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Abstract

Objective

Talaromycosis is a serious regional disease endemic in Southeast Asia. In China, Talaro-

myces marneffei (T. marneffei) infections is mainly concentrated in the southern region,

especially in Guangxi, and cause considerable in-hospital mortality in HIV-infected individu-

als. Currently, the factors that influence in-hospital death of HIV/AIDS patients with T. mar-

neffei infection are not completely clear. Existing machine learning techniques can be used

to develop a predictive model to identify relevant prognostic factors to predict death and

appears to be essential to reducing in-hospital mortality.

Methods

We prospectively enrolled HIV/AIDS patients with talaromycosis in the Fourth People’s Hos-

pital of Nanning, Guangxi, from January 2012 to June 2019. Clinical features were selected

and used to train four different machine learning models (logistic regression, XGBoost,

KNN, and SVM) to predict the treatment outcome of hospitalized patients, and 30% internal

validation was used to evaluate the performance of models. Machine learning model perfor-

mance was assessed according to a range of learning metrics, including area under the

receiver operating characteristic curve (AUC). The SHapley Additive exPlanations (SHAP)

tool was used to explain the model.

Results

A total of 1927 HIV/AIDS patients with T. marneffei infection were included. The average in-

hospital mortality rate was 13.3% (256/1927) from 2012 to 2019. The most common
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complications/coinfections were pneumonia (68.9%), followed by oral candida (47.5%), and

tuberculosis (40.6%). Deceased patients showed higher CD4/CD8 ratios, aspartate amino-

transferase (AST) levels, creatinine levels, urea levels, uric acid (UA) levels, lactate dehydroge-

nase (LDH) levels, total bilirubin levels, creatine kinase levels, white blood-cell counts (WBC)

counts, neutrophil counts, procaicltonin levels and C-reactive protein (CRP) levels and lower

CD3+ T-cell count, CD8+ T-cell count, and lymphocyte counts, platelet (PLT), high-density lipo-

protein cholesterol (HDL), hemoglobin (Hb) levels than those of surviving patients. The predic-

tive XGBoost model exhibited 0.71 sensitivity, 0.99 specificity, and 0.97 AUC in the training

dataset, and our outcome prediction model provided robust discrimination in the testing data-

set, showing an AUC of 0.90 with 0.69 sensitivity and 0.96 specificity. The other three models

were ruled out due to poor performance. Septic shock and respiratory failure were the most

important predictive features, followed by uric acid, urea, platelets, and the AST/ALT ratios.

Conclusion

The XGBoost machine learning model is a good predictor in the hospitalization outcome of

HIV/AIDS patients with T. marneffei infection. The model may have potential application in

mortality prediction and high-risk factor identification in the talaromycosis population.

Author summary

Talaromyces marneffei can cause a fatal deeply disseminated fungal infection- talaromyco-
sis. It is widely distributed in Southeast Asia and spreading globally, the disease is insidi-

ous and responsible for significant deaths. Clinicians need easy-to-use tools to make

decisions on which patients are at a higher risk of dying after infecting T. marneffei. In

this study, conducted in Southern China, we have evolved XGBoost machine learning

model. 15 clinical indicators and laboratory measures were used to estimate a patient’s

risk of dying in the hospital due to the T. marneffei infection. The study showed that the

machine learning model has good predictive ability when tested in an internal testing pop-

ulation of patients. We expect that the model could help clinicians assess a patient’s risk of

death in just the time of admission to help decide on early treatment timing of high-risk

patients who are likely to die.

