual 
extracellular antigen-binding domains.37 The broad TAA specificity biotinylated epitopes can be targeted with the help of 
Universal adaptor receptors. Here, distinctive antibodies or the adaptor molecules of antigen-binding system can be dispensed 
to readdress specificity of CAR-T cell.38–40

To elevate the plasticity of CARs, a split, universal, and programmable (SUPRA) CAR method was developed.41 It 
constitutes two modules that harbor a universal receptor along with leucine zipper adaptor (zipCAR) expressed on T cells. It 
also contains a distinct scFv associated with leucine zipper adaptor molecule (zipFv).42 To enhance the safety aspect of CAR-T 
cell system, the T cell incidence as well as expression of CAR can be controlled using various methods. The dimerizing drugs 
elicit downstream signaling pathways to stimulate apoptosis.43 The truncated epidermal growth factor receptor serves as the 
suicide tag when expressed simultaneously on the CAR-T cell.44 Upon administration of antibodies, like cetuximab, the 
exclusive epitope identifier generates in-house antibody-dependent cell-mediated cytotoxicity (ADCC) and complement- 
dependent cytotoxicity (CDC) apparatuses to produce CAR-T cell apoptosis.45 To abolish CAR-T cells, the interruption of 
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DNA synthesis can be achieved by means of CAR-T cells tagged with herpes simplex virus thymidine kinase (HSV-TK), 
which possess the capacity of transforming ganciclovir into a cytotoxic molecule.46,47

Combination Immunotherapies: Synergizing CAR-T with Checkpoint 
Inhibitors
Combining CAR-T cell therapy with immune checkpoint inhibitors is being researched in order to improve the efficacy 
of CAR-T cell treatments and overcome their limitations. Targeting non-solid tumors has proven to be successful for 
CAR-T cell therapy; however, its efficacy against solid tumors is restricted. Furthermore, questions concerning long-term 
impacts and safety still exist. Checkpoint inhibitors, including PD-1/PD-L1 blockade, have been approved for use in 
a variety of solid tumors and have revolutionized the treatment of cancer. While some combinations of checkpoint 
inhibitors and targeted therapy have shown synergistic effects, not all of these combinations have proven to be effective. 
Research has demonstrated that the use of checkpoint inhibitors in combination with targeted drugs such as PARP 
inhibitors, EGFR/HER2 inhibitors, and angiogenesis inhibitors can enhance clinical results. In preclinical models, 
combining checkpoint inhibitors with CAR-T cell therapy showed potential in improving T cell infiltration and intra- 
tumoral performance. Checkpoint inhibitors have demonstrated encouraging preclinical evidence in cancer 
immunotherapy.48–50 These inhibitors, such as PD-1/PD-L1 and LAG-3, have been validated as targets in oncology 
and have shown efficacy in varied tumor types.51 Small-molecule PD-L1 inhibitors have been developed with a novel 
mechanism of action, favorable pharmacokinetics, and in vivo efficacy in mice models. Combination therapy with 
checkpoint inhibitors has been showed to improve antitumor activity when compared to individual blockade of receptors. 
Preclinical studies show that blocking the interaction between LAG-3 and its ligands can reverse LAG-3-mediated 
suppression of T cell function. These findings offer a biological rationale for combining LAG-3 inhibitors with other 
checkpoint inhibitors as an efficient cancer immunotherapy strategy. Additionally, positive results from clinical studies 
have been observed in patients with advanced cancers seeing better progression-free survival when CAR-T cell therapy 
and immune checkpoint inhibitors are combined.52

The complimentary mechanisms of action of these therapies provide a rationale for this approach. Immune checkpoint 
inhibitors strengthen the immune system’s defense against cancer, while CAR-T cell therapy directly targets cancer cells. 
Preclinical research has shown the advantages of this combination, such as decreased tumor burden, increased objective 
response rate, and enhanced long-term protection.53 NK cells created with CARs have benefits over CAR-T cells in terms 
of specific killing, cell source, and efficiency against solid tumors.54 Immune checkpoint inhibitors, which are used in 
cancer treatment, may influence the function of CAR-NK cell therapy.55 Furthermore, combining CAR-T cell therapy 
with immune checkpoint inhibitors has demonstrated promise for boosting CAR-T cell function, antitumor effects, and 
minimizing toxicity in patients with lymphoid B cell malignancies.56 Additionally, in metastatic clear cell renal cell 
carcinoma, the combination of cabozantinib, an inhibitor of the VEGF-VEGFR and Gas6-AXL/TYRO3/MER (TAM) 
axes, with PD1 inhibitors showed synergistic antitumor activity.57 Preclinical evidence of their synergistic interaction is 
driving research into the integrating of immune checkpoint inhibitors and radiotherapy for the treatment of advanced or 
metastatic solid cancers.

The T cell infiltrates developed during various cancerous stages are capable of determining the diagnosis, the disease 
progression and the anticipation of clinical response to respective immunotherapies. In this regard, various subsets of 
T cells such as NKT cells, γδT cells and mucosa-associated invariant T cells (MAITs) have exhibited encouraging 
results.58–60 The NKT cell subsets consist of a Type I: Vα14Jα18 invariant TCR α-chain, which identifies the glyco-
sphingolipid α-galactosylceramide (α-GalCer) and correlates via CD1d molecules, and type II: non-α-GalCer molecules. 
The Type I-NKT cells secret IFN-γ and TNF-α enhance the antitumor effect and modulate the tumor niche.61 Heczey et al 
produced anti-GD2 CAR-NK T cells that showcased higher tumor infiltration capacity that regulated better tumor 
regression response minus dose-limiting toxicities.62 MAIT, another contender for CAR-T cells, has shown excellent 
expression of the Vα7.2–Jα33 invariant TCR α-chain that can perfoliate solid tumours.63 Mikail et al developed anti-Her2 
CAR-MAIT that showed higher efficiency against breast tumors and also B cell lymphoma.64,65 The γδT cell subset is 
characterized by γδT cell receptors that are not MHC restricted. It holds the potential to cure solid tumor with less graft- 
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versus-host disease (GvHD) risk. In addition, their capability to direct antigen-independent cytotoxicity restricts the 
getaway of heterogeneous tumour cells.66,67

