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� Skin cancer is a fatal public health
concern rising continuously all over
the world.

� Several environmental and genetic
risk factors are associated with
cutaneous carcinogenesis.

� Use of nanocarriers for targeted
delivery of anticancer agents is the
most advanced approach.

� Polymeric structures are suitable for
tumor selective delivery of drugs,
genes and imaging agents.

� Polymeric micro/nanostructures have
successfully used for combination
anticancer therapies.
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Background: Skin cancer has been the leading type of cancer worldwide. Melanoma and non-melanoma
skin cancers are now the most common types of skin cancer that have been reached to epidemic propor-
tion. Based on the rapid prevalence of skin cancers, and lack of efficient drug delivery systems, it is essen-
tial to surge the possible ways to prevent or cure the disease.
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Aim of review: Although surgical modalities and therapies have been made great progress in recent years,
however, there is still an urgent need to alleviate its increased burden. Hence, understanding the precise
pathophysiological signaling mechanisms and all other factors of such skin insults will be beneficial for
the development of more efficient therapies.
Key scientific concepts of review: In this review, we explained new understandings about onset and devel-
opment of skin cancer and described its management via polymeric micro/nano carriers-based therapies,
highlighting the current key bottlenecks and future prospective in this field. In therapeutic drug/gene
delivery approaches, polymeric carriers-based system is the most promising strategy. This review dis-
cusses that how polymers have successfully been exploited for development of micro/nanosized systems
for efficient delivery of anticancer genes and drugs overcoming all the barriers and limitations associated
with available conventional therapies. In addition to drug/gene delivery, intelligent polymeric nanocar-
riers platforms have also been established for combination anticancer therapies including photodynamic
and photothermal, and for theranostic applications. This portfolio of latest approaches could promote the
blooming growth of research and their clinical availability.
� 2021 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction nanostructures have successfully been exploited for efficient deliv-
Present time, skin cancer is a global public health challenge and
its burden is continuously rising that may lead to profound effects
on both the global economy and manpower. Skin primarily com-
prises of two major layers, the epidermis and dermis. The epider-
mis is the outermost layer of skin that consists of melanocytes,
keratinocytes, merkel cells and langerhans cells [1]. Any abnormal-
ity occurring in this layer will lead to various kinds of skin insults
and cancer is one of them. The incidence, morbidity and mortality
rates of skin cancer continue to increase in various geographical
regions of the world; in United States, 5.4 million new cases of skin
cancer are being reported every year [2]. In general, skin cancer is
broadly divided into two major types: melanoma (cancers arising
from melanocytes dysfunction) and non-melanoma skin cancers
(from the epidermal derived cells) [3].

Melanoma occurs due to abnormal proliferation of human mel-
anocytes; pigment containing cells, comprised of 90%, 5% and 1% in
skin, eyes, and intestine, respectively [4–6]. As compared to other
skin insults, melanoma accounts only for 1% of all skin malignant
tumors. Despite recent advances in therapeutic approaches, still
melanoma is the most aggressive skin cancer, showing only 15–
20% of five-year survival rate [7,8]. Non-melanoma skin cancer
(NMSC) caused by genetic and environmental factors represents
approximately 95% of the skin cancers [9–11]. Generally, non-
melanoma skin cancer encompasses many other cancerous types
but these types are mainly divided into two main subtypes; cuta-
neous squamous cell carcinoma (SCC), and basal cell carcinoma
(BCC) make up 99% of all NMSCs [10,12]. Several studies have sug-
gested that the incidence rate of NMSC has been increased 3–8%
around the world annually since 1960 and it is 18–20 time higher
than that of melanoma [13,14]. Men are more at risk of NMSC than
women and the risk of progression of NMSC depends on genotypic,
phenotypic and environmental factors [15]. Based on the raising
prevalence of skin cancers, and challenges in efficient drug delivery
systems, it is indispensable to surge the possible ways to prevent
or cure the disease.

Current literature on the disease especially raising burden and
challenges for efficient drug delivery against the disease urges to
highlight and reconsider the issue to develop better understanding
about both the prevention and remedy. In this review, we pre-
sented the current understanding about biology of skin cancer
and leading risk factors with the main focus on barriers to treat-
ment and ability of polymer-based micro and nanostructures to
cope the disease. Owing to their promising potential among the
variety of strategies being explored by researchers, these struc-
tures are considered the best possible drug delivery approach.
Herein, we have summarized that how polymer-based micro and
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ery of anticancer drugs and genes to the skin cancers for possible
management.
Risk factors associated with skin cancer

There are multiple factors involved in cancer genesis. However,
two major risk factors related to the pathogenesis of many cuta-
neous cancers are biological (non-modifiable) and non-biological
(modifiable) [16], and are represented in Fig. 1A.
Biological factors (Non-modifiable)

The human skin is the largest and outermost organ of the body,
strategically providing an interface between external and internal
worlds. It provides a dynamic, mechanical, physical, and defensive
barrier against external insults: infectious microorganisms, ultravi-
olet (UV) radiations, toxic chemicals and mechanical stresses [17].
It also coordinates sensory perception and mediates thermo-
regulatory and immune responses [18]. Biological factors which
contribute in the onset of skin cancers are mainly involved in alter-
ing the protein synthesis which negatively impacts the skin cells
proliferation; ultimately, results in various skin diseases including
the melanoma and NMSC [19].

As compared to the general population, immunosuppressed
patients are at enhanced risk of developing cutaneous malignan-
cies. Management of such patients requires an integrated multidis-
ciplinary approach with dermatologic surgery, radiation oncology
and medical oncology [20].

There are associations between skin cancers and those viral
infectious diseases like acquired immune deficiency syndrome
(AIDS). It has been observed that the risk of progression of non-
melanoma skin cancer increases 3 to 5 times in AIDS patients
[21]. Moreover, it has been documented that the incidence of
BCC is 11.4 times more common in HIV-infected hemophiliac indi-
viduals than in the general population. The SSC in HIV patients
show a high risk of metastasis and recurrence together with a
50% mortality in the age of 6–84 months [22]. Molecular studies
unravel the complicity and describe that approximately 90% of
NMSC in immuno-compromised patients and up to 50% in
immuno-competent patients detected as contain DNA origin from
cutaneous or b-HPV types [23]. Additionally, it is considered that
these viruses might be indirectly incorporated in the pathogenesis
of NMSC [24]. In a largest reported series of ocular surface biopsies
with xeroderma pigmentosa, it has been found that patients are
predisposed to an increase in sunburn, freckling, and childhood
skin malignancies [25].

http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 1. (A) Biological (non-modifiable) and non-biological (modifiable) risk factors associated with the pathophysiology of many cutaneous carcinogenesis. (B) Figurative
description of membrane receptor to protein transcription pathways in melanomas. Expression of MITF; master transcriptional regulator in melanocyte development gets
dysregulated by mutational functional loss in three different sites (a- MCIR receptor (red cross, b- BRAF, NRAS or NF1(black lines) and c- GNAQ/11(block dot lines) that
mediate the mechanisms to turn them in melanomas.
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Numerous signaling pathways associated with the regulation of
gene expressions are frequently dysregualted in diverse cancers
including the melanoma and non-melanoma skin cancers. One on
such dysregulation is the mutation in the PTCH1 gene (under an
autosomal dominant condition) that leads to uncontrollable prolif-
eration of skin cells and results in the development of multiple
BCCs [26]. Similarly, in men, mutation in the CDKN2A gene is the
most commonly identified cause, whereas in women mutations
in the MDM2 gene are predisposed to establish an earlier age mel-
anoma [27].

Human telomerase RNA and human telomerase reverse tran-
scriptase (hTERT) might be involved in the pathogenesis of BCC,
SCC and melanomas. It has been found that as compared to normal
cells, most tumor cells have substantial telomerase activity and
demonstrate no net loss in telomere length during proliferation
and progression [28]. These characteristics of the telomerase make
a link and indicate its involvement in NMSC. However, understand-
ing of the complicated telomerase activities in human cancer still
remains, in fact, ambiguous [29].

Non-biological factors (Modifiable)

Environmental stressors such as exposure to air pollutants,
noise and artificial lights at night are contributing to rising cancer
rates [30]. The skin is the prime protective barrier that protects
humans against environmental stressors: chemical, biological and
physical. Moreover, these stressors negatively affect the skin and
enhance the risk of cutaneous diseases, especially skin cancer. As
a result of exposure to these external environmental stressors,
molecular pathways start to be involved in skin aging and other
related abnormalities [31].

Although there are several factors associated with skin cancer
but incessantly UV radiations from sunlight is the predominant eti-
ologic agent in the development and progression of skin cancers
worldwide [32] there is a cascade of molecular mechanisms
involved in UV-induced skin cancers include: activation of the
p53 pathways, increased DNA damage, inflammatory responses,
genetic mutations, oxidative stress, immunosuppression and apop-
totic pathway induction, which remarkably modify cell physiology
to arbitrate cell cycle arrest [33]. In UVR exposure, ultraviolet A
(UVA) produced reactive oxygen species (ROS), which interact with
lipids and proteins molecules and subsequently producing inter-
mediates capable of combining with DNA to make adducts and
result in breakage of DNA [9]. UVB is the most carcinogenic UVR
reaching the earth’s surface and induce structural damage of
DNA and RNA. It initiates covalent bond formation between
neighboring pyrimidines that subsequently generates genotoxic
photoproducts like pyrimidine-pyrimidine adducts and cyclo-
pyrimidine dimers that later on cause inflammatory responses
and tumor genesis [34]. While lastly, ultraviolet C (UVC) damage
is repairable for DNA repair enzymes and in rare instances, is
responsible for skin cancer [34]. Geographic variations and UVR
(lifetime sunlight exposure) incidence are key aspects in skin cells
proliferation and progression where they contribute in skin car-
cinogenesis by antigen-presenting cell dysfunction and inducing
immunosuppressive cytokine production [35,36].