Introduction

Talaromyces marneffei (formerly known as Penicillium marneffei) is a thermally dimorphic

fungus. Invading a variety of tissues and organs, it can cause a fatal deeply disseminated fungal

infection- talaromycosis that primarily occurs in tropical or subtropical regions of Asia. Since

the global outbreak of HIV/AIDS in the 1980s[1], talaromycosis has gradually increased in

prevalence, accounting for 6.4–11% of HIV-related admissions in Vietnam [2,3], 3.3% in Thai-

land [4], 16.1% in Guangxi [5], China, and 17.3% in Guangdong [6], China. Currently, due to

immunosuppressive therapy for autoimmune diseases, malignancies and increased interna-

tional travel and migration, an increasing number of cases are being reported among HIV-

negative patients. Furthermore, cases outside of traditional endemic regions have been

reported, such as in Wuhan [7], Beijing [8], Shanghai [9], and Hong Kong [10], China. Due to

the inability to make an early diagnosis, the in-hospital mortality of talaromycosis patients can
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be as high as 16.7–30%, despite antifungal therapy [11–13]. By the end of 2018, the cumulative

number of talaromycosis cases was estimated at 288,000 (95% CI: 146,000–613,800), with

87,900 (95% CI: 37,200–204,300) cumulative deaths [14]. Thus, talaromycosis is a tropical

infectious disease with high morbidity and mortality and is a serious threat to regional health.

Thuy Le, Linghua Li, and other experts call for talaromycosis to be recognized as a neglected

tropical disease that urgently needs to be taken seriously despite the perpetuation of the condi-

tion by a cycle of poverty, stigma, and global neglect [15].

In China, 40–56.6% of the cases of talaromycosis are reported in Guangxi [11,16]. Guangxi is a

province with a high burden of AIDS patients, where the number of cumulative reports ranks sec-

ond in China. By the end of October 2020, Guangxi had more than 97,000 HIV-infected people,

which accounts for 9% of the total infected people in China. More than 30,000 patients have died

of AIDS-related opportunistic infections in Guangxi [17]. Our previous study found that the pro-

portion of HIV/AIDS-related deaths due to talaromycosis increased from 11.5% in 2012 to 16.1%

in 2015, and was the most important leading cause of in-hospital HIV/AIDS-related death in

Guangxi (AHR = 1.8–4.51), which represented a major public health problem [5,18].

Although T. marneffei infection has a high prevalence and in-hospital mortality rate, the

risk factors influencing in-hospital death of patients with talaromycosis are still unclear in

Guangxi and relevant studies to guide clinical work are lacking. Although several studies have

reported the factors influencing the death of hospitalized patients, including occupation, anti-

viral treatment, and clinical complications, they could not be completely used as clinical prog-

nosis predictors. In addition, the current research still has limitations, such as insufficient

sample sizes, confounding factors.

In recent years, the application of artificial intelligence in the medical field has become a

hot spot, and various machine learning algorithms have shown their potential to be applied to

large-scale biomedical and patient datasets. Moreover, Machine learning methods might over-

come some of the limitations of current analytical approaches to risk prediction by applying

computer algorithms to large datasets with numerous, multidimensional variables, capturing

high-dimensional, nonlinear relationships among clinical features to make data-driven death

outcome predictions. Machine learning models based on clinical features have been used in

many applications in cancer and tumor prognosis prediction, such as in lung cancer and breast

cancer [19,20]. The application of death prediction in infectious diseases is also becoming a

trend, typically regarding the prediction of mortality risk and prognosis of COVID-19 patients

[21–23]. Similarly, assessing dengue severity risk factors has been reported [24].

The in-hospital mortality rate of patients with talaromycosis is high, yet there is no machine

learning model for predicting T. marneffei treatment outcome. Therefore, we would like to

develop an optimal machine learning-based risk predictive model by fitting daily laboratory

measures and clinical indicators, which will guide clinicians to adjust treatment plans for

patients with talaromycosis with different symptoms in a timely manner, as it may have a posi-

tive significance for reducing death.

Methods

Ethics statement

This study was approved by the Human Research Ethics Committee of Guangxi Medical Uni-

versity (Ethical Review No. 20210099).