Checkpoint inhibitors have demonstrated efficacy in many clinical trials when used with standard of care chemother-
apy for diverse types of malignancies. Possible synergistic mechanisms include immunogenic tumor cell death, anti- 
angiogenesis, selective depletion of myeloid immunosuppressive cells, and lymphopenia. Lymphopenia reduces regula-
tory T cells and generates room for effector T cell growth.68 However, the complicated tumor microenvironment (TME) 
and the dearth of preclinical models that can replicate this complexity have made the use of CAR-T cell therapy in solid 
tumors difficult. Combining CAR-T therapy with checkpoint inhibitors, such γδT cells treatment, may enhance infiltra-
tion and efficacy in solid tumors, according to recent preclinical findings.69 Clinical trials have demonstrated the promise 
of combining immune checkpoint inhibitors (ICIs) with CAR-T cell treatment. By overcoming immunosuppression and 
modulating immune responses in the tumor microenvironment, the synergy of CAR-T cells with ICIs can improve the 
therapeutic outcomes of CAR-T cell therapy.70 These findings emphasize the combinatorial approach’s potential to 
improve cancer treatment efficacy and serve as a basis for future research and development in this field. Nevertheless, 
additional investigation is required to maximize the efficacious combination of checkpoint inhibitors and CAR-T cells for 
cancer therapy.

CAR-T in Solid Tumor Therapy: Progress and Hurdles
CAR-T cell therapy has proven exceptional success in hematological malignancies, but solid tumors present unique obstacles. 
The immunosuppressive tumor microenvironment (TME), insufficient tumor infiltration, and unreliable tumor-specific 
antigens are the main barriers.71–73 Hypoxic cores, aberrant vascularization, and increased reactive oxygen species in solid 
tumors prevent CAR-T cell trafficking and infiltration.74,75 Tumor antigens are heterogeneously expressed and present in 
healthy tissues, making target antigen selection difficult.76 Additionally, antigen escape, which refers to tumor cells that fail to 
express the antigen, and heterogeneity resulting from the expression of different tumor-associated antigens (TAAs) in solid 
cancers serve as challenge. On-target/off-tumor toxicity occurs when antigens are strongly expressed in both healthy cells and 
tumor cells.77,78 To address this, researchers are looking into bystander effects, such as antigen spreading, when CAR-T cells 
activate other CD8 T cells against non-targeted antigens.79 Innovative models, such as solid tumor-on-chip, have been 
developing to predict the safety and efficacy of CAR-T cell therapy in clinical settings.72 In addition to lack of reliable tumor- 
associated antigens, solid tumors also present challenges such as an immunosuppressive tumor environment and decreased 
T cell infiltration.75 The efficacy of CAR-T therapy in solid tumors is restricted by immunosuppressive tumor environments 
and a deficiency of reliable tumor-associated antigens.72 The intricate microenvironments of solid tumors prevent CAR-T cells 
from infiltrating and functioning.73 In order to address these issues, scientists are investigating into methods like using 
chemokine receptors to increase the functioning and specificity of CAR-T cells, combining immune checkpoint inhibitors, and 
developing cost-effective, tumor microenvironment-specific CAR-T cells.75 Additional immune cells, including macrophages 
and NK cells, are also being researched as potential alternatives for solid tumor immunotherapy.74 CAR-T therapy with 
radiation can also improve the TME and expand CAR-T cells.80 Moreover, CAR-NK and CAR-M cells may have clinical 
benefits, including decreased toxicity and better infiltration.81 Moreover, efforts are being explored to promote tumor 
infiltration and boost anticancer efficaciousness through the regional administration of CAR-T cells via hydrogel 
platforms.71 Despite these efforts, CAR-T cells typically exhibit exhaustion and need combo therapies like PD-1 blocking 
to persist and anti-tumor activity. CAR-T cell therapy for solid tumors is difficult, but new approaches may make it more 
effective. Figure 2 depicts a typical image illustrating the obstacles faced by CAR-T cell therapy when targeting solid tumors.

Overcoming the above-mentioned limitations requires discovering reliable tumor-associated antigens as well as 
developing tumor microenvironment-specific CAR-T cells.73 Molecular imaging and cell tracking can provide light on 
the therapeutic hurdles associated with solid tumors while also aiding in the effective delivery of CAR-T cells. Overall, 
more investigation and development are required to maximize the success of CAR-T cell therapy in treating solid tumors, 
even though it has demonstrated promise in treating hematological cancers. Furthermore, axicabtagene ciloleucel and 
tisagenlecleucel, two CAR T-cell therapies for relapsed or refractory B-cell lymphomas, have significantly boosted cure 
rates.82 However, real-world application differ greatly from randomized controlled trials (RCTs). RCTs, the gold standard 
for therapy efficacy evaluation, generally use highly selected patient populations that do not fully represent routine 
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clinical practice’s more diverse patient demographics.83,84 For instance, real-world patients are older, have more 
comorbidities, and have worse functional status than trial participants, which can affect clinical outcomes.85,86 Real- 
world evidence (RWE) from electronic health records and disease registries serves to fill this gap by revealing CAR 
T-cell therapies’ safety, effectiveness, and wider application in more heterogeneous populations of patients.87 Real-world 
data can validate RCT efficacy, as proven by German claims data resembling CHAARTED trial outcomes in metastatic 
hormone-sensitive prostate cancer.88 Moreover, real-world studies have shown the viability and limitations of CAR T-cell 
therapy in trial-ineligible patients, emphasizing the necessity to address side effects like cytokine release syndrome and 
neurotoxicity.89,90 RWE must evolve to evaluate and optimize CAR T-cell therapies to fulfill the demands of a broader 
population of patients and handle regulatory and economic constraints.91 Thus, RWE and RCT data must be integrated to 
improve CAR T-cell therapy and patient outcomes in real-world. Table 1 summarizes the aggregation of clinical trials 
progress on CAR-T Cell Immunotherapy.