In term of diet, several epidemiological studies have consistently
provided the evidence of the relationship between diet and skin
cancer. It has been observed that the reduction of tumor latency
and augmentation of tumor multiplicity, diets rich in omega-6 fat
endorse tumorigenesis [37]. However, low fat diet could signifi-
cantly decrease occurrence of non-melanoma skin cancers [38].
Findings revealed that, polyunsaturated fats supply arachidonic
acids as substrates for the formation of prostanoids and it canmake
structural or physiological modifications in immune responses to
UV radiation, thus promoting the growth of skin cancer [39].
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Exposure to environmental trace elements (arsenic, selenium
and zinc) confirms the risk of keratinocyte carcinoma and mela-
noma in humans [40]. Conclusively, as for the correlation between
diet and skin cancer, there are still insufficient evidences and the
existing studies contain limitations. Further well-designed studies
are required to unveil the role of diet in the establishments and
advancements of skin cancers.

In contrast to general population, skin cancer is the most recur-
rent malignancy among organ transplant recipients (OTR) [41].
Most keratinocyte carcinomas cause low mortality but relevant
morbidity is more prominent. In transplant recipients, NMSC
accounts for 90% of all skin cancers. In western countries about
40–50% and in Australia about 70–80% of causcasian transplant
recipients have established at least one NMSC [42]. White skinned
transplant recipients exhibit a 65–250 fold high susceptibility to
SCC and a 10–16-fold risk of BCC [43,44].

Biology of melanoma skin cancer

Aforementioned, melanocytes are known for synthesizing color
pigments called melanin in their specific organelle called melano-
somes which are then transferred to neighboring keratinocytes via
dendritic processes [45,46]. During the developmental stages, mel-
anocytes originate from neural crest, thus, they migrated to various
localizations in the body but mainly, they are present on skin
where any abnormality in their functions leads to malignant trans-
formation [47,48].

Melanocytes are considered as the endogenous protective
shield of skin against harmful radiations. Aberrations in melano-
cytes functions are associated with their amplification and growth.
Several details are involved that give pledge to these skin insults
such as self-sufficiency of growth factors, evasion of cellular apop-
tosis, insensitivity to growth inhibitors, sustained angiogenesis,
limitless replicative potential, metastasis and tissue invasion
[47,49,50]. These factors drive the events of activating oncogenes
or suppress the tumor suppressor genes by means of molecular
mechanisms such as dotted mutation, deletions and translocation
or epigenetic mechanisms such as microRNA expression and pro-
moter methylation [47].

In molecular picture, G protein-coupled melanocortin-1 recep-
tors (MCIRs) in the membrane of melanocytes are key components
of melanocytes physiology and are well characterized in the lead-
ing risk of melanoma: UV-induced tanning pathways [51,52]. MCIR
regulates the melanocytes proliferation in response to the external
signal of melanocytes-stimulating hormone (a-MSH). Any UV
exposure damage to melanocytes initiate a subsequent cascade
of molecular events; P53 stabilization and transcriptional activation
of pro-opiomelanocortin that further process into several signaling
molecules and turn on the melanocytes-stimulating hormone (a-
MSH) production [53,54]. Production of a-MSH triggers another
cascade of melanocyte proliferation via MCIR. MCIR activation
increases the cyclic adenosine monophosphate (cAMP) and subse-
quent cAMP response element-binding protein (CREB) regulates
the expression of transcriptional activation factor microphthalmia
(MITF) via CREB regulated transcript activator (CRTC) [55,56].

MCIR polymorphism is second major factor that dramatically
increases the melanoma risk. Patients with MCIR variants, display
less shielding from UV by pheomelanin and carry the improved UV
signature mutation burden [57,58].

Evidence proposed that pheomelanin synthesis mediates the
reactive oxygen damage and promotes melanoma development
in a UV independent fashion in the red hair/fair skin background.
This association between pheomelanin and melanomagenesis is
an aberrant pigment pathway that needs attention for restoring
functional melanogenesis that is eumelanogenesis [59,60]. Clinical
findings of a recent study reveals that any foreign body entry and
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trauma stimulate the excessive corticosteroid secretion, coagu-
lopathy in blood, accelerate reactive oxygen species and suppress
the immune system of host that may mediate the onset of mela-
noma metastases in specific area [61]. Melanoma cells show simi-
larity of build in developmental program with neural crest cells
and exhibit the same gene expression patterns. Findings of a novel
study demonstrated that loss of neural crest regulator- highly con-
served transcriptional factor PRDM1 accelerates the development
of melanoma and confirmed its role of tumor suppressor in p53

muted models [62]. Other study validating in those in vitro and
in vivo experiments, oncogene- induced (BRAFV600E) senescence
presents a genuine protective physiological process and senescent
proliferation of melanocytes also leads to a benign in the form of
nevi or moles [63]. Similarly, mutations of BRAFV600E and NRAS
are proved as the primary pathogenic event in acral naevi. Muta-
tion in these genes is reported in the acquired and congenital nevi
respectively and both contribute in the onset of melanoma forma-
tion [64–69]. Fig. 1B gives figurative description of membrane
receptor to protein transcription pathways in melanomas.

Current standard therapies for melanoma face the challenge of
tumor heterogeneity; display variable responses. Investigations
give emphasis on interpreting the communications between differ-
ent phenotypes (e.g. melanocytic and mesenchymal) of melanoma
at different stages of tumor progression and it could act as thera-
peutic target along with other receptor and ligand targets in
involved signaling pathways [70].

Biology of NMSC

NMSC develops in epidermal keratinocytes cells. Chronic sun
and physical carcinogenic –ultraviolet radiations (UVR) exposure
to skin has the potential to directly drive the malignant transfor-
mation of progenitor cells [71,72]. Adsorption of UVR by the ker-
atinocytes leads to immune-suppression and p53 mutations that
further mediate other carcinogenesis processes [73–75]. Tradition-
ally, NMSC is divided into two major types; BCC and SCC.

Basal cell carcinoma

Basal cell carcinoma also called Jacob’s ulcer, rodent ulcer, basal
cell epithelioma or basalioma cancer arising from basal membrane
of epidermis [76]. BCC is very low –grade malignancy in all skin
cancers, needs lineage specific immunohistochemical analysis for
correct diagnosis and suggested to be completely excised at early
stages [77]. It develops in the 80% of patients, mostly in the head/-
neck regions. BCC rarely metastasizes but frequently shows local
invasion and tissue destruction, thus resulting in high morbidity
[78]. It has been found that genetic susceptibility in development
of BCC increase the skin ageing and shared connections in molecu-
lar pathological features [79]. Molecular understandings about BCC
indicate that Hedgehog (HH) pathway is the key regulator of these
cells and mutational errors in its transmembrane receptor pathed1
can inhibit the signal headway and result in carcinoma develop-
ment [80–83].

Mutational analysis studies have confirmed that functional
mutation in any component of HH pathway; sonic hedgehog
(HH) ligand, smoothened (SMO), pathed1 (PTCH1) receptor,
glioma-associated (GLI) oncogenes, Cyclin-D1, Myc and Bcl-2 pro-
tein will mediate the BCC development [84,85]. Furthermore, it has
been recognized that, aberrant HH pathway trigger a complex sig-
nature that actuates PTCH1, SMO, and cytoplasmic-released mech-
anism of GLI that further drives the proliferation and angiogenesis
in the development of BCC [80,86–88]. On other hand, up regula-
tion of the HH signaling initiates pathogenic events involved in
the 90% of BCC and it got further confirmed in infundibulocystic
variant of BCC [89,90]. Heddgehog signalling inhibitors are being
227
used as target cancer therapeutics and research community is con-
tinuously trying to explore their role in treatments modality for
BCC e.g. periocular BCC patients [91]. Addition to the intrinsic fac-
tors (genetic mutation), there are evidences about the enhanced
risks of early onset of BCC and other cancers in the consumers of
unauthorized, illegal cosmetic brands and cosmetic tattoos with
high loads of lead, mercury, copper, and others hazardous com-
pounds [91,92]. Fig. 2A explains hedgehog signalling mechanisms
in onset of BCC.
Squamous cell carcinoma

Human squamous cell carcinoma originates from epidermal
keratinocytes. Cumulative UVR, chronic inflammatory dermato-
logic conditions, burn scars, human papillovirsus (HPV), and
human immunodeficiency virus (HIV) infections are the risk fac-
tors for the onset of SCC [93]. SCC is one of the highly mutated
human cancers and more aggressive and speedily metastasizes to
regional lymph nodes as compared to BCC [94]. 95% of SCC cases
carry the mutations of tumor suppressor gene TP53 that are
induced mostly by UVR and other environmental risk factors
[95–97].

Recently, molecular analysis revealed that, key downstream
transcriptional cofactor involved in cell growth regulation; phos-
phorylated Yes associated protein (YAP1) and splicing factor
derived circular RNA circUHRF1 are potent drivers in the develop-
ment and progression of oral SCC and the finders says that these
cofactors could act as therapeutic target in treating NMSC
[98,99]. In other mutations that contributes in the onset of SCC,
mutations in CDKN2, NOTCH and in oncogenes; RAS are crucial
and need to explore further. [50]. Investigations show that other
epigenetic factors like expression of certain microRNAs in the skin
cells also have significant role in mediating those pathogenic
events that induced skin insult in the form of SCC [100]. Findings
of other studies emphasize to elucidate the relationship between
tumour heterogeneity and therapeutic response and it needs to
adopt the tumor microenvironment approaches for their applica-
tions in the carcinogenesis of SCC [101,102]. Fig. 2B illustrates
the key signaling pathways involved in squamous cell carcinogen-
esis followed by UVB exposure- mutations.
Barriers to the use of nanomedicine in skin cancer treatment

Skin barriers

To cope with rising skin cancer burden, technologies are being
replaced with their better and advanced forms. Use of nanomedi-
cine in the form nanoparticles (NPs) loaded with anticancer agents
for accurate delivery at target tissues of the body is the most com-
mon one. These administrative approaches are used for different
skin malignancies; pre-malignant lesions, like AK; skin cancer at
superficial level, non-persistent BCC and SCC. In addition, these
routes are also applied to cure the melanoma at primary stages
[103]. Anatomy of skin reveals that, the uppermost layer of skin;
stratum corneum (SC) is main barrier that resists the entry of anti-
cancer agents to target sites thus; interrupts the response of topi-
cal treatments [104]. In addition to the said phenomenon,
corneocytes surround by lipids, namely fatty acids, triglycerides,
cholesterols and ceramides arrange into a complex network that
further control the movement of macro and micro molecules
across the skin. Usually, AK lesions form excessive keratin, result-
ing in the thicker SC layer and consequently a stronger barrier for
NPs entry. Thus, NPs employed against AK require proper design-
ing to reach the deep epidermal layers, where the langerhans cells
are present, to show immune response [105]. A layer below the SC