Datasets

To develop the machine learning models, we used a cohort of 1927 hospitalized adult patients

(� 18 years old) with talaromycosis and gathered information from the hospital’s electronic
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medical records system. This large-scale observational cohort study was conducted in the

Fourth People’s Hospital of Nanning, which is the largest tertiary hospital specializing in infec-

tious diseases in Guangxi and the province’s largest treatment center for HIV/AIDS. The pres-

ent study included all HIV/AIDS patients admitted to the Fourth People’s Hospital of

Nanning from January 2012 to June 2019. Individuals who were HIV/AIDS patients with

talaromycosis were identified by the hospital electronic medical records system. For those with

multiple admissions, data from the latest admission were preferentially included, and the labo-

ratory data we included were the results of the blood test collected for the first time when the

patient was admitted to the hospital before the patient has started formal treatment. The end-

point of our observation was the time of discharge of the patient, and we stopped observation

if the patient died during this period. The inclusion criteria were as follows: (1) positive

enzyme-linked immunosorbent assay (ELISA) and confirmatory western blotting were used to

determine HIV infection; (2) samples of T. marneffei infection—T. marneffei were isolated and

cultured from blood, skin tissue, bone marrow, lymph nodes, and/or other bodily fluid sam-

ples (mycelia at 25˚C and yeast-like structures at 37˚C) and indicated compliance with the

diagnostic criteria. Patients with complete absence of laboratory results were excluded from

the analysis. The study design and grouping are shown in Fig 1.

The sample size was calculated based on the equation, as follows:

n ¼
ðZ1� a

2

ffiffiffiffiffiffiffiffi
2 �q �p
p

þZb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0q0þp1q1

p
Þ2

ðp1 � p0Þ
2 , where Zα represents the standard normal distribution bound, α

was set as 0.05, Zα was set as 1.96, and Zβ = 1.282. Generally, the number of exposed groups

was designed to be equal to the number of control groups, according to the data previously

reported in the literature, the mortality rate of AIDS patients without comorbid T. marneffei

Fig 1. Workflow for machine learning. Information such as clinical complications/coinfections and laboratory measures of HIV/AIDS patients

with talaromycosis was collected. Different machine-learning methods were evaluated after feature selection to establish the best clinical outcome

prediction model.

https://doi.org/10.1371/journal.pntd.0010388.g001
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was p0 = 0.076, and the mortality rate of AIDS patients with comorbid T. marneffei was

p1 = 0.175[5], p = 1/2(p0+p1), q0 = 1-p0, q1 = 1-p1, q = 1-p. The sample size was chosen as 233

based on the equation. The number of cases in the two groups were 256 and 1671, respectively,

which met the sample size requirement. We also collected as many samples as we could base

on our ability to meet the minimum sample size requirement to ensure statistical efficacy. In

fact, all the samples we could find were included.

Definitions of various complications and coinfections

Fever was defined as a single oral temperature� 38.3˚C (armpit temperature� 38.0˚C), or

oral temperature� 38.0˚C (armpit temperature� 37.7˚C) lasting more than 1 hour. The diag-

nosis of pneumonia includes bacterial pneumonia, viral pneumonia, pulmonary mycosis

(including Pneumocystis pneumonia) and pneumonia caused by other factors, but does not

include pulmonary tuberculosis pneumonia, classified as tuberculosis [25]. The definition

standard of anemia is as follows: male levels of hemoglobin 120 g/L, female hemoglobin levels

of 110 g/L [26]. The definition of meningitis includes purulent meningitis, cryptococcosis

meningitis, and viral meningitis, but does not include tuberculosis meningitis, which is classi-

fied as tuberculosis [27]. Coinfections were confirmed according to the diagnostic criteria of

chronic hepatitis (hepatitis B, or hepatitis C) and oral candida infection found in infectious

diseases [28]. The diagnostic criteria of residual complications or coinfections were defined

based on the standard of Internal Medicine [26].

Study outcomes

The patients were classified into two groups according to outcomes—the good outcome (sur-

vival) and bad outcome (death) groups when discharged.

