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ABSTRACT The mycobacteriophages InvictusManeo (K5 subcluster) and Netyap (L2 sub-
cluster) were isolated from soils in Cullowhee Creek, Cullowhee, North Carolina. Both exhibit
Siphoviridae morphology and infect Mycobacterium smegmatis mc2155. The InvictusManeo
genome is 61,147 bp and contains 96 predicted protein-coding genes, whereas the Netyap
genome is 76,366 bp with 131 predicted protein-coding genes.

The mycobacteriophages InvictusManeo and Netyap were isolated from single soil
samples collected near Cullowhee Creek in Cullowhee, North Carolina (Table 1).

Their genomes were analyzed in the Science Education Alliance-Phage Hunters
Advancing Genomics and Evolutionary Science (SEA-PHAGES) Program of the Howard
Hughes Medical Institute (HHMI) (1) to increase understanding of viral evolution and
diversity. Both viruses infect Mycobacterium smegmatismc2155 and were isolated using
enrichment at 37°C followed by two purification/amplification cycles in 7H9 top agar
(SEA-PHAGES Phage Discovery Guide protocol) (2). Electron microscopy revealed that
they exhibit Siphoviridae morphotypes (Fig. 1).

For sequencing, DNA was extracted from high-titer lysates with the Promega Wizard
DNA cleanup system, followed by library preparation with a NEBNext Ultra II DNA library
prep kit. The Western Carolina University Biotechnology Core performed shotgun
sequencing on an Illumina MiSeq system (Nano v2 reagents) (3), producing 224,694
(InvictusManeo) and 238,646 (Netyap) single-end 150-bp reads. Reads were assembled
into single contigs with Newbler v2.9 (4) and verified using Consed v29.0 (5) as described
by Russell (3). Both genomes are linear with 39 sticky overhangs (InvictusManeo, 59-
CTCAGTGGCAT-39; Netyap, 59-TCGATCAGCC-39) and were annotated using the PECAAN
workflow tool (6) and then transferred to DNA Master v5.22.2 (https://phagesdb.org/
DNAMaster). GeneMark v2.5 (7), GLIMMER v3.02 (8), and Starterator v1.1 (9) were utilized
to refine start sites, and comparative analysis was performed using Phamerator (10).
Functional assignments were made with BLASTp v2.9 (11), HHpred (12), TMHMM v2.0
(https://services.healthtech.dtu.dk/service.php?TMHMM-2.0), TOPCONS v2 (13), and the
NCBI Conserved Domain Database (CDD) (14), while tRNAs and transfer-messenger RNAs
(tmRNAs) were identified using ARAGORN v1.2.38 (15) and tRNAscan-SE v3.0 (16). All pro-
grams used default parameters.

Mycobacteriophages sharing .50% nucleotide sequence similarity are categorized as
members of the same cluster and are divided into subclusters based on average nucleo-
tide identity (17, 18). InvictusManeo is a K5 subcluster member, with a genome containing
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96 predicted protein-coding genes (36 with assigned putative functions), 3 orphan genes
(gp93 to gp95), and 1 tRNA gene. Genes include those for typical structural and assembly
proteins, a lysis cassette (lysin A, lysin B, and holin), and the lysogeny-regulating proteins
serine integrase (restricted to seven K5 subcluster members) and immunity repressor.
Although their functional roles are unknown, gene products 1, 44, 50, 51, 54, and 92 may
warrant further investigation; conserved in all K5 subcluster members, they are absent in
other bacteriophages, which suggests that they may play crucial roles in the K5 subcluster.
Whole-genome BLASTn alignment (11) of InvictusManeo to other bacteriophages indi-
cates high levels of similarity to the K5 bacteriophages Collard (GenBank accession num-
ber NC_051593) (97.63% identity with 100% coverage), Kratio (GenBank accession number
NC_028947) (99.02% identity with 97% coverage), and Larva (GenBank accession number
NC_023724) (97.78% identity with 95% coverage).

The Netyap genome (L2 subcluster) contains 131 predicted protein-coding genes (55
with assigned putative functions), 2 orphan genes (gp53 and gp136), and 12 tRNA genes.

TABLE 1 Characteristics of the InvictusManeo and Netyap bacteriophages

Parameter

Data for phage:

InvictusManeo Netyap
GenBank accession no. MZ958747 MW578835
SRA accession no. SRX11158994 SRX11158997
Genome size (bp) 61,147 76,366
Collection location coordinates 35.316432N,

83.165618W
35.310051N,
83.187270W

GC content (%) 65.6 58.9
Coverage (�) 250 219
No. of predicted protein-coding genes 96 131
No. of tRNAs 1 12
No. of tmRNAs 0 0

Plaque size (mm) (n = 10)
Range 1.9–4.7 1.3–2.5
Mean 3.0 1.9

Capsid size (nm) (n = 5 [InvictusManeo] or 6 [Netyap])
Range 65–70 76–81
Mean 67.0 78.5

Tail length (nm) (n = 5 [InvictusManeo] or 6 [Netyap])
Range 112–119 270–318
Mean 115.8 287.3

FIG 1 InvictusManeo (A) and Netyap (B) morphology examined using transmission electron microscopy.
High-titer lysates placed on Formvar-coated copper grids were negatively stained with 1% uranyl acetate
(2). Both phages exhibit Siphoviridae morphology. Scale bars, 100 nm.
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Lysin A and lysin B are present, as well as the lysogeny-regulating proteins tyrosine inte-
grase, immunity repressor, Cro, and excise, but holin was not detected. Gene products 21,
24, 25, 34, 48, and 51 (no known functions) may interest L2 phage investigators, because
these occur only in the L2 subcluster and are conserved in all members. Although it is a
temperate phage (lysogens can be readily isolated) (19), it is noteworthy that Netyap and
most other L2 subcluster members form clear, lytic plaques. Finally, whole-genome BLASTn
alignments (11) reveal a high level of nucleotide sequence conservation between Netyap
and Faith1 (GenBank accession number NC_015584) (99.97% identity with 99% coverage).

Data availability. Individual GenBank and SRA numbers are listed in Table 1.
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