Gene Editing Technologies in CAR-T: CRISPR and Beyond
Gene editing technologies, such as CRISPR-Cas9, have shown potential in improving CAR-T cell therapy by providing 
targeted modifications to genes for enhanced efficacy and durability.92–94 Conventional gene editing tools based on 
nuclease activity, such as CRISPR-Cas9, can cause undesired genomic alterations and genotoxicity. The Pin-point™ base 
editing technology uses modular RNA aptamers to achieve high editing efficiency and purity at target sites, resulting in 
reduced chromosomal translocations.95 CRISPR-based gene editing and screening have enabled the direct genomic 
manipulation of immune cells, contributing to the discovery of novel factors that reprogram and regulate immune 
responses.96 Non-viral CRISPR/Cas9 nano-formulations were developed as well to improve the safety, efficiency, and 
specificity of cancer gene editing. Furthermore, precision genome engineering techniques like Cas9 RNP-mediated gene 
editing have been employed to produce PD-1-deficient CAR-T cells, resulting in greater tumor cell killing and improved 
CAR-T cell immunotherapy efficacy.

However, recent gene editing tools like Base and Prime Editing minimize the risk of harmful events, but their ability 
to make edits is limited.97 High-frequency gene editing in primary immune cells, including T cells, has been demon-
strated by novel gene-editing systems based on metagenomic data, with insignificant impact on cell viability.95 CRISPR- 
Cas9 technology can be applied to engineer allogeneic CAR-T cells, target inhibitors of T lymphocyte function, and 
maximize the efficacy and safety of CAR-T therapy.98 These developments in gene editing technology could enhance 
CAR-T immunotherapy’s effectiveness, safety, and accessibility for the treatment of different cancers.

Figure 2 Image illustrating the obstacles faced by CAR-T cell therapy when targeting solid tumors.
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Table 1 Compilation of Clinical Trial Status on CAR-T Cell Immunotherapy (Information Based on Study Records Available on “Clinicaltrials.gov”)

NCT 
Number

Study Title Study 
Status

Conditions Interventions Phases

NCT02905188 Glypican 3-specific Chimeric 

Antigen Receptor Expressing 

T Cells for Hepatocellular 
Carcinoma (GLYCAR)

COMPLETED Hepatocellular Carcinoma ● GENETIC: GLYCAR T cells
● DRUG: Cytoxan
● DRUG: Fludarabine

PHASE1

NCT01865617 Laboratory Treated T Cells in 
Treating Patients With 

Relapsed or Refractory 

Chronic Lymphocytic 
Leukemia, Non-Hodgkin 

Lymphoma, or Acute 

Lymphoblastic Leukemia

COMPLETED ● CD19-Positive Neoplastic Cells Present
● Recurrent Adult Acute Lymphoblastic 

Leukemia
● Recurrent Chronic Lymphocytic Leukemia
● Recurrent Diffuse Large B-Cell Lymphoma
● Recurrent Mantle Cell Lymphoma
● Recurrent Non-Hodgkin Lymphoma
● Recurrent Small Lymphocytic Lymphoma
● Refractory Acute Lymphoblastic Leukemia
● Refractory Chronic Lymphocytic 

Leukemia
● Refractory Diffuse Large B-Cell 

Lymphoma
● Refractory Mantle Cell Lymphoma
● Refractory Non-Hodgkin Lymphoma
● Refractory Small Lymphocytic Lymphoma

BIOLOGICAL: Autologous Anti-CD19CAR-4-1BB-CD3zeta-EGFRt- 
expressing T Lymphocytes

PHASE1 
PHASE2

NCT02107963 A Phase I Trial of T Cells 

Expressing an Anti-GD2 

Chimeric Antigen Receptor in 
Children and Young Adults 

With GD2+ Solid Tumors

COMPLETED ● Sarcoma
● Osteosarcoma
● Neuroblastoma
● Melanoma

● BIOLOGICAL: Anti-GD2-CAR engineered T cells
● DRUG: AP1903
● DRUG: Cyclophosphamide

PHASE1

NCT03049449 T Cells Expressing a Fully- 

Human Anti-CD30 Chimeric 

Antigen Receptor for Treating 
CD30-Expressing Lymphomas

COMPLETED ● Lymphoma, Large-Cell, Anaplastic
● Enteropathy-Associated T-Cell Lymphoma
● Lymphoma, Large B-Cell, Diffuse
● Lymphoma, Extranodal NK-T-Cell
● Lymphoma, T-Cell, Peripheral

● BIOLOGICAL: Anti-Tumor Necrosis Factor (TNF) Receptor 
Superfamily Member 8 (CD30) Chimeric Antigen Receptor (CAR) 

T cells
● DRUG: Cyclophosphamide
● DRUG: Fludarabine

PHASE1

(Continued)
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Table 1 (Continued). 

NCT 
Number

Study Title Study 
Status

Conditions Interventions Phases

NCT00924326 CAR T Cell Receptor 
Immunotherapy for Patients 

With B-cell Lymphoma

COMPLETED ● Primary Mediastinal B-cell Lymphoma
● Diffuse, Large B-cell Lymphoma
● Diffuse Large B-Cell Lymphoma 

Transformed From Follicular Lymphoma
● Mantle Cell

● DRUG: Fludarabine
● DRUG: Cyclophosphamide
● BIOLOGICAL: Anti-cluster of differentiation 19 (CD19)-CAR PBL
● DRUG: Aldesleukin
● DRUG: Fludarabine
● DRUG: Cyclophosphamide

PHASE1 
PHASE2

NCT03483103 Lisocabtagene Maraleucel 
(JCAR017) as Second-Line 

Therapy (TRANSCEND- 

PILOT-017006)