Feature selection and data preprocessing

The structured dataset included 80 variables: 23 clinical complications/coinfections and symp-

tom variables (fever, pneumonia, tuberculosis, lung infection, lymphatic tuberculosis, pneu-

mocystis, oral fungal infections, cryptococcus, herpesvirus, syphilis, cytomegalovirus,

electrolyte disturbances, hypoproteinaemia, IRIS, bronchitis, hepatitis (B or C), enteritis, der-

matitis, hypertension, diabetes, respiratory failure, septic shock, and tumor) and 57 laboratory

measures (CD4+ T-cell count, CD8+ T-cell count, and levels of AST, ALT, PLT, Hb, etc.)

Model construction and validation

The patients were randomly split into two datasets: a training cohort (70% of patients), which

was used to train the four machine learning models and tune their parameters, and a testing

cohort (30% of patients), which was used to test the models and to finetune the hyperpara-

meters. We used bootstrapping as an internal verification method for 2000 trails of random

sampling for four machine learning classifiers (logistic regression, eXtreme Gradient Boosting

(XGBoost), K-nearest neighbors (KNN), and support vector machine (SVM)) to generate four

models for the prediction of outcome.

Performance evaluation

Model performance was assessed according to the sensitivity, specificity, accuracy, area under

the receiver operating characteristic curve (AUC) and other learning metrics (F1_score (F1),

mAP, and RP curve (recall, precision)). A best-performing model based on a combination of

performance evaluation metrics was used as the final model.
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Feature importance

For clinical complications/coinfections, the variables with p< 0.05 were selected after Pear-

son’s chi-square test. The laboratory measures with p< 0.05 were selected after t-test or

Mann–Whitney U test.

To determine the major predictors of study outcome in our patient population, the impor-

tance of each permutation feature was measured from the final model. Information gain rank-

ing was used to evaluate the worth of each variable by measuring the entropy gain with respect

to the outcome. The importance of each feature was quantified by calculating the decrease in

the model’s performance after permuting its values. The higher its value was, the more influen-

tial the feature. To determine whether the features had a greater impact on the final model, the

importance of each permutation feature was measured by the final model. According to the

information gain ranking criteria for this study, we calculated the feature importance of all the

variables.

Statistical analysis

Categorical variables are reported as counts (%), and continuous variables are reported as the

means (SDs) or medians (IQRs). The presence of a normal distribution was verified by the

Kolmogorov-Smirnoff test. We used the t-test to assess differences between parametric contin-

uous variables, and the Mann–Whitney U test to assess differences for nonparametric vari-

ables. Categorical variables were analyzed using the chi-square test or Fisher’s exact test. No

correction for multiple testing was performed. A two-sided p< 0.05 was considered statisti-

cally significant. All analyses were performed with Statistical Package for the Social Sciences

(SPSS) version 24.0 (SPSS Inc, Chicago, IL, USA) and Anaconda 3 (Python v 3.8.5).

Results

General characteristics of study participants

In all, 1927 eligible patients with talaromycosis were included in this study between January

2012 and June 2019, and the outcome at the time of hospital discharge was defined as death

(n = 256) or survival (n = 1671).

The general characteristics of the patients are summarized in S1 Table. The median age of

the 1927 patients with talaromycosis was 43 years (range: 18–86 years). In total, 82.3% (1585/

1927) of patients were male, 59.5% (1147/1927) of patients were of Han nationality, 59.5%

(1146/1927) of patients were married, 55.1% (1061/1927) of patients were farmers, and the

median time of inhospital day was 20 (11–28) days. Significant differences in baseline charac-

teristics were identified between the survival and death groups in nationality, marital status,

occupation, and time of inhospital day (p< 0.05).