Fig. 2. (A) Hedgehog signalling mechanisms in onset of basal cell carcinoma. a) In the absence of SHH ligand, HH signalling is inactive and receptor patched 1 inhibit SMO
action that allow SUFO to hold GLI1 in cytoplasm and prevents its signalling for the transcription GLI target proteins. b) Binding of SHH ligand activates the SMO that activates
the SMO and allows SUFO to release the GLi1 for its action in nucleus. c) Any functional mutation in pathed1 (red cross) or activating mutation in (green cross) initiate HH
pathway in the absence of ligand that leads to tumor formation. (B) Key signalling pathways involved in squamous cell carcinogenesis followed by UVB exposure-mutations.
Block arrows are indication of activation of protein while red T-bars shows inhibitory relationship.
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is an epidermal layer called as viable epidermis and it reaches
down to the thin basal layer dermal-epidermal junction [106]. This
deep layer of skin is vascularized and encloses keratinocytes, mel-
anocytes, cells of langerhans and, merkel [107]. Different skin can-
228
cer studies observed higher levels of keratin, lipids and the
appearance of keratotic papules, and erythematous plaques in can-
cer cells as compared to normal tissues, which provide an extra
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remarkable barrier to the passive transport of NPs to the target site
[108–110].

Physiological barriers

In systemic applications of nanomedicine for the treatments of
skin cancer, liver and kidney provide another barrier of drug
delivery to target site by removing the NPs from circulatory system
of blood [109]. It has also been noted that, normally, structural
arrangement of blood vessels hinders the NP entry and tightened
retention level in tumor site [111]. In tumor tissues, interstitial
spaces filled with proteins, collagen, glycosaminoglycan and elastic
fibers uplift interstitial fluid pressure making extracellular matrix
rigid thus provide another biological barrier for the efficient trans-
port of anticancer drugs at tumor sites [109,112].

Cellular barriers

Tumor cell-NPs interaction studies show that set of NPs
characteristics affect their interactions with tumor cells. Main
physiological interactions of NPs and tumor cells include adsorp-
tion/attachment, cellular uptake leading to endosomal transport,
metabolism, and degradation [111]. Cell membrane is an overall
uptake barrier for all types of biological cell transports and acts
as selective permeable membrane due to its negative charge nat-
ure, thus also provide a biological barrier for NPs loaded with
anticancer drug. Such barriers can easily be overcome by different
mechanisms like phagocytosis, endocytosis, micropinocytosis,
clathrin-dependent endocytosis, caveolin-dependent endocytosis
and clathrin-independent endocytosis [113–115]. Beside their
defined target site actions, designing of NPs is aimed to surpass
the challenges of intracellular transport such as pH changes,
redox condition and lysosome encounter. For these challenges,
biocompatible and the thermo responsive cargo systems are
developed [116,117].

Multidrug resistance (MDR) barriers

Tumor cells developed MDR when the cells get confrontation of
various drugs used in therapy. MDR lessened the therapeutic abil-
ity of a drug that play role in disease progression. So, MDR proved
to be an impediment for an effective therapy in various cancers for
instance, skin cancer, especially melanoma [118–120]. There are
several intrinsic factors that may lead to MDR; degradation of
drug, changes in prodrugs, changes in receptors and target of
drugs, and also reduced in drug-receptor interactions. In addition,
mechanisms like changes in membrane, alteration of metabolic
process, cell division changes, changes in repair of DNA damage,
and modifications in efflux pumps can contribute to MDR
[118,119]. By reason of these developed intrinsic factors in a
patient with acquired resistance showed less treatment efficacy
with the passage of time.

In clinical manifestation, these medical complexities are driven
mostly by genomic instability, environmental and lifestyle base
factors. To deal with these diverse mechanisms of MDR for attain-
ing maximum efficacy in cancer therapy, advanced technologies
have been emerged that are capable of characterizing cancer
MDR and help in appropriate diagnosis and treatments; atomic
force microscopy, next generation sequencing, single live- cell
tracking for identification of drug resistance, microfluid technology
and microfluid based 3D cell culture [121].

To explore more about the mechanisms of MDR develop-
ments and to bring in control, researchers are engaged to try
multi-ends approaches and achieved considerable success. For
example, very recent, a novel research demonstrated that, some
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selected Nigerian medicinal plants are endowed with significant
in vitro cytotoxicity and mediate the pathways to inhibit the
MDR mechanisms in skin cancers [122]. Similarly, it is also
clearly postulated that known biological active natural products:
Silybin and Nobiletin are potent MDR reversal agents in cancer
[123,124].
Polymer-based structures: Management of skin cancer

In spite of a remarkable progress in cancer genomics, biology,
and proteomics during the last several decades, cancer treatment
is still not satisfactory and overall survival rate of many of cancer
patients stays low [125]. To the date, due to the difficulties in clin-
ical trials, there is no FDA registered topical treatments of mela-
noma and other related cancerous lesions. However, there are
several ways to treat the skin cancer. In current skin cancer thera-
pies, clinically, chemotherapy is still one of the most frequently
practiced approaches. Primarily, chemotherapeutic agents are
toxic compounds and usually administrated systemically.
Notwithstanding, these chemotherapeutic agents often present
some limitations, including poor solubility and bioavailability,
unsuitable pharmacokinetics, and non-selective biodistribution,
which in turn can complicate their clinical use resulting in
unwanted side effects [126,127]. In other available therapies con-
ventional photothermal therapy (PTT) is considered as the earliest
approach to treat the cancers. These days, it has proven efficacy for
certain types of NMSC but still there is need of new strategies for
improving the efficacy and minimize the factor of pain to patient
[128]. Application of ionizing radiation and laser exposure to the
cancer parts of the body to manage the skin cancer is also a com-
mon practice of time, however, their clinical efficacy is variable
and not accepted as standard of care. [129,130]. Skin cancers are
also being treated with anti-PD-1 immune checkpoint inhibitors
to support the immunity responses against viral gene expression
or other mutations. Despite great progress of immunotherapy
approaches, most of the patients are not cured by these treatments
[131]. Surgery is most viable option and considered as the tradi-
tional mainstay of treatment. It gives high cure rates with clear
identification of tumor margins. However, decision to perform sur-
gery can be affected by various considerations [132]. To treat the
skin cancers, there are numerous anticancer agents including 5-
fluorouracil (Pyrimidine synthesis inhibitor), Imiquimod, (Inhibitor
of herpes simplex virus replication), Ingenol mebutate (Protein
kinase C activator), sinecatechins (Camellia sinensis leaves extract,
known as green tea), epigallocatechin-3-gallate (Flavonoid of
plants) and betulinic acid (Acidic molecules consist of betulin) that
have proved their amazing results to cure the different cancers
[133–138]. All these ways of skin cancer treatment are under con-
tinuous development to manage the challenges both at patient
level and target site level.

To cope the above-mentioned drawbacks, challenges to skin
treatments and other limitations, presently, nanoscale drugdelivery
systemshave shown their excellence indiagnosis, drugdelivery, and
therapy, specifically, in cancer management. In contrast to conven-
tional drug delivery approaches, micro/nanostructures have shown
great potential in enhancement of drug bioavailability, prolonged
circulation time, controlled drug release, and tumor targeting. In
addition to these primary functions, the newly emerging materials
and technology can offer additional opportunities or functions to
micro/nanocarriers for cancer diagnosis and treatment [139,140].

Drug delivery through skin is an attractive alternative route to
conventional drug delivery systems such as oral and parenteral.
It provides many advantages over other routes of administration
because; it is non-invasive drug delivery system which maintains
drug level within the therapeutic window for prolonged periods
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of time, avoids degradation of the drug in a gastrointestinal tract,
eliminates first pass effect and offers easy application, improves
patient compliance and acceptability of drug therapy [141]. For
topical treatment of skin cancers, micro/nanoparticle-based sys-
tems have been widely tested due to their potential to enhance
the penetration of bioactive molecules into tumor cells. Micro/-
nanostructures enhance drug retention in the tumor and skin;
thus, resulting in improved patient compliance, minimal toxicity
and reduced dosage [142].

Several nanocarriers have been established, of which the most
commonly employed are: (1) inorganic nanocarriers, including
quantum dots (QDs), carbon nanotubes, silica NPs, gold NPs, and
magnetic NPs, and (2) organic nanocarriers like liposomes, poly-
meric micelles, and dendrimers. Polymeric structures have been
considered as one of the most studied drug delivery carriers as they
offer several biological and physicochemical advantages over other
types of nanostructures, including simple structures, easy synthe-
sis, drug solubilization, enhanced biocompatibility, improved phar-
macokinetics and biodistribution. Additionally, these have
potential for further engineering and can be successfully used to
exploit cancer microenvironment to design stimuli responsive
drug delivery systems including pH responsive, light responsive,
redox-responsive, temperature-responsive, ultrasound responsive,
enzyme responsive, magnetic field responsive, and multi respon-
sive systems for tumor selective delivery of drug and genes to pre-
vent the emergence of multi drug resistant cancers [143–145].
Table 1 Table 1 provides the comprehensive view of latest studies
on polymer-based micro/nanostructures in different skin cancers.
Hence, in this review, due to promising potential for enhanced
delivery, we are primarily focusing on polymer-based carriers for
the delivery of anticancer cargoes across the skin to the target tis-
sues among the other available approaches. Following the general
classification, a brief overview of how polymeric micro and nano
carriers; microspheres, microemulsions, microneedles, micelles,
nanogels, nanocapsules, nanoparticles, and dendrimers have been
exploited for efficient delivery of drugs and genes is discussed here.
Polymer-based micro/nanostructures for drug delivery to skin
cancers

Polymeric chains have a hydrophilic shell and a hydrophobic
core. The hydrophobic core is employed to encapsulate poorly sol-
uble compounds and the hydrophilic shell provides the stability to
core in its aqueous environment [160]. Fullerene (C60), a nano
scale carbon material, can show photochemical properties under
visible light or UV irradiation. It also possesses low systemic toxi-
city profile. A biodegradable and biocompatible polymer, Poly (lac-
tic acid) (PLA), has been employed to fabricate a multifunctional
implant of fullerene C60 and an anticancer drug Mitoxantrone
(MTX). Fullerene (C60) L-phenylalanine derivative functionalized
with PLA (C60-phe-PLA) self-assembled to formulate microspheres
of a hydrophilic antitumor agent MTX and a hydrophobic block
(C60) via dispersion–solvent diffusion method. Visual illustration
of the self-assembly property of the microspheres is provided in
Fig. 3A. The microspheres demonstrated sustained in vitro release
pattern approximately for 15 days. Moreover, high anticancer
effects without toxic effects to normal organs, thanks to the
remarkably improved tumor retention time of MTX, less biodistri-
bution to other organs and strong photodynamic activity of PLA-
phe-C60 were achieved. Hence, the results demonstrated that
these microspheres might be a potential approach for combined
delivery of chemotherapy and photodynamic therapy (PDT) [161].