COMPLETED ● Lymphoma, Non-Hodgkin
● Lymphoma, Nonhodgkin
● Lymphoma, B-Cell
● Lymphoma, Large B-Cell, Diffuse

BIOLOGICAL: lisocabtagene maraleucel PHASE2

NCT02215967 Study of T Cells Targeting 

B-Cell Maturation Antigen for 
Previously Treated Multiple 

Myeloma

COMPLETED ● Myeloma, Plasma-Cell
● Myeloma-Multiple

● DRUG: Cyclophosphamide
● DRUG: Fludarabine
● BIOLOGICAL: Anti-B-cell maturation antigen (BCMA) chimeric anti-

gen receptor (CAR) T cells

PHASE1

NCT03958656 T-cells Expressing an Anti- 

SLAMF7 CAR for Treating 

Multiple Myeloma

COMPLETED ● Myeloma-Multiple
● Myeloma, Plasma-Cell

● DRUG: Cyclophosphamide
● DRUG: Fludarabine
● DRUG: Rimiducid
● BIOLOGICAL: Anti-Signaling lymphocytic activation molecule F7 

(SLAMF7) chimeric antigen receptor (CAR) T cells

PHASE1

NCT01475058 CD19 CAR T Cells for B Cell 

Malignancies After Allogeneic 

Transplant

COMPLETED ● Philadelphia Chromosome Negative Adult 
Precursor Acute Lymphoblastic Leukemia

● Philadelphia Chromosome Positive Adult 

Precursor Acute Lymphoblastic Leukemia
● Recurrent Adult Acute Lymphoblastic 

Leukemia
● Recurrent Adult Diffuse Large Cell 

Lymphoma
● Recurrent Adult Immunoblastic Large Cell 

Lymphoma
● Recurrent Mantle Cell Lymphoma| 

Refractory Chronic Lymphocytic Leukemia

BIOLOGICAL: allogeneic cytomegalovirus-specific cytotoxic 

T lymphocytes

PHASE1 

PHASE2
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NCT01593696 Anti-CD19 White Blood 

Cells for Children and Young 
Adults With B Cell Leukemia 

or Lymphoma

COMPLETED ● ALL
● B Cell Lymphoma
● Leukemia
● Large Cell Lymphoma
● Non-Hodgkin Lymphoma

BIOLOGICAL: Anti-Cluster of Differentiation (CD)19-Chimeric antigen 

receptor (CAR)

PHASE1

NCT04026737 Cardiovascular Effects of 

CART Cell Therapy

COMPLETED ● Leukemia
● Lymphoma
● Cardiotoxicity
● Risk Factor, Cardiovascular
● Immunotherapy

NCT03338972 Immunotherapy With BCMA 
CAR-T Cells in Treating 

Patients With BCMA Positive 

Relapsed or Refractory 
Multiple Myeloma

COMPLETED ● Recurrent Plasma Cell Myeloma
● Refractory Plasma Cell Myeloma

● BIOLOGICAL: Autologous Anti-BCMA-CAR-expressing CD4+/CD8 

+ T-lymphocytes FCARH143
● DRUG: Cyclophosphamide
● DRUG: Fludarabine
● PROCEDURE: Leukapheresis

PHASE1

NCT03744676 A Safety Trial of 
Lisocabtagene Maraleucel 

(JCAR017) for Relapsed and 

Refractory (R/R) B-cell Non- 
Hodgkin Lymphoma (NHL) in 

the Outpatient Setting 

(TRANSCEND-OUTREACH 
-007)

COMPLETED ● Lymphoma, Non-Hodgkin
● Lymphoma
● Lymphoma, B-Cell
● Lymphoma, Large B-Cell, Diffuse
● Neoplasms
● Neoplasms by Histologic Type
● Lymphoproliferative Disorders
● Lymphatic Diseases
● Immunoproliferative Disorders
● Immune System Disorder

BIOLOGICAL: lisocabtagene maraleucel PHASE2

NCT03430011 Study Evaluating the Safety 

and Efficacy of JCARH125 in 
Subjects With Relapsed and/ 

or Refractory Multiple 

Myeloma

COMPLETED Multiple Myeloma ● BIOLOGICAL: JCARH125
● BIOLOGICAL: JCARH125 + anakinra

PHASE1 

PHASE2

NCT01454596 CAR T Cell Receptor 

Immunotherapy Targeting 
EGFRvIII for Patients With 

Malignant Gliomas Expressing 

EGFRvIII

COMPLETED ● Malignant Glioma
● Glioblastoma
● Brain Cancer
● Gliosarcoma

● BIOLOGICAL: Epidermal growth factor receptor (EGFRv)III 

Chimeric antigen receptor (CAR) transduced PBL
● DRUG: Aldesleukin
● DRUG: Fludarabine
● DRUG: Cyclophosphamide

PHASE1 

PHASE2
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For CAR-T cell therapy, CRISPR-Cas9 technology has several advantages. Effective and controllable genetic modification 
has become possible, enabling the knockout of genes that inhibit T cell function and the regulation of CAR-T cell activity 
within the tumor microenvironment.99,100 Multiple T cell exhaustion pathways can be targeted simultaneously using CRISPR- 
Cas9, resulting in CAR-T cells with increased effector activity and enhanced tumor cell killing.101 Furthermore, CRISPR- 
Cas9 can be applied to effective gene silencing and non-viral gene transfer, minimizing the possibility of genomic rearrange-
ments, and facilitating the development of safer and more potent CAR-T cell therapies.102,103 However, using CRISPR-Cas9 
for CAR-T cell therapy has several drawbacks as well. During the genome editing process, off-target effects, such as 
unexpected genetic modifications, might happen. The safety and potential long-term repercussions of CRISPR-edited 
CAR-T cells are called questionable by this. It is imperative to cautiously analyze and tackle these possible limitations to 
ensure the efficaciousness, safety, and accessibility of CRISPR-edited CAR-T cell therapies.