The mortality of talaromycosis among hospitalized HIV/AIDS patients

from 2012 to 2019

Among 1927 admitted patients, the total average mortality of talaromycosis among hospital-

ized HIV/AIDS patients was 13.3% (256/1927) from 2012 to 2019. The mortality rates were

18.4% (45/245) in 2012, 14.4%(44/306) in 2013, 12.1%(36/297) in 2014, 12.2%(31/255) in

2015, 10.8% (26/240) in 2016, 15.1%(39/259) in 2017, 9.8%(22/224) in 2018 and 12.9%(13/

101) in the first half of 2019. The number of deaths and the overall in-hospital mortality rate

showed a downward trend (p = 0.021) (Fig 2).
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Clinical characteristics

The baseline clinical complications/coinfections in the study population were shown in S2

Table. The most common complications/coinfections or symptoms of in-hospital HIV/AIDS

patients with talaromycosis were pneumonia (56.7%, 1092/1927), followed by oral candida

(47.5%, 915/1927), tuberculosis (40.6%, 737/1927), fever (38.2%, 643/1956) and hypoproteine-

mia (19.6%, 340/1956). The influence of clinical complications/coinfections on the outcome

was shown in Fig 3A (p< 0.05). Septic shock and respiratory failure were the two most com-

mon complications/coinfections, leading to an increase in the death toll, followed by pulmo-

nary infection, hypoproteinemia, and electrolyte disturbances. The constituent mortality rate

of T. marneffei-infected patients with shock was as high as 84% (86/102), which was higher

than that of 9% (170/1825) observed for patients without shock, 69% (55/80) observed for

patients with respiratory failure and 11% (201/1847) observed for patients without respiratory

failure.

We assessed the median levels of some essential indicators in patients of the two groups of

patients and compared them. The deceased patients seemed to have higher levels of urea, uric

acid, phosphorus (P), chlorine (Cl), serum cystatin C (Cys-C), red blood cell distribution

width (RDW-CV), and platelet distribution width (PDW), as well as lower levels of CD8+

T-cell count, triglycerides (TG), total cholesterol (CHOL) and platelets, In particular, the level

of PLT in surviving patients (131 μmol/L) was more than twice as high as that in deceased

patients (64.5 μmol/L), as detailed in Fig 3B. There are also some features of concern, such as

elevated levels of aspartate aminotransferase, lactate dehydrogenase and white blood-cell

counts; the specific comparison is shown in S3 Table.

Fig 2. The mortality change in HIV/AIDS patients with T.marneffei infection at the Fourth People’s Hospital of

Nanning, Guangxi from 2012 to 2019.

https://doi.org/10.1371/journal.pntd.0010388.g002
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Features used to build the model

Fig 3C shows the results of the correlation analysis of selected laboratory features. Eight pairs

of features were highly correlated (R > 0.8); the features with lower contributions (TBIL,

HCT, PCT, STY, Ccr, CD3+ T-cell count, and EOS) in the comparison were excluded.

After excluding the correlated features, the 15 top ranked features are shown in Fig 3D,

which provided approximately 69% of the overall importance weight. As expected, 13 factors

were laboratory factors with among the top 15 features for in-hospital mortality; the AST/ALT

ratio, septic shock and respiratory failure were important features in the XGBoost model. (It is

Fig 3. Feature engineering for filtering machine learning predictive model variables. (A) Percentage of deaths of all patients with different clinical

complications/coinfections, all variables χ2 p< 0.05. (B) Violin diagram comparing the laboratory measures levels between the two groups, with p<0.001 in all

items. (C) Spearman’s rank correlation coefficient analysis for 39 laboratory measures. (D) Radar plot for the fifth most important predictors of death in the

XGBoost model. Abbreviation: CD3, CD3+ T-cell count; CD4/CD8, CD4/CD8 ratio; CD8+ T-cell count; LDL, low-density lipoprotein cholesterol; Ca, calcium;

HDL, high-density lipoprotein cholesterol; CREA, creatinine; AST, aspartate aminotransferase; UA, uric acid; LDH, lactate dehydrogenase; Ccr, endogenous

creatinine clearance rate; Glu, glucose; CHOL, total cholesterol; TBIL, total bilirubin; AST/ALT, AST/ALT ratio; BUN/CREA, BUN/CREA ratio; BUN, urea

nitrogen; K, potassium; IBIL, indirect bilirubin; P, phosphorus; Cl, chlorine; Na, sodium; STY, osmolarity; HCO3, carbonate; Cys-C, serum cystatin C; AG,

anion gap; DBIL, direct bilirubin; TBA, total bile acid; Hb, hemoglobin; PLT, platelet; MONO%, monocyte ratio; RDW-CV, red blood cell distribution width;