The microneedles (MNs) are one of the most advanced poly-
meric microstructures which are extensively being investigated
in recent years. Physical drug delivery enhancement improves skin
230
cancer treatment efficacy. MNs are proved quite useful in manag-
ing actinic keratoses and NMSC [162]. The MNs technique has
often been used to promote noninvasive intradermal/transdermal
delivery of drugs. They have potential to favor the delivery of drug
molecules across the skin. MNs enhance systemic drug absorption
and improve bioavailability by acting as a microinjection device
[163]. MNs are categorized into five categories: coated, solid, hol-
low, dissolvable and hydrogel-forming MNs usually made up of
polymers. Recently, MNs are frequently being explored to deliver
the anticancer drugs to skin tumors [164]. Considering the poten-
tial of combination of photothermal therapy (PTT) and chemother-
apy, Hao et al., have reported a novel smart delivery system to
overcome the limitations associated with high doses of photother-
mal and chemotherapeutic agents. A near-infrared (NIR) respon-
sive PEGylated gold nanorod (GNR-PEG) were fabricated and
then coated on poly (l-lactide) microneedle (PLLA MNs) system
(GNR-PEG@MNs). On the other hand, docetaxel-loaded MPEG-
PDLLA (MPEG-PDLLA-DTX) polymeric micelles were fabricated.
The developed MNs system was used to improve the anticancer
effectiveness of intravenously administered MPEG-PDLLA-DTX
polymeric micelles to treat an A431 tumor. Schematic illustration
of the smart delivery system developed here is provided in Fig. 4.
Both in vitro and in vivo studies showed an excellent heating effi-
ciency of GNR-PEG@MNs containing only 31.83 ± 1.22 lg of GNR-
PEG/patch. Moreover, GNR-PEG@MN of 480 lm height showed
good skin insertion properties, and in vivo heat transferring ability,
demonstrating that tumor site could attain 50 �C within 5 min. In
contrast to PTT and chemotherapy alone, the combination of GNR-
PEG@MNs and low dose MPEG-PDLLA-DTX micelles has eradicated
an A431 tumor completely, showing the significant synergetic
effects. Thus, GNR-PEG@MNs may prove a promising polymeric
carrier for enhancement of antitumor activity of DTX loaded poly-
meric micelles for the treatment of superficial tumors and exhibits
potential for clinical translation for epidermoid cancer treatment
[165]. Following this, in another study, Hao et al, have developed
an improved version of their previously established synergistic
system. Herein, the authors have fabricated NIR responsive 5-
fluorouracil (5-Fu; an anticancer) and indocyanine green (ICG;
photothermal agent) encapsulated monomethoxy-poly (ethylene
glycol) polycaprolactone (MPEG-PCL) NPs (5-Fu-ICG-MPEG-PCL).
Subsequently, 5-Fu-ICG-MPEG-PCL NPs loaded hyaluronic acid
(HA) dissolving MN arrays (HA MNs) were developed to treat mel-
anomas and human epidermoid cancers. HA, an FDA approved
pharmaceutical ingredient, used to fabricate MNs, possesses good
skin insertion properties. The results indicated the potential of
HA MNs to efficiently deliver 5-FuICG-MPEG-PCL NPs to the skin,
and NIR controlled release of drug from the NPs. Hence, the devel-
oped system has shown the potential for achieving a single-dose
therapy of skin cancer [166].

In another recent study, a combination chemo-photothermal
synergistic system has been developed for superficial skin tumors
(SST). For the purpose, two-stage separable MNs were fabricated.
Polycaprolactone and lauric acid (PCL/LA) as phase change materi-
als were employed to develop the arrowheads of the two-stage
separable MNs. Arrowheads were loaded with doxorubicin and
ICG. The arrowheads were capped on the dissolvable bases
comprised of polyvinyl pyrrolidone and poly (vinyl alcohol)
(PVP/PVA). Upon insertion into skin, the PVP/PVA support bases
were quickly dissolved resulting in the separation of arrowheads
in the skin layers. Upon NIR irradiation, the embedded arrowheads
were ablated owing to the photothermal conversion of the ICG,
which in turn liberated the DOX from the MNs for penetration into
the tumor site. In vivo studies in melanoma mouse model showed
synergistic effects of two-stage separable MNs based chemo and
phototherapy in treating skin cancers [167]. Visual representation
of the developed system is provided in Fig. 4.



Table 1
Role of polymer-based micro/nanostructures in management of different skin cancers.

Polymer-based
micro/nanostructures

Anti-cancer agent Size of material Polymer used/Important
characteristics

Enhancement of drug delivery action Cell line/Model Effects against skin cancer Ref

Self-assembled pH-
sensitive, folic acid-
cholesterol sodium
alginate NPs (FCA NPs)

Metformin (MET) and
Doxorubicin (DOX)

< 180 nm Sodium alginate, a linear and anionic
polysaccharide consisting of two 1,4-
linked hexuronic acid residues, forms
the hydrophilic shell of FCA NPs. This
material has been widely used for
cancer drug delivery therapies because
of its biocompatibility, low cytotoxicity,
and ability to self-assemble into NPs
under mild condition.

Tumor targeting was achieved by
grafting folic acid onto cholesterol-
sodium alginate to deliver functional
drugs into folate receptor-
overexpressing melanoma cancer cells.

A375 and SK-
MEL-28 cells
and in vivo
unilateral
melanoma
tumor model.

The developed nano system
has co-delivered a
combination of MET/DOX
into melanoma tumors to
trigger pyroptosis,
apoptosis, and necroptosis
of the melanoma cells, thus
blocking melanoma
progression, and proved a
promising vector for
effective drug delivery into
melanoma.

[146]

Polymeric nanoparticles
based non-aqueous
dispersions

Cisplatin < 150 nm PNVP (poly(vinylpyrrolidone) is an FDA
approved, hydrophilic polymer and has
a good efficiency to control therelease
rate of poorly water-soluble drugs.
PCL (poly(e-caprolactone)), also
approved by the FDA, and have a high
hydrophobicity, biocompatibility,
biodegradability, non-toxicity, and it is
permeable to low-molecular-weight
drugs.

Controlled drug delivery through
polymeric nanoparticles to achieve
improved efficiency, and reduced
toxicity. Moreover, a biocompatible
non-aqueous emulsion polymerization
approach was used to develop polymeric
nanoparticles.

A-375 skin
cancer cell line

The drug release rate from
the hydrophilic cross-linked
PNVP-based NPs is higher
than that from the
hydrophobic PCL-based
NPs. Moreover, results
showed that NPs have a
good compatibility with the
blood. Furthermore, Both
types of NPs had no
cytotoxic effect but, at a
concentration of 500 mg/mL,
presented an apoptotic
effect similar to that of the
free drug.

[147]

a-terpineol-loaded PMMA
nanoparticles

a-terpineol 50–150 nm Poly (methyl methacrylate) (PMMA) is a
synthetic polymer having widespread
applications in biological systems, since
it is biocompatible and non-toxic. Its
most important characteristic that can
make it a promising carrier of drugs
since its circulation time in the

The miniemulsion technique is suitable
for the synthesis of polymers in the form
of NPs or nanocapsules. This system
allows the encapsulation of liquids or
solids (hydrophilic/hydrophobic) during
the formation of the polymer structure,
and can be adjusted for different forms

Melanoma cell
lines from mice
(B16-F10) and
human (SK-
MEL-28)

The toxicological profile of
PMMA containing 400 mg of
a-terpineol in Artemia
salina, erythrocytes and
normal animal cells like
macrophages and
fibroblasts (MRC-5),

[148]
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Table 1 (continued)

Polymer-based
micro/nanostructures

Anti-cancer agent Size of material Polymer used/Important
characteristics

Enhancement of drug delivery action Cell line/Model Effects against skin cancer Ref

bloodstream is increased. PMMA is
approved by FDA for medical use.

of polymerization, such as: anionic,
cationic, ring-opening, radical,
condensation and others. The high
hydrophobicity of a-terpineol limits its
direct application, since it has been
encapsulated into polymeric
nanoparticles for enhanced delivery.

suggested the high
pharmacological security of
the drug. Moreover, its
cytotoxic effects were
demonstrated against
melanoma cell lines
suggesting the potential of
these NPs for melanoma
therapy.

Chitosan nanoparticles
containing S-

nitrosomercaptosuccinic acid (S-
nitroso-MSA-CS)

S-nitrosomercaptosuccinic acid ——————— Chitosan is a biocompatible,
nontoxic, and
biodegradable polymer
with pharmaceutical
applications, and has been
widely used for
nanoparticle preparation.

Considering that NO
releasing polymeric
nanomaterials are
emerging as a promising
strategy in cancer
chemotherapy,
biocompatible chitosan
NPs were developed and
used to encapsulate low
molecular weight
mercaptosuccinic acid
(MSA), a thiol
containing small
molecule. Free thiol
groups on
mercaptosuccinic
chitosan NPs (MSA-CS)
were nitrosated to form
S-nitroso-MSA-
containing chitosan NPs
(S-nitrosoMSA-CS).