Biomarkers and Predictive Indicators Associated with Response to 
CAR-T Cell Therapies
Genetically manipulated allogeneic and autologous CAR-T cell therapy has been one of the most promising immu-
notherapies for cancer treatment, particularly in hematological malignancies of the current decade. Seven CAR-T cell 
immunotherapies have been approved by the FDA for treating lymphocytic leukemia, including B cell malignancies and 
multiple myeloma. Tisagenlecleucel (Kymriah®), an anti-CD19 CAR-T cell therapy, was the first FDA-approved 
treatment for B cell precursor acute lymphoblastic leukemia patients with evidence of non-response to conventional 
therapy or who had relapsed more than twice.104–106 Subsequently, four more axicabtagene ciloleucel (Yescarta®), 
brexucabtagene autoleucel (Tecartus®), lisocabtagene maraleucel (Breyanzi®), and relmacabtagene autoleucel (Relma- 
cel; brand name Carteyva® in China only) CD19-specific CAR-T cell therapies for the treatment of various B cell 
malignancies were approved. Later, idecabtagene vicleucel (Abecma™) and ciltacabtagene autoleucel (Carvykti®), 
BCMA-specific CAR-T cell therapies for multiple myeloma, were also approved in February 2022.105,107–110

The recent advancements and ongoing improvement of CAR-T therapies arose as a potent method for treating hemato-
logical malignancies.111 The treatment of B-cell acute lymphoblastic leukemia (B-ALL) with CD19 CAR-T cells showed 
tremendous efficacy, with a complete remission of 70–90%.18,112 However, several obstacles are still present to hinder the 
treatment outcomes and utility of CAR-T cell therapy, including life-threatening CAR-T cell-associated toxicities, inhibition 
and resistance in B cell malignancies, limited efficacy against solid tumors, antigen escape, poor trafficking, limited 
persistence, infiltration, and the immunosuppressive microenvironment. Biomarkers could play a prime role in personalized 
cancer care regarding the prediction of CAR-T-related toxicity, efficacy, and relapse of CAR-T therapy. It is crucial to 
prioritize the development of new biomarkers and the validation of current ones in order to incorporate them into cancer care 
practice. In order to make CAR-T cell treatment more widely available to a larger number of patients, it is crucial to speed up 
the clinical implementation of modified CAR-T products and personalized management strategies.

Predictive Biomarkers for Therapeutic Response in CAR-T Cell Therapy
The principal goal of cancer treatment is the overall survival (OS) and event-free survival (EFS) of patients. There is an 
urgent need for feasible predictive biomarkers for long-term and short-term CAR-T therapy outcomes. Several studies 
reported that patients’ baseline characteristics, T cell functionality of constructed CAR-T cells, and minimal residual 
diseases post-CAR-T therapy could be strongly associated with therapeutic response. Prior to CAR-T therapy, various 
patient-related factors, including gender, age, treatment history, p53 status, tumor burden, immunoglobulin heavy chain 
variable region gene IGH variable (IGHV) mutation status, and chromosome 17p deletions, were found to have no 
significant correlation with the response to CAR-T cell therapy.17,113–115 Some studies have found no direct effect of 
these factors on therapeutic outcomes, whereas others imply potential indirect effects or within specific subgroups. TP53 
mutations are linked to poor prognosis and therapy resistance in lymphomas such as DLBCL and B-ALL.116,117 In 
DLBCL, TP53 mutations were associated with inferior complete response (CR) and overall survival (OS) rates, 
suggesting that TP53 status could be a useful biomarker for CAR-T risk stratification.118 In another study, TP53 mutation 
status did not significantly affect outcomes in DLBCL patients treated with CAR-T cells, emphasizing the need for bigger 
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cohort validation.119 Age and gender also have conflicting results. Some studies reported no significant impact on 
leukemia-free survival (LFS) and OS in B-ALL patients treated with CAR-T cells, while others suggested that older age 
could be associated with less favorable outcomes due to higher toxicity and lesser efficacy.120,121 For high tumor burden 
patients, dose fractionation of CAR-T cells is recommended to reduce toxicity, indirectly suggesting that patient-specific 
factors like tumor burden may affect therapeutic outcomes.122 CAR-T cell kinetics, which vary by patient and tumor 
type, may also affect therapeutic efficacy and toxicity.123 Thus, a more nuanced discussion that takes into account these 
contradicting evidences would provide a balanced view, noting that some patient-related factors may not have a direct 
correlation but may still affect CAR-T therapy outcomes in specific contexts or subgroups.