HCT, hematocrit; EOS, eosinophil; EOS%, eosinophil ratio; PDW, platelet distribution width; PCT, platelet distributing width; CRP, C-reactive protein;

hsCRP, high-sensitivity C.

https://doi.org/10.1371/journal.pntd.0010388.g003
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not possible to judge the relationship between the feature and the final prediction result, but

the results directly reflect the importance of the feature.).

Discrimination of four machine learning prediction models

The four prediction models constructed based on the top 15 most important variables had dif-

ferent predictive performances. Logistic regression had an AUC of 0.72 in the training cohort

and 0.80 in the internal validation cohort. We also tested the KNN model (training/testing,

AUC = 0.85/1.00, sen = 1.00/0.60, and sep = 1.00/0.95) and SVM (AUC = 0.91/0.70,

sen = 0.82/0.47, and sep = 1.00/0.94) to predict patient outcome. The KNN model showed the

worst discrimination ability and exhibited overfitting. In contrast, the XGBoost model showed

the best discrimination ability; the model yielded an AUC of 0.98 in the training data, with a

sensitivity of 0.71 and specificity of 0.99 when using a score of 0.5 as the cutoff value. In the val-

idation of the testing sets, the sensitivity of the model was 0.69, while its specificity was 0.96,

indicating that the model had a specific predictive ability. The ROC curves of the training data

and testing data of the four models are shown in Fig 4A and 4B, and the ROC curve results of

the XGBoost model were more ideal.

In extremely unbalanced data (positive has fewer samples), PR curves may be more practi-

cal than ROC curves. After the data is learned by many models, if the PR curve A of one model

completely wraps around the PR curve of another model B, it can be asserted that A outper-

forms B. If A and B cross, a comparison can be made based on the size of the area under the

curve. Both equilibrium precision and recall are commonly used. Precision and recall indica-

tors sometimes appear contradictory, so they need to be considered together, with the most

common method being the F-measure (also known as the F-score, F1). Combined with the RP

graph (Fig 4E and 4F), F1 combines the precision and recall results; the larger F1 is, the better

we can assume the performance of the model. Although the training set F1 value is higher than

the KNN and SVM values, it does not have a good ability to recognize imbalanced data in

actual operation. The KNN has only three cases of better output results. Regarding the RP

curve’s ability to measure the performance, the XGBoost comprehensive performance results

are stronger in these four models, and the F1 value is greater than 0.70. Considering the perfor-

mance of both aspects, XGBoost is the better prediction model for this study. The effectiveness

of the four models is summarized in Table 1.

Explanatory assessment of model stability

To better investigate the predictive significance of the XGBoost model to guide specific prac-

tice, we introduced the SHAP value to describe the impact of features on the outcome. For

each predicted sample, the model generates a predictive value, and the SHAP value is the value

assigned to each feature in that sample, which can reflect each feature’s impact, and shows the

impact whether positive or negative. As seen in Fig 5, septic shock and respiratory failure were

the two most important features. They were essentially positively correlated with death, being

the most closely related to death, with those who exhibit both features having a greatly

increased risk of death compared to that of those who do not. Uric acid, urea, RDW-CV, Cys-

C, BUN/CREA, PDW, and P also significantly affected death. The higher the value was for

these features, the higher the risk of death, and the smaller the values of chlorine, total choles-

terol, platelets, and calcium were, the higher the risk of death, especially regarding platelets

and total cholesterol levels. With AST/ALT levels, there was a tendency for an increase in the

death risk when the level downregulates slightly. The contribution of the CD8+ T-cell count

value to the outcome was predominantly negative, and it was more pronounced when CD8+

T-cell count values were greater than a certain level.
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Fig 4. Performance evaluation of four machine learning models. A-B. Receiver operating characteristic curves of the models. (A) AUCs for death of

the training (70%) set. (B) AUCs for death of the testing (30%) set. (C) Confusion matrix for the training set. (D) Confusion matrix for the testing set.