Melanoma B16-F10 Cells Cytotoxic effects
were selective
to tumor cells in
comparison to
normal
melanocytes
and dependent
on the entire
nanoparticle
composition;
only CS, free
MSA, or free S-
nitroso-MSA did
not exhibit
significant
cytotoxicity.
Additionally, S-
nitroso-MSA-CS
induced an
apoptotic cell
death profile,
dependent on
caspase
activation, and
associated with
a cellular and
mitochondrial
oxidative stress.

[149]

Eudragit nanoparticles Imiquimod 249.3 ± 12.6 nm Polymethacrylate copolymer has been
widely used in drug delivery systems
based on its mucoadhesive properties,
proteolytic enzyme inhibition
properties, tight junction opening, and
drug absorption enhancement.

Imiquimod was encapsulated in
polymeric NPs to improve cutaneous
permeation and reduce imiquimod
adverse effects following the topical use
and evaluate antiangiogenic effect and
chemopreventive activity of this system
compared to the market formulation.

Multistage
DMBA and
croton oil
model of skin
carcinogenesis
in mice.

The designed stable
nanocarriers were capable
of improving imiquimod
skin permeation and their
chemopreventive activity as
well as antiangiogenic effect
represented a promising
alternative for the
management of malignant
skin lesions.

[150]
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Table 1 (continued)

Polymer-based
micro/nanostructures

Anti-cancer agent Size of material Polymer used/Important
characteristics

Enhancement of drug delivery action Cell line/Model Effects against skin cancer Ref

Hybrid nanocomplexes
(AgNP@CMC-DOX)
Silver NPs embedded in
the
carboxymethylcellulose
(CMC) polymer cross-
linked networks
conjugated with
doxorubicin (DOX)

Doxorubicin 10 nm Carboxymethyl cellulose (CMC) is a
polysaccharide whose hydrogens on the
hydroxyl groups are partly substituted
by carboxymethyl groups. This
polysaccharide is soluble in water and
therefore has been widely used in
manufacturing of biopolymer-based
hydrogels for biomedical applications.
Herein, CMC was used simultaneously
as reducing agent and polymer ligand
for producing colloidal silver
nanoparticles complexed with
doxorubicin in aqueous dispersions.

An innovative platform was designed
and developed based on
nanoparticle � polysaccharide � drug
nanostructures for producing anticancer
and antibacterial hybrid hydrogels.
Importantly, these hybrids were
produced by means of a fully green
chemistry strategy aiming at
nanomedicine applications against skin
cancer.

75 and HEK
3 T cells

Hydrogels demonstrated
tuned kinetics of
intracellular releaseof DOX
in vitro for killing
melanoma cancer cells
evidencing a synergistic
effect with AgNPs
incorporated in the
matrices.
Moreover, these hybrid
nanocomposites proved
antimicrobial activity
against Gram-positive and
Gram-negative bacteria.

[151]

Surface functionalized
hydroxypropyl
cellulose-sliver
nanoparticles (HPC-
SNPs)

miR-148b 58.03 ± 15.5 nm Hydroxypropyl cellulose is a derivative
of cellulose having a combination of
hydrophobic and hydrophilic groups
and shows both water solubility and
organic solubility.

Light- inducible nucleic acid gene
regulation system, in which particles
penetrate via irradiation and precisely
deliver the drug for tumor ablation.
Technique has lowest side effects to
healthy tissues while treatment,
improve immunity and cellular uptake.

idermal skin
ls (Pam 212
l)/
nsgenic
ce with
asG12V-
ven skin
ors

Increased apoptosis in Ras-
expressing keratinocytes in
epidermal squamous cell
carcinoma. A sustained and
rapid reduction in tumor
(92.8%), and potent
immunomodulation both
local and systemic was
achieved.

[152]

Lipid NPs loaded dissolving
microneedles array

PD-1-cisplatin 55.5 nm, PVP
based MNs of
800 mm

Polyvinylpyrrolidone (PVP) is a water-
soluble polymer made up of monomer
N-vinylpyrrolidone. Based on its water
solubility, it is widely being used in
fabrication of dissolving microneedles.
Here in, microneedle tips dissolved
within 5 min to show rapid direct
delivery.

Direct deep layer delivery using
microneedle patch loaded with tumor
targeted NPs.

u and CAL
n cancer cell
es

Robust immune response in
targeted skin cancer.

[153]

Gold nanocage-
microneedle

Doxorubicin AuNC of
59.2 nm
Hyaluronic acid
(HA) based
MNs.

Hyaluronic acid (HA) a polysaccharide is
being used in MNs fabrication due to its
excellent biocompatibility,
biodegradability and solubility. Despite
the promising features, weak
mechanical properties of the
polysaccharides limited their
applications. Increasing polymer
concentration in the preparing
procedure makes the manufacturing
process more difficult because of the
significantly enhanced viscosity of the
polymer solution. However, crosslinking
endows MNs with enhanced strength
along with decreased solubility as well.

Nanocage-microneedles can efficiently
penetrate inside the skin. System
released loaded drug precisely and get
dissolved after delivery of cargo

7 mice/
use
lanoma cell
e BI 6 F10ice

With DOX and laser
exposure of NIR, nanocage-
MN system has showed
significant synergistic
chemo-photothermal
effects for inhibition of
superficial skin tumor cells
with lower side effects

[154]

Microneedle patch Genes 1000 mm Polycaprolactone (PCL), an FDA
approved bioresorbable polymer, is
suitable as a needle material for
photothermally triggered drug release
because of its high biocompatibility and

Microneedles coated with
polyelectrolyte multilayers can
efficiently release the genes after
insertion into the skin. pH-responsive
polyelectrolyte multilayers (PEM) were

ce model/
man oral
idermoid
cer cell line

Microneedles proved to be
an excellent carrier for DNA
delivery and its quick
dispatch upon insertion in
deep dermal area. As

[155]
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Table 1 (continued)

Polymer-based
micro/nanostructures

Anti-cancer agent Size of material Polymer used/Important
characteristics

Enhancement of drug delivery action Cell line/Model Effects against skin cancer Ref

relatively low melting point. The
encapsulated LaB6@SiO2 nanostructures
acted as a local heat source and
increasedthe temperature of the PCL
microneedles after NIR irradiation.
When the temperature (50 C) wass close
to the melting point of the PCL, the MNs
undergo rapid thermal transitions from
a solid to a liquid state, thus increasing
the mobility of the polymer chains and
enabling the release of the molecules.

coated on the surface of PCL MNs by
layer-by-layer assembly to realize rapid
gene release. Dimethylmaleic
anhydride-modified polylysine (PLL-
DMA), a charge reversible polymer, was
introduced to PEM. The PEM composed
of two parts: the transition layers of
(PLL-DMA/polyethyleneimine) and the
gene-loaded layers of (p53 expression
plasmid/polyethyleneimine).

compared to control group,
MN genes delivery showed
greater inhibition of skin
tumor cells up to to 90.1%.

Polyvinylpyrrolidone-co-
vinyl acetate (PVPVA)
based MNs

Imiquimod, 1000 mm PVPVA is a biocompatible polymer that
is widely used in the pharmaceutical
industry as a dry binder in tableting, as a
film-forming agent in tablet coating, as
well as a film-forming agent in topical
drug delivery systems. Besides that,
being a derivative of PVP, PVPVA is a
chemically and biologically inert
polymer which obviates the issues of
polymer drug compatibility along with
biological toxicity.

Less invasive co-localization of
polymeric MNs with Imiquimod is
viable approach to enhance the dermal
delivery of Imiquimod for the treatment
of nodular basal cell carcinoma (BCC).

Porcine skin via
Fran diffusion
cell method

MNs showed similar
intradermal permeation of
imiquimod as from AldaraTM

cream, in spite of having
six-fold lower drug loading
than the clinical dose of
AldaraTM. Moreover, skin
cross sections showed
intradermal co-localization
of the PVPVA polymer, with
imiquimod within the MN
channels, illustrating it a
viable approach for efficient
delivery of imiquimod for
nodular BCC.

[156]

PLGA NPs Peptide P20 (CSSRTMHHC)
and combined peptide C.
Combined peptide C
comprised of a tumor-
homing peptide ‘‘C”
(CVNHPAFAC), conjugated
to (HTMYYHHYQHHL) an
antiangiogenic peptide
with a GYG.

800–100 nm Poly(lactide-co-glycolide) acid (PLGA), is
a biodegradable copolymer approved by
FDA for use in humans. The PLGA NPs
have been commonly used
asnanocarriers, due to their ability to
encapsulate and deliver drugs.
Additionally, the controlled release
profile of PLGA in response to biological
signals enables prolonged treatment
with low doses of the drug.

Effectiveness of peptides is usually
hampered by their fast degradation in
the biological system. PLGA NPs
conjugated to peptide C on the NPs
surface and loaded with peptide P20
were applied as a dual-peptide carrier
for application in cancer therapy to
achieve synergistic effects of two
peptides.

B 16-F10
melanoma cell
line

The inhibitory effect of P20-
PLGANPs was almost same
to the effect of non-
encapsulated P20 in fivefold
higher dose. The inhibitory
effects were even higher
with P20PLGA NPs
functionalized with
combined peptide C,
showing 28% reduction in
lung nodules in a syngeneic
model of metastatic
melanoma in comparison to
untreated animals.

[157]

Dual targeted polymeric
micellar NPs

Dasatinib 100–200 nm Three polymers were used to build the
micellar nanoparticles: the matrix
metalloproteinase MMP2-sensitive
polymer (PEG5k-pp-PE), FR-targeted
polymer (FA-PEG2k-PE), and micelle
building block (PEG2k-PE).