Elevated levels of serum LDH (lactate dehydrogenase) have been observed in cancer patients; this could be associated 
with high tumor burden, proliferation in B cell malignancies, and disease progression. The increased serum LDH levels 
were correlated with a poor prognosis and a negative therapeutic outcome in most cancer patients.124 Serum LDH levels in 
CAR-T therapy could be a potentially negative prognostic biomarker in cancer. An investigation conducted on adult 
patients with B-ALL indicated that a decreased pre-lymphodepletion LDH level and an elevated platelet count were distinct 
factors linked to improved EFS. Furthermore, it has been proposed that patients exhibiting elevated pre-lymphodepletion 
LDH levels and a decreased platelet count may necessitate systemic treatment prior to CAR-T cell infusion. However, LDH 
levels are not directly linked to the immune system, making them less promising for predictive biomarkers for CAR-T 
therapy responses.125 In non-small cell lung cancer (NSCLC) and large B cell lymphoma, serum LDH levels have been 
associated with treatment response and overall survival.126,127 In CAR T cell therapy, LDH levels are critical to assessing 
treatment response, although they have limited effect on the immune system.128 Combining LDH levels with additional 
biomarkers like carcinoembryonic antigen (CEA) can help predict clinical outcomes and guide treatment decisions in CAR 
T cell therapy patients.129 Routine monitoring of LDH levels can improve early therapy response assessment and patient 
outcomes in immune-related therapies like CAR T cell therapy. It was observed that elevated CRP at baseline was 
associated with poor treatment outcomes of CAR-T therapy, and the presence of circulating tumor DNA (ctDNA) in 
peripheral blood samples at the first week of CAR-T infusion was also correlated with poor response to CAR-T therapy. 
Both baseline CRP and the presence of ctDNA during the initial stage of CAR-T cell therapy could be reliable predictive 
biomarkers for CAR-T therapy response.130,131 A study conducted in B-ALL and B cell non-Hodgkin lymphoma (NHL) 
patients with CAR19/22-T cell therapy reported that macrophage inflammatory protein (MIP)-3α is a highly sensitive and 
specific prognostic predictor for non-response (NR) and early relapse (ER) to therapies. Extensive clinical validation of 
biomarkers like CD19 has led to their successful use in CAR T-cell therapies for B-cell malignancies.132 GPC3 and TGF-b 
have been quantified using advanced image analysis in preclinical models and demonstrate high correlation with pathol-
ogist assessment, suggesting a robust preclinical validation stage.133 CAR T-cell detection and quantification technologies 
including flow cytometry and quantitative PCR are well-established, but study application varies, affecting comparability 
and reproducibility.134 Despite advances like droplet digital PCR, NanoString, and single-cell RNA sequencing, detection 
timepoint and frequency remain a challenge.134,135 Reproducibility across studies and clinical trials requires standardized 
reporting and validation protocols.136,137 In addition, molecular assays and imaging technologies for in vivo CAR T-cell 
tracking and visualization are improving, but they need thorough validation to prove their clinical utility.138 Some 
biomarkers and detection technologies are well-validated, but others are still in preclinical or early clinical trials, requiring 
more research to demonstrate their reliability and reproducibility.

Patients with higher MIP3α levels after sequential CAR19/22 T cell infusion had much better progression-free 
survival (PFS) outcomes than patients with lower MIP3α levels. This study suggested that MIP3α could be 
a promising prognostic biomarker for the post-CAR-T therapy treatment response in terms of a prognostic predictor 
for NR/ER to therapies.139 Researchers had reported that the epigenetic characteristics of leukemia cells, such as 
hypermethylation of DNA, a stem cell-like phenotype and inherent plasticity, and decreased antigen presentation, were 
independent of CD19 status, and the leukemia subtype could be playing a crucial role in developing resistance to CAR-T 
therapy in AL patients. Moreover, the epigenetic status of leukemia cells may be used as a potential early predictive 
biomarker for resistance to CAR-T cell therapy.140,141 It was observed that significantly higher numbers of “exhausted” 
T cells (differentiated CD3+CD27-CD28-T cells) in lymphoma patients were associated with a low response to CAR-T 
cell therapy. Therefore, the low frequency of “exhausted” T at leukapheresis could be a potential pre-infusion predictive 
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biomarker for the responsiveness of CAR-T cell therapy.142 In solid tumors, exhausted T cells with inhibitory receptors 
such as PD-1, LAG-3, and TIM-3 prevent CAR-T cell therapy. These markers are associated with reduced proliferative 
capacity, impaired anti-tumor activity, and attenuated persistence of CAR-T cells.143 Chronic antigen stimulation and the 
immunosuppressive tumor microenvironment (TME) cause substantial transcriptional, epigenetic, and metabolic repro-
gramming, exhausting T cells.144,145 For instance, PD-1, LAG-3, and TIM-3 are highly expressed in tumor-infiltrating 
lymphocytes (TILs) and are linked to T-cell activation, but also with a proapoptosis, suggesting a complicated interplay 
between exhaustion and activation.146 To alleviate T-cell exhaustion, numerous therapies have been explored. Immune 
checkpoint blockade (ICB) targeting these inhibitory receptors has showed promise in reinvigorating exhausted T cells, 
however not all patients respond durably.147 Cytokine therapy and metabolic pathway modifications targeting the TME 
are also being investigated to improve CAR-T cell efficacy.148 Regulatory T cells (Tregs) also show exhaustion-like 
phenotypes under persistent stimulation, which may restrict their therapeutic potential in autoimmunity and transplanta-
tion. This suggests that comparable mechanisms may be at play across different T cell subsets.149 A unified exhaustion 
definition incorporating metabolic, epigenetic, transcriptional, and activation-based markers (M.E.T.A.) could improve 
understanding and improve targeted interventions. T-cell exhaustion can be addressed by ICB, metabolic reprogramming, 
and TME regulation to improve cancer CAR-T cell therapy outcomes.146

CAR-T cell therapies' efficacy and safety depend on epigenetic modifications that affect T-cell differentiation, 
exhaustion, and tumor infiltration. Cancer stem cells (CSCs) promote their initiation and maintenance by aberrant 
epigenetic reprogramming, allowing them to evade immune defenses and resist therapies. Targeting these epigenetic 
modifications can improve CAR-T therapy outcomes.150 Integrating omics technologies like epigenomics has helped 
discover tumor-specific antigens and molecular characteristics linked with CAR-T cell therapy’s anti-tumor effects and 
toxicity.151 CAR-T cells’ in vivo performance is affected by epigenetic regulation, which may improve memory 
phenotype, trafficking, and fitness, leading to more effective immunotherapies.152 Modulating epigenetic factors such 
as DNA methylation, histone modification, and chromatin remodeling may improve CAR-T therapy's safety and 
efficacy.35 Epigenetic modifications could improve targeting mechanisms for CAR-T therapies in hematologic malig-
nancies, reducing side effects and off-target effects.153 Understanding epigenomic events within the tumor immune 
microenvironment (TIME) is essential for exploiting epigenetic modification reversibility for cancer diagnosis, progres-
sion tracking, and treatment.154 CAR-T therapy combined with other treatments, such as radiation, may benefit from 
epigenetic insights to overcome solid tumor therapeutic limits.155 Overall, epigenetic biomarkers have the potential to 
improve CAR-T therapy’s predictive and therapeutic efficiency, making them a promising research and clinical 
application.