Targeted micellar approach ensures the
stability and efficient release of cargo at
target site. It significantly prolongs the
systemic circulation of drug and
decrease the non-uniform bio
distribution of drug in healthy tissues.
Matrix metalloproteinase 2 (MMP2), a
major enzyme responsible for cancer
initiation, growth and metastasis, is up-
regulated in many cancer tissues. MMP2
has been used as a biomarker for cancer
diagnosis and as a stimulus for tumor-
targeted delivery of imaging agents and
drugs.

mice model /
Murine B 16-
F10 melanoma
cell

MMP2-mediated PEG5k de-
shielding and FA exposure
significantly improved
cellular uptake and anti-
cancer effects of the
micellar NPs in FR and
MMP2 expressing cells,
including multidrug
resistant (MDR) cancer
cells. Additionally, MMP/FR
micelles showed
remarkable MMP2-
dependent tissue
penetration, uptake and
cytotoxicity in 3D MDR
tumor spheroids. Moreover,

[158]
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For cancer treatment, Novel 3D printed polymeric MN arrays
are also being utilized for augmented cisplatin delivery to A-431
epidermoid skin tumors. The use of 3D printed MNs confirmed
the capability of the system for dermal delivery of anticancer
agents via tumor inhibition effect [168]. Topical 5-fluorouracil (5-
FU) is an approved treatment for superficial BCC. By pretreatment
with polymeric MNs having 50 mm base width and 50 mm height,
4.5-fold increased permeation flux of 5-FU through the full thick-
ness skin was achieved. In an in vivo mouse model containing
B16-F10 mouse melanoma cells, the anticancer efficacy of a market
product of 5-FU (5% topical cream) was remarkably improved upon
the application of cream on a MNs pretreated skin, in contrast to
the skin not treated with the MNs. 5-FU has not been approved
for melanoma therapy, but the clinical effectiveness of topical 5-
FU against BCC can be enhanced by combining it with MNs tech-
nology [169].

In the past several decades, amphiphilic block copolymers with
both hydrophilic and hydrophobic segments, and an ability to
spontaneously self-assemble into spherical micelles, have been
emerged as promising nanocarriers to improve the efficacy of
chemotherapy. Their ability to control the self-assembly in an
aqueous environment provides adaptability and versatility to mod-
ify the fabrication of different micellar nanostructures, including
nanocapsules, core � shell nanospheres, vesicular structures and
hollow spheres [170,171]. Polymeric micelles, typically, ranged
from 10 to 80 nm in size penetrate skin through follicular pathway
via accumulation in hair follicles. Functionalization of these
micelles with ligands (antibodies, carbohydrates, and aptamers)
or by using block copolymers, their efficacy can be improved [172].

A recent study has reported the synthesis of rapidly self-
assembled spherical micelles. A light-responsive, ultrasensitive
block copolymer, consisting of multiarmed poly (ethylene
glycol)-b-poly(caprolactone) (PEG-b-PCL) polymer was used as a
water-soluble segment and maleimide-anthracene linkers were
employed as a photosensitive element, to fabricate the desired
self-assembled spherical micellar NPs. The developed smart
micelles showed unique characteristics, including extremely low
critical micelle concentration, modifiable drug-loading capacity,
desirable structural stability, and ultrasensitive light-responsive
drug delivery. Additionally, cellular studies illustrated that upon
UV irradiation for 10 s, the drug-loaded micelles completely and
rapidly released the drug within the cells in result of degradation
of the maleimide � anthracene cycloadduct linkers, subsequently,
the released drug exhibited strong cytotoxic activity in oral SCC as
the micelles had effectively delivered the drug into the cellular
nucleus. Given the simplicity of their design, and the quality per-
formance, these new light-sensitive polymeric micelles could be
a promising approach for the establishment of a multifunctional
nanocarrier system [173]. Schematic illustration of the designed
intelligent system is provided in Fig. 3.

In another study, Wan et al., have reported the synthesis of
reduction-responsive polymeric micelles for the targeted delivery
of drug to cancerous cells. For the purpose, D-a-Tocopheryl poly-
ethylene glycol succinate-folate (TPGS) was used as a copolymer.
TPGS has been used in drug delivery based on its amphiphilic prop-
erty. However, TPGS having PEG1000 does not keep a long blood
circulation owing to short chains of PEG1000. Therefore, authors
have fabricated TPGS3350 with PEG3350 for stabilization of the
micelles, enhanced blood circulation time and prevention of their
non-specific cellular uptake. Following the accumulation of the
micelles in tumor region by EPR effect, tumor cells may ingest
these via endocytosis mediated by folate-receptors. Based on the
higher content of glutathione (the reducing agent) in cancer cells,
breakage of disulphide link favors the rapid release of docetaxel
to show its anticancer effect. The developed micelles exhibited dif-
ferent functions including reduction responsively, active targeting,



Fig. 3. Visual representation of self-assembled polymeric micro/nanostructures-based delivery systems. (A) Schematic illustration of fullerene-based multi-functional
sustained-release microspheres and their bio-functions. Characterization of microspheres based on C60-PHE-PLA (a): Photomicrographs of MTX loaded microspheres, (b) and
(c) SEM images of MTX loaded microspheres at different magnifications. Figure is reproduced from the reference [161] copyright � 2015 Elsevier. (B) Structural and graphical
presentations of controlled drug loading and release by light-sensitive 3PEG � PCL. Figure is reproduced from the reference [173] copyright � 2019 American Chemical
Society.
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extended blood circulation, and rapid intracellular drug release,
thus, enhanced the drug delivery efficiency [174]. Among different
available therapeutic options for the treatment of skin melanomas,
localized application of imiquimod (IMQ), provides a non-invasive,
acceptable option. IMQ acts as an immune response modulator.
IMQ is available in the market as Aldara� (5% cream) which is pri-
marily indicated to treat the BCC. The block copolymer ‘methoxy-
poly (ethylene glycol)-)-hexyl-substituted lactide (mPEG-
hexPLA)’ self-assembled micelles have been used to encapsulate
poorly aqueous soluble IMQ in order to enhance its cutaneous
bioavailability. 0.05% of IMQ micelles (27 nm size) were loaded
into carboxymethyl cellulose (CMC) based gel. The formulation
showed > 17-fold selective cutaneous retention in contrast to
transdermal permeation. The developed 0.05% gel showed remark-
236
able delivery efficiency into human skin in comparison to Aldara�

cream. Hence, allowing therapeutically relevant IMQ concentra-
tions to be delivered at target site in spite of a 100-fold dose reduc-
tion [175]. Thus, these aforementioned studies reporting the
designing of self-assembled polymeric micelles exhibited the
potential of amphiphilic block copolymers for establishment of
smart delivery systems for controlled drug targeting.

Nanogels are aqueous soluble cross-linked polymeric networks
having dimensions in nanometer range which can be developed to
incorporate various kinds of compounds to design potential carrier
systems for biological molecules and drugs. Hydrophilic and
thermo responsive three-dimensional cross linked nanogels with
dendritic polyglycerol (dPG) have been used to enhance the skin
penetration of anticancer drugs [176,177]. In a recent study, in



Fig. 4. Utilization of different polymeric MNs based systems to achieve synergistic effects of chemo and photothermal therapy. (A) Schematic presentation of the
preparation of PLLA MNs and GNR-PEG@MNs, (B) Working protocol of the novel synergetic system to treat A431 tumors by the combination of NIR responsive GNR-
PEG@MNs and MPEG-PDLLA-DTX micelles. (Step 1: Injected the DTX loaded micelles; Step 2: After the injection, pressed the GNR-PEG@MNs at the tumor sites and under
2 W/cm2 irradiation by 808 nm laser within 5 min). Images are reproduced from the reference [165] copyright � 2017 American Chemical Society. (C) Illustration of the
composition of the separable MNs system. (D) Schematic presentation of the working of ICG/DOX loaded separable MNs system for synergistic chemo-photothermal therapy
against superficial skin tumors. Digital microscopic images of separable MNs without ICG and DOX (E1 and E4), with ICG (E2) and with ICG and DOX (E3). Images are
reproduced from the reference [167] copyright � 2020 American Chemical Society.
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response to the tumor’s acidic environment, pH-responsive double
walled PLGA-chitosan nanogels were developed to load 5-FU. 5-FU
was encapsulated into PLGA core. To achieve interaction with anio-
nic cancer cell membrane, these were further coated with chitosan.
Additionally, eucalyptus oil as a penetration enhancer was coated
on the biodegradable polymeric nanogels. The results showed the
bio and cytocompatibility of drug loaded double walled nanogel
in human keratinocyte (HaCaT) cell lines, and its high skin penetra-
tion and cellular uptake, suggesting that this novel polymeric
nanogel could be a promising approach for treatment of skin can-
cers [178].

Polymeric nanocapsules have been exhibited to have potential
to reduce side effects associated with some drugs. However, these
are formed as liquid formulations, hence, presenting difficult skin
application owing to their low viscosity. To address this problem
these are loaded into polymeric hydrogels composed of bio adhe-
sive polymers including Carbopol�, chitosan and hydroxypropyl
methylcellulose to make their topical application possible.
Recently, Gazzi et al., have used pectin (a natural polymer), to for-
mulate a semisolid formulation. Firstly, they have developed IMQ-
loaded polymeric nanocapsules then incorporated into pectin-
based hydrogel. The investigations showed that IMQ-
nanocapsules loaded hydrogel displayed better cell viability, skin
penetration and adhesiveness, release profile, and cytotoxic effects
in contrast to the solution of the drug, proving the promising
potential of nanoencapsulation for drug delivery efficiency [179].

Chitosan is a cationic biodegradable polymer. The positive
charge favors strong interaction with the negatively charged skin
surface; hence, alter the barrier function and deliver cargoes
[172]. Nanoemulsions of 5FU were prepared using Capyrol (propy-
lene glycol monocaprylate) as oil, polyethylene glycol (PEG) 400 as
a co-surfactant, and transcutol as a surfactant. A remarkable
increase in permeation was achieved with nanoemulsions in con-
trast to the control conventional gel. The results suggested that
the developed formulation could safely be used to enhance skin
permeability of 5FU following the topical application [180].

For site-specific areas of SCC, the effectiveness of conventional
treatments, including surgery, is not satisfactory. PDT through
topical application of prodrug 5-aminolevulinic acid (ALA) is could
be a simple and effective alternative for skin carcinomas. In spite of
promising potential of ALA PDT for therapy of superficial SCC, it is
not being preferred for invasive SCC, primarily owing to its limited
skin bioavailability. ALA-loaded PLGA-NPs were fabricated to
address this aforementioned problem. The results indicated that
the designed NPs improved the protoporphyrin IX production in
cutaneous SCC, suggesting that ALA PLGA NPs induced topical
PDT found to be more effective in treating SCC as compared to free
[181]. A recent study has reported fabrication of lipid coated chi-
tosan NPs to load ferrous chlorophyllin (Fe-CHL), a photosensitizer
in order to improve the Fe-CHL delivery for effective PDT of SCC.
The NPs showed their promising PDT effects in human SCC mono-
layers. The skin retention and cytotoxicity results indicated the
potential of nanocarriers for treatment of SCC employing PDT
[182].

Decoration of NPs with complementary ligands facilitates the
cancerous cell specific targeting. Once the NPs bind with the recep-
tors, they rapidly undergo receptor-mediated endocytosis or
phagocytosis by cells, resulting in cellular internalization of the
loaded drug. Dendrimers are mono dispersed and multivalent
NPs possessing a central core that provides a symmetrical arrange-
ment of repeating units. Highly branched structures of dendrimers
provide a great number of surface functional groups. Their struc-
ture favors the inclusion of both hydrophilic and lipophilic drugs
and imaging agents [183]. The cationic dendrimers have the ability
to modify skin permeation via interaction with its lipids. Den-
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drimers are also used for efficient delivery of anticancer, antiviral,
antimicrobial and antihypertensive drugs [184].

Dendrimers incorporating 5-FU, have also been investigated for
topical application. Amine-terminated dendrimers may act as
polymeric skin enhancers for hydrophilic drugs like 5-FU. Pre-
treatment of skin with dendrimers with isopropyl myristate
(IPM) enhanced the tissue internalization of 5-FU; hence, increas-
ing its permeability coefficient by reducing drug solubility in IPM
[185]. Hu et al., have developed dual pH and redox responsive sys-
tem by introducing redox-sensitive disulfide linkages between
poly (ethylene glycol) (PEG) and poly (amidoamine) dendrimers
(PAMAM) to achieve both long circulating time and efficient intra-
cellular drug release. Doxorubicin (DOX) was loaded into the
hydrophobic core of the conjugates to get PAMAM-SS-PEG/DOX
complexes. The results of release studies displayed the acid-
triggered release of DOX from the established complexes. More-
over, cellular uptake mechanism of the complexes was determined
to be caveolae and clathrin-mediated endocytosis. Lastly, in vivo
studies in B16 tumor-bearing mice indicated that these could
remarkably enhance anticancer effectiveness offering a good safety
profile [186].

Polymeric micro/nano-structures for gene delivery to skin
cancers

The conventional therapeutic options for skin melanomas
include chemotherapy, surgical removal, radiation therapy,
immunotherapy, and biotherapy [187]. Notwithstanding, their
therapeutic effectiveness is limited owing to their high toxicity,
associated drug resistance, and poor selectivity [188]. Gene ther-
apy is a powerful approach for the treatment of skin cancers as it
targets the source of the disease rather symptomatic relief, offering
high specificity and low toxicity [189]. However, there are some
problems associated with cutaneous gene delivery, including skin
barriers and the small number of cells getting transfected. Recent
advancements have presented the potential of non-viral delivery
systems for cutaneous gene delivery, demonstrating their superior-
ity over viral vectors, - ‘the current gold standard’ – in terms of
manufacturing and safety concerns [190]. Some of these advanced
non-viral, polymeric micro and nanostructures-based gene deliv-
ery systems have been described here.

In most of the malignant tumors, signal transducer and activa-
tor of transcription 3 (STAT3) plays a pivotal role in tumor prolifer-
ation, survival, angiogenesis, metastasis, and immune evasion, and
is reported to be hyperactive in skin melanomas [191]. Gene ther-
apy employing short interfering RNA (siRNA) targeting STAT3 is a
promising therapeutic option for skin cancers. A recent study has
reported the fabrication of novel polymeric delivery system for
topical delivery of STAT3 siRNA. Polyethylenimine (PEI) has been
used as a carrier to encapsulate STAT 3 siRNA to increase its cellu-
lar uptake, and STAT3-siRNA-PEI complex has further loaded in to
the dissolving microneedles (MNs) composed of biocompatible
polymers: dextran, hyaluronic acid (HA), and polyvinylpyrrolidone
(PVP), with intention to increase its intradermal penetration. The
results of the study have demonstrated that MNs can efficiently
penetrate in the skin and rapidly dissolve there. In vitro B16F10
cell experiments showed the enhanced cellular uptake and trans-
fection of siRNA, increased gene silencing and tumor inhibition.
Moreover, in vivo studies in mouse melanoma model demon-
strated that topical delivery of STAT3 siRNA PEI complex via dis-
solving MNs can efficiently suppress the melanoma through
silencing STAT3 gene, proving its potential for treatment of skin
melanoma with targeted inhibition efficiency and minimum
adverse effects [192]. In many studies, p53 tumor suppressor gene
(p53 DNA) has also been widely explored for cancer treatment.



Fig. 5. Visual representation of the polymeric microneedles-based microenvironment responsive delivery platform for rapid release of the gene. (A, B and C)
Schematic illustration of the microneedle patch modified with pH-responsive transition layers and gene (p53 DNA)-loaded layers, via layer-by-layer assembly. (D) The
fluorescence images of tr-MNP modified with 4, 8, 12, 16 bilayers of modal DNA (D1, D2, D3 and D4 respectively). (E) The topography of silicon pieces modified with
transition layers and gene-loaded layers. (F) Image of representative mice of four groups showing the very rare change in the weight, depicting the safety of the designed
delivery system. (G) Image of isolated tumor after 21 days treatment of four groups. (H) Weight of isolated tumor after 21 days treatment of four groups (n = 4, * p ＜0.05),
demonstrating that the p53 DNA loaded tr-MNP showed a great tumor suppression in comparison to the intravenous (IV) administration, because MNs can enhance drug
utilization by avoiding gene loss in systemic circulation. Thus, both ntr-MNP and tr-MNP treated mice showed better tumor suppression in contrast to IV administration.
Figure is reproduced from the reference [155] copyright � 2019 Elsevier.
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However, its low therapeutic efficacy and lack of sustained deliv-
ery, demands for synergistic therapies to treat cancer efficiently
[193].

Photothermal therapy (PTT) has been reported to have great
potential to treat cancer. Near-infrared (NIR) light has been exten-
sively employed in PTT due to its capability to penetrate tissues
above the tumor site and relatively lesser side effects. PTT with
NIR light exhibits low systemic toxicity and inhibits tumor growth
through spatiotemporally controlled photothermal effects
[194,195]. A recent study has reported the design of polymeric
MNs patch to simultaneously deliver IR820 (a derivative of NIR
dye, as a photothermal agent) and p53 DNA to a tumor site. p53
DNA and IR820 were co-loaded into the tips of HA based MNs to
reduce waste. The results of the study demonstrated the efficient
penetration of MNs in the stratum corneum, and rapid dissolution
to deliver IR820 and p53 DNA to the tumor site. At the site of appli-
cation of MNs patches temperature of the tumor site increased by
239
14.7℃ owing to the photothermal efficacy of IR820, upon NIR light
irradiation. The excellent synergistic in vivo antitumor effects of
p53 DNA/IR820 based MN patch have proved this novel delivery
system to be a promising approach for the treatment of subcuta-
neous tumors [196]. Another recent study has explored the poten-
tial of polymeric microneedles combined with acidic cutaneous
environment for direct and rapid delivery of p53 DNA to the skin
for enhanced patient compliance. For the purpose, polycaprolac-
tone (PCL) MNs were designed by layer-by-layer assembly and
coated with pH-responsive polyelectrolyte multilayers (PEM). A
charge reversible polymer, dimethylmaleic anhydride-modified
polylysine (PLL-DMA) was introduced to PEM. The PEM was made
up of two parts: the transition layers of (PLL-DMA/
polyethyleneimine) 12 and the gene loaded layers of (p53 expres-
sion plasmid/polyethyleneimine) 16. The modified MNs patch with
the PEM (coded as tr-MNP) could load 31 lg model DNA and
improve gene release, in contrast to the control (MNP without
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ig. 6. Visual representation of the novel biomimetic NPs based delivery system. (A) Schematic illustration of the steps involved in the preparation of biomimetic NPs
tilizing various polymers and cancer cell membrane derived from the oral tongue SCC. (B) Scheme presenting the mechanisms through which the designed delivery system
orked to show the combined effects of gene (Nrf2-siRNA) delivery and amplification of PDT through the delivered gene. (C1) Confocal images of the cells after 48-hour
eatments with free ICG, PPI, PPI-siRNA, and M@PPI-siRNA NPs combined with laser irradiation (+L). Mitochondria stained with MitoTracker green (M7514) and Cyt c stained
ith anti-Cyt c antibody emitted green and red fluorescence. (C2) Quantitative analysis of released Cyt c from mitochondria in the SCC-25 cells following the treatment with
Ps and laser irradiation. Red fluorescence in the merged confocal images indicated Cyt c released from mitochondria into cytoplasm. Relative released Cyt c is defined as the
uorescence intensity ratio of release Cyt c in the treated cells to that in the control cells without laser irradiation. Scale bars present 20 lm. (For interpretation of the
ferences to colour in this figure legend, the reader is referred to the web version of this article.) (D) PTT and PDT efficacies of M@PPI-siRNA NPs in SCC-25 tumor-bearing
ice: (D1) IR thermal images of the mice and (D2) temperature changes inside the tumors during 10 min-laser irradiations at 8 h after IV administration of normal saline (the
ontrol), free ICG, PPI, PPI-siRNA, and M@PPI-siRNA NPs. Upon laser irradiation, M@PPI-siRNA NPs showed an improved heating efficiency as compared to other treatments,
creasing the temperature up to 56.5 �C, that is sufficient for tumor ablation. (E) Tissue distributions and tumor accumulation of M@PPI-siRNA NPs in SCC-25 tumor bearing
ice: (E1) Fluorescence images and (E2) mean fluorescence intensities (MFIs) of tumors and main organs collected from the mice at 24 h after various treatments. ** P < 0.01
ompared to the control; # P < 0.05 for the comparison between two treatment groups. Figure is reproduced from the reference [197] copyright � 2020 Elsevier.
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transition layers, coded as ntr-MNP). Tr-MNP showed 33% release
of model DNA in simulative cutaneous environment (pH = 5.5) in
comparison to only 4% by ntr-MNP, based on the reason that
PLL-DMA could achieve charge reversal in cutaneous acidic envi-
ronment, resulting in the collapse of transition layers and subse-
quently the release of the gene. In vivo studies have displayed
the enhanced tumor inhibitory effects of tr-MNP treated mice
(90.1%) as compared to the ntr-MNP treated mice (46.4%) and
intravenously administered mice (30.5%). Hence, the pH-
responsive, DNA loaded MN patch could potentially treat the sub-
cutaneous tumors (155). Visual representation of the polymeric
microneedles-based microenvironment responsive delivery plat-
form designed in the study is provided in Fig. 5.