Biomarkers for CAR-T Cell Functionality
The study found that the specific characteristics of T cells, including the presence of immune checkpoints like TIM-3, 
PD-1, and LAG-3, as well as the immune microenvironment, can affect the effectiveness and behavior of CAR-T cells in 
fighting tumors. However, the proper functions of CAR-T cells are essential for their effective therapeutic response and 
durable remission.129,156 Numerous previous studies have reflected that the less differentiated T cells were strongly 
correlated with the expansion, persistence, and tumor-killing ability of CAR-T cells.114,157 A mouse model study on 
B-ALL revealed that the functionally modified CAR-T product with CD8+ Tscm cells is more effective in terms of 
prolonged antitumor activity and survival.158 It was also suggested that the number of CD8+CD45RA+CCR7+ Tscm 
cells in CAR-T cell products was linked to the speed at which CAR-T cells grew.159 Furthermore, in vivo investigations 
indicated that the presence of Tscm cells in the final CAR-T cell product was a favorable indicator for the expansion of 
CAR-T cells. Conversely, the presence of Tem cells and CD57+ cells in the final product had a detrimental effect on 
CAR-T cell proliferation and the effectiveness of anti-tumor activity.160

Biomarkers for Immune Checkpoints
It was also observed that the high-level expression of immune checkpoint proteins such as LAG-3, PD-1, and T cell 
immunoglobulin-3 (TIM-3) was associated with T cell exhaustion and could be associated with a lower response to anti- 
CD19 and CAR-T cell therapies.19 PD-1 expression on activated T cells, NK cells, and B cells can inhibit the growth of 
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T cells, the production of cytokines, and the cytotoxicity that could result in tumor cells evading the immune system.161 

Similarly, TIM-3 and LAG-3 have a role in exerting negative regulation on T cell activation.162 A study indicated that the 
dysfunctional response group had a considerably larger number of LAG-3+ T cells and TIM-3+ T cells compared to the 
functional response group. However, both groups had equal frequencies of PD-1+ CD4+ CAR-T cells and PD-1+ CD8+ 
CAR-T cells. Higher numbers of PD-1+ CD4+ T cells and PD-1+LAG-3+ CD8+T cells were seen in the group with 
trouble responding. Moreover, the findings also revealed that more expression of LAG-3 together with low secretion of 
TNF-α was correlated with early therapeutic failure, and the low frequency of TNF-α+/TIM-3-CD8+ T cells in CD19 
CAR-T cell products may be a risk factor for low persistence of CAR-T cells and early relapse.140 So, having too much 
PD-1, LAG-3, and TIM-3 on immune cells could be a way to tell early on how well a CAR-T treatment will work.

Biomarkers for the Immune Microenvironment
The suppressive immune microenvironment status could be unfavourable for T cell function and associated with inferior 
survival. The activated myeloid and lymphoid lineages of immune cells can indicate a lower immune-suppressed 
environment, which could be suitable for the expansion and persistence of CAR-T cells. A study observed that the 
B cell lymphoma patients treated with CD19 CAR-T cells had low monocytic myeloid-derived suppressor cell counts 
(CD14+ CD33+ HLA-DR cells) and showed a better response. Also, patients who had more expression of myeloid 
activation markers (IL-12, DC-Lamp) and lymphocyte effector markers (Fas ligand, TRAIL) had a longer overall 
survival.163 Furthermore, polyfunctional T cells produce cytokines and chemokines such as IFN-γ, MIP-1, IL-8, 
granzyme-B, IL-17A, and IL-5, which can reduce immunosuppression caused by the tumor microenvironment and 
could enhance clinical outcomes in CD19 CAR-T cell therapy. The increased serum levels of IL-15, MCP-1, and IL-7, 
which are associated with CAR-T cell expansion, could also impact the positive outcome of CD19 CAR-T cells.164,165 

IL-12 is produced by immune cells (T cells, NK cells, dendritic cells, and macrophages), which induces the secretion of 
several inflammatory cytokines, including IL-6, IL-8, IL-15, IL-18, IFN-ϒ, TNF-α, and GM-CSF. It also increases the 
cytotoxic functions of T cells and NK cells.166 Similarly, IL-18, which activates monocytes and lymphocytes, could 
enhance the antitumor activity of CAR-T cells as well as decrease the number of immunosuppressive cells.167–169

Future Prospects and Challenges
The potential of CAR-T cell-based gene therapies to transform cancer treatment is highly promising. Although CAR-T cell 
therapy has achieved significant success in treating hematological malignancies, there are still difficulties and opportunities 
that need to be addressed. Comprehending the immunological characteristics and surroundings of solid tumors is essential for 
enhancing the effectiveness of immunotherapies. Furthermore, improvements in the accuracy and selectivity of CAR-T cell 
identification by flow cytometry and PCR are crucial for boosting the accuracy and surveillance of CAR-T cell treatment. 
CAR-T therapy has revolutionized cancer treatment, especially for hematologic malignancies, although it presents technolo-
gical and logistical obstacles. Antigen escape, when tumor cells evade the target antigen, and the immunosuppressive tumor 
microenvironment, which reduces CAR-T cell efficacy in solid tumors, are technical hurdles.170–172 Technical challenges 
include improving CAR-T cell persistence and overcoming drug-resistant relapse.173,174 The necessity for specialist institutes 
with excellent processes and the high expense and complexity of producing patient-specific CAR-T cells limit 
accessibility.175–177 Different national and supranational interpretations of CAR-T products, as shown in the Russian 
Federation, exacerbate regulatory issues.178 Technical solutions like engineering CAR-T cells to better infiltrate tumors and 
resist immunosuppressive environments and logistical solutions like decentralized manufacturing models and regulatory 
harmonization to reduce costs and improve access are needed to address these issues.179 As required by the European 
Medicines Agency, CAR-T cell efficacy and safety must be monitored over time. By systematically addressing these 
obstacles, CAR-T therapy can be made more effective and accessible to more patients.