Recently, Shurui Shi et al. reported a novel biomimetic NPs
delivery platform for synergistic effects of PTT and photodynamic
therapy (PDT). PTT and PDT have been selected based on their
advantages including non-invasive property, site selectivity and
very less chances of drug resistance for the treatment of oral ton-
gue squamous cell carcinoma (SCC). Nevertheless, the anticancer
activity of PDT to some extent is compromised by activation of
intracellular antioxidant responses. Considering the role of Nrf2,
a redox regulated transcription factor, in the tumor resistance
against PDT, Nrf2-siRNA has been chosen to design a biomimetic
NPs system. Poly (b-amino ester) (PBAE)/poly lactic-co-glycolic
acid (PLGA) blended NPs co-loaded with photosensitizer indocya-
nine green (ICG) and Nrf2-siRNA were fabricated and then coated
with cancer cell membrane (CCM), specifically derived from
homologous oral tongue SCC, hence, finally named as M@PPI-
siRNA. Schematic illustration of the preparation of M@PPI-siRNA
NPs is provided in Fig. 6. Both in vitro and in vivo, M@PPI-siRNA
NPs showed strong SCC-targeting ability owing to tumor-homing
effect of homologous CCM. A significant down-regulation of the
expressions of Nrf2 and its regulated genes responsible for ROS
detoxification, including glutamatecysteine ligase catalytic subunit
(GCLC) and modifier subunit (GCLM) has been achieved upon laser
irradiation (at 808 nm) of M@PPI-siRNA NPs. Hence, the designed
NPs enhanced the anticancer effects of PDT indirectly, by preserv-
ing the intracellular ROS accumulation. M@PPI-siRNA NPs with
combined effects of PTT and Nrf2-siRNA amplified PDT showed a
remarkable suppression of tumor growth and angiogenesis in oral
tongue SCC tumor-bearing mice. In short, this study provided a
promising polymer-based SCC-targeted delivery platform for both
ICG and gene, and also confirmed the efficiency of Nrf2-siRNA to be
a potential synergist for PDT amplification (197].

In a nutshell, polymers of both synthetic and natural origin have
been successfully employed to fabricate the micro and nanostruc-
tures for efficient gene delivery to the skin cancers. Additionally,
polymer’s chemistry is being exploited to design the smart delivery
systems having potential to combine multiple therapies in a single
micro/nano-platform, for full utilization of the gene/drug and the
ultimate enhanced patient compliance.
241
Theranostic applications of polymer-based
micro/nanostructures

Micro and nanostructures are considered most favorable types
of theranostic agents based on their tunable optoelectronic proper-
ties. High doses of the drugs and biomolecules can be encapsulated
in hollow nanostructures due to their high surface to volume ratio
and porosity. These intrinsic properties make them eligible in var-
ious bioimaging applications as contrast agents and photon-
triggered therapies (photothermal and photodynamic therapies).
For diagnostic purpose, polymeric particles can be incorporated
with paramagnetic metals, such as gadolinium (Gd) or manganese
(Mn), as contrast agents for imaging. Nanoshells are one of the
most efficient candidates to be used in multiple-purpose platforms
that enable synergistic multimodal performance [198]. NPs with
superparamagnetic iron oxide (SPIO) can be used to detect cancer.
As MRI contrast agents, MNPs have been extensively examined to
enhance the detection, diagnosis and therapeutic management of
tumors.

Hou et al., have successfully developed theranostic NPs by
chemically connecting IR820 (a promising NIR dye for cancer diag-
nosis and therapy) onto the surface of chitosan-coated magnetic
iron oxide. The developed IR820-CS-Fe3O4 NPs showed an excel-
lent MRI capability and cytotoxicity against melanoma upon irradi-
ation with NIR laser (808 nm), along with reasonable stability for
up to 8 days. Hence, a novel chitosan based theranostic platform
for potential detection and therapy of melanoma has been estab-
lished [199]. Upponi et al., have fabricated a nanosized combina-
tion platform for cancer diagnosis and treatment using polymeric
polyethylene glycol phosphatidylethanolamine-based micelles
incorporated with paclitaxel (poorly aqueous soluble anticancer)
and hydrophobic superparamagnetic iron oxide NPs (SPION), as a
contrast agent. The co-loading of SPION and paclitaxel in polymeric
micelles had not affected functional activities of both agents,
showing both apoptotic activity and MRI contrast properties in
breast and melanoma tumor mice models. The developed thera-
nostic system can play an important role in the combined diagno-
sis and treatment leading to a more effective and personalized
treatment [200].

Recently, Shen et al., have designed a complex PLGA nanocom-
posite for co-loading of QDs, Fe3O4 nanocrystals, and doxorubicin
(DOX). PLGA nanocomposites were fabricated via double emulsion
solvent evaporation method, then coupled to the amine group of
polyethyleneimine pre-modified with PEG-folic acid (PEI-PEG-FA
[PPF]) segments, following the adsorption of vascular endothelial
growth factor (VEGF)-targeted small hairpin RNA (shRNA). VEGF
is essential for tumor metastasis. These drug-loaded luminescent
PLGA-based nanocomposites have been designed for tumor-
selective targeting, gene/drug delivery, and imaging. The results
indicated the potential of nanocomposites for co-delivery of DOX
and VEGF shRNA into tumor cells and effective suppression of
VEGF expression, showing significant enhanced antitumor effects.
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Additionally, both fluorescence and magnetic resonance imaging
potential of the hybrid nanocomposites suggested that it can be
employed as an efficient nanoprobe. Hence, these multifunctional
polymeric nanocomposites have exhibited a promising potential
to be an effective theranostic platform for codelivery of genes/-
drugs and dual-modality imaging for cancer therapy [201].

Conclusion and future prospective

Among the various approaches used to deliver the anticancer
agents to cure skin cancer, use of nanomedicine has successfully
dealt with limitations associated with conventional therapies. Der-
mal drug delivery system is an attractive, non-invasive approach to
prevent and treat skin cancers. Nanomedicine treatment is favor-
able for patients for whom surgery is not suitable or those who
cannot survive highly intensive non-specific therapies. Notwith-
standing, barrier properties of the hyperkeratotic SCC lesion along
with its intra-tumoral obstructions limit the performance of nano-
medicine by reducing the level of drug molecule within tumor
core. Moreover, different individual responses in the form of sys-
temic toxicity to the exposure of applied doses also harmful for
the development of these therapies. Polymer-based nanostructures
of anticancer drugs can cross the SC and deliver the cargo to the
target site without posing any serious side effect to skin cells. Poly-
mer’s chemistry has enabled the synthesis of a wide variety of
polymeric micro/nanostructures to combat with limitations associ-
ated with conventional therapies and to overcome the drug deliv-
ery barriers. Polymeric nanocarriers have played their role in
improving skin targeting, drug’s ability to reach and penetrate into
tumor cells. Furthermore, nanocarriers offered improved drug sta-
bility and reduced skin irritation by avoiding direct contact of car-
goes with the skin’s surface. Most of the patients could have
developed drug resistance against some anticancer agents, when
these are used alone, like BRAF (oncogene v-Raf murine sarcoma
viral oncogene homolog B1) inhibitors. However, their targeted
delivery has remarkably improved their therapeutic response (5%
to 80%), indicating the importance of selective delivery. Hence,
for selective delivery of cargos to the tumor, polymeric micro/-
nanostructures have been designed to exploit specific cancer
microenvironment like, temperature, specific enzymes, redox reac-
tion, and pH to establish targeted drug delivery systems. The
patients suffering from metastasized melanoma show average sur-
vival time of 6 to10 months only, with < 20% achieving 5-years sur-
vival rate. Thus, effective therapy of melanoma is required. To
achieve this, enhancements in both the diagnosis and treatment
are badly needed. Its timely diagnosis can lead to surgical removal
prior to metastasis. For the purpose, polymeric structures have also
exploited for delivery of contrast agents, for efficient imaging and
detection of the disease pathology. Although, NPs face challenges,
yet to improve these drawbacks continuous research could deliver
exciting and promising results in coming days. The combination
approaches including combination of passive and active targeting
(tumor microenvironment responsive and targeted delivery), com-
bination of chemotherapy with PTT and PDT, and combination of
diagnostics and therapeutics (theranostics), and combination of
drug and gene delivery could be a potential strategy to overcome
the limitations/barriers faced by nanoparticles. In biomedical
sciences, polymer-based nanostructures are highly versatile in
their functioning and mechanisms of actions that lead to provide
tremendous opportunities to magnificently translate the novel
therapies at clinical levels.

Promising roleof polymeric-nanomedicine in revolutionizing the
cancer therapeutics–sciences of today, especially in skin cancer and
fronting challenges demand highly interdisciplinary approaches in
choosing the right cargo and the right carrier to develop and trans-
late treatments more effectively. It also urges to explore further
242
about the cargo-carrier combination, formulation strategies and
their physical enhancement strategies for improved delivery
through lesions and surrounding skin.Hence, the knowledgegained,
wouldmake the application of these approaches possible not only in
therapeutic with better penetration/retention and controlled
release in the skin but also for diagnosis and prophylaxis. Further-
more, recognition of the responsible gene mutations and compre-
hension of impairment in the primary signaling pathways could be
helpful in designing the suitable therapeutic regimes. Successful
therapy will also depend on the discovery of specific, more potent
pharmacological agents, and importantly, novel intelligent smart
delivery systems to achieve synergistic effects. We are expecting
that all aimed approaches will be there in near future where next
generation of skin cancer diagnostic and drug delivery systembased
on polymeric nanostructureswill incorporate several features into a
single system of personalized medicines.
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