Ensuring broader accessibility and affordability of novel cellular and immunotherapy treatments requires careful con-
sideration of quality, cost, and access during their delivery. Optimizing the safety and tolerability of CAR-T cell therapy 
requires the careful management of adverse effects, including cytokine release syndrome and immune effector cell-associated 
neurotoxicity syndrome. The relapse mechanism and treatment method following CAR-T cell therapy in B cell hematological 
malignancies are currently being actively researched. The goal is to tackle the obstacles of disease recurrence and improve 
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therapeutic techniques. In addition, the investigation of several categories of T cells, such as memory cells and effector cells, 
along with the development of advanced CAR-T immunotherapy, presents potential avenues for improving the effectiveness 
and long-lasting effects of CAR-T cell treatment. The advancement of immunotherapy, specifically the production of CD8+ 
T cells from hematopoietic stem cells, is a notable achievement in cellular immunotherapy. This has the potential to broaden 
the scope of these treatments, making them more applicable. The critical focus lies in surmounting challenges and applying 
coping mechanisms for CAR-T cell immunotherapy in solid tumors. This endeavor holds substantial potential for expanding 
the advantages of CAR-T cell therapy to a wider array of cancer types. Ensuring the long-term effectiveness of CAR-T cell 
therapy relies on the persistence and development of memory cells. CAR-T cell therapy has been successful in treating 
hematological malignancies such B-cell acute lymphoblastic leukemia and non-Hodgkin’s lymphoma, earning FDA 
approval.72,180,181 Its efficacy in solid tumors is restricted by the lack of reliable tumor-specific antigens, poor T-cell 
infiltration, and immunosuppressive tumor microenvironments.73,182,183 Antigen escape, T-cell exhaustion, and severe 
toxicities such cytokine release syndrome and neurotoxicity hamper CAR-T cell therapy’s use.184–186 Using bi-specific 
chimeric antigen receptors, immune checkpoint inhibitors, and immuno-PET/-SPECT for better monitoring and optimization 
are among the innovative ways to improve CAR-T cell efficacy.187 CAR-Treg therapies for autoimmune disorders and CAR-T 
cell applications beyond oncology suggest a promising future for this technology. However, the high cost and complexity of 
CAR-T cell manufacture require cost-effective production methods and improved clinical application approaches. The future 
for CAR-T cell therapy is optimistic, but these complex issues must be addressed to maximize its potential across cancer types 
and other diseases. Thus, CAR-T cell therapy has considerable potential, but its efficacy and future applications should be 
examined in light of its existing limits and ongoing advances. Ongoing research endeavors to tackle these obstacles and 
enhance the durability of CAR-T cell therapy. Moreover, comprehending the role of tumor cell dedifferentiation in promoting 
immune evasion and immunotherapy resistance offers valuable knowledge for developing strategies to overcome resistance 
mechanisms and improve treatment results. The engineering of CAR-T cells for the treatment of solid tumors and the 
advancement of immunotherapies that activate T cells demonstrate the ongoing progress of CAR-T cell technology and its 
ability to fulfill medical demands that have not been met in cancer treatment. Utilizing combinatorial methods to enhance the 
effectiveness of CAR-T cell therapy in hematological malignancies, along with investigating single-cell imaging of T cell 
immunotherapy responses in living organisms, are novel strategies aimed at further improving the efficacy of CAR-T cell 
therapy. CAR-T cell therapy has revolutionized the course of therapy of hematological malignancies by targeting CD-19 and 
B-cell maturation antigens in B-cell acute lymphoblastic leukemia and large B-cell lymphoma.72,73 Extending this achieve-
ment to solid tumors is difficult. The TME of solid tumors is complicated and immunosuppressive, with dense extracellular 
matrices, hypoxic cores, and inhibitory cytokines that impede CAR-T cell infiltration and function.74,75,188 CAR-T cells’ 
efficacy in solid tumors is further complicated by tumor antigen heterogeneity and antigen escape.189–191 To overcome these 
obstacles, researchers are augmenting CAR-T cells with chemokine receptors, combining CAR-T therapy with immune 
checkpoint inhibitors, and establishing dual-target CARs to enhance specificity and limit off-target effects.192,193 Alternative 
immune cells such CAR-NK and CAR-M cells are being studied for tumor infiltration and decreased toxicity. Advanced 
methods like single-cell RNA sequencing and artificial intelligence are identifying solid tumor biomarkers to refine CAR-T 
cell design and predict therapy responses. Despite these advances, multicenter clinical trials are needed to confirm the efficacy 
and safety of combinatorial and novel solid tumor treatments. In solid tumors, CAR-T cell therapy poses considerable 
challenges, although ongoing research and technical improvements may improve patient outcomes.

Overall, the future outlook for CAR-T cell-based gene therapies is marked by continuous progress in comprehending 
the tumor microenvironment, enhancing methods for detection and monitoring, mitigating side effects, optimizing 
treatment approaches, and broadening the scope of cellular immunotherapy. These combined efforts contribute to the 
ongoing development and improvement of CAR-T cell therapy, leading to its wider and more efficient use in treating 
different types of cancer.

Conclusions
To summarize, CAR-T cell therapy has emerged as a viable treatment method for hematological malignancies, 
specifically B cell malignancies. In addition, CAR-T cell-based gene therapies are an innovative method in the field of 
cancer treatment, providing new opportunities for patients with resistant or recurring malignancies. Despite the presence 
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of obstacles such as adverse events and prognostic heterogeneity, the distinctiveness and strength of CAR-T cells have 
demonstrated notable therapeutic efficacy. Continuous research and clinical trials are crucial in advancing the field of 
CAR-T cell therapies. These efforts aim to enhance the effectiveness and widen the range of cancer treatments, ultimately 
leading to improved outcomes. CAR-T cell therapy is a sort of gene therapy that is a major breakthrough in the industry. 
It provides new optimism for patients with hematological malignancies that are resistant to treatment or have relapsed.
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