(E-F) RP curve for death of the training set (E) and the testing set (F). AUC = area under the receiver operating characteristic curve. Precision = true

positive/(true positive + false positive); recall = true positive/ (true positive + false negative). (C-D) “0”: “Survival”, “1”: “Death.

https://doi.org/10.1371/journal.pntd.0010388.g004
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The impact of these indicators on the prediction results used in the discrimination of

patient outcome can also be verified by analyzing the number of misclassified cases. Fig 4C

and 4D show the confusion matrix of the model; 1149 out of 1348 patients in the training set

were correctly predicted as anti-case patients (survived), 134 patients were correctly predicted

as positive cases (died), and a total of 65 patients were misclassified (ACC = 95%). Of the 579

patients in the test set, 541 patients were correctly predicted, and 38 patients were misclassified

Table 1. The effectiveness of the four machine learning preditive models.

Classifiers Datasets Accuracy Error Sensitivity Specificity Precision F1_score mAP MCC AUC

KNN Training 1.0000 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Testing 0.9171 0.0829 0.6029 0.9589 0.6613 0.6308 0.5955 0.5850 0.8514

Logistic Training 0.9088 0.0912 0.4734 0.9793 0.7876 0.5914 0.6604 0.5659 0.7264

Testing 0.9326 0.0674 0.6324 0.9726 0.7544 0.6880 0.7060 0.6538 0.8025

SVM Training 0.9755 0.0245 0.8245 1.0000 1.0000 0.9038 0.9763 0.8954 0.9122

Testing 0.8912 0.1088 0.4706 0.9472 0.5424 0.5039 0.5185 0.4446 0.7089

XGBoost Training 0.9518 0.0482 0.7128 0.9905 0.9241 0.8048 0.9158 0.7864 0.9794

Testing 0.9344 0.0656 0.6912 0.9667 0.7344 0.7121 0.6472 0.6755 0.9008

https://doi.org/10.1371/journal.pntd.0010388.t001

Fig 5. The effect of 15 top ranked features on the outcome. Each row represents a feature, the horizontal coordinate

is the SHAP value, the blue color means the feature’s contribution is negative; the red color means the feature’s

contribution is positive, one point represents a sample, the more red the color means the feature itself is larger, the

more blue the color means the feature itself is smaller.

https://doi.org/10.1371/journal.pntd.0010388.g005
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(ACC = 93%). Among the misclassified cases in both the training and test sets, those whose

actual prognosis was survival and misclassified as death (FP) had higher prevalence of respira-

tory failure and shock than that of patients who were correctly judged to be alive (survival).

Conversely, those whose actual prognosis was death and who were judged to be alive (FN) had

lower prevalence of both respiratory failure and shock than those of patients who were cor-

rectly judged to be dead (death) (Fig 6A and 6B, p< 0.05).

The presence of a relative abnormality in an index of misclassified patients was also

reflected in the laboratory characteristics. For example, higher urea levels and AST/ALT ratios

levels and lower platelet levels were observed in patients classified as FP (compared to those

correctly judged as survivors), and the opposite was true for patients classified as FN when

these values were compared with those of patients who died (Fig 6C and 6D).

Discussion

We conducted a cohort study with a large sample size and obtained the latest in-hospital mor-

tality rate of T. marneffei infections among HIV/AIDS inpatients in southern China. The num-

ber and in-hospital mortality of talaromycosis patients among HIV/AIDS admissions

decreased from 45 and 18.4% in 2012 to 13 and 12.9% in the first half of 2019, respectively.

Pneumonia, oral candidiasis, tuberculosis, and hypoproteinemia were common complica-

tions/coinfections in HIV/AIDS patients with T. marneffei infection, which is a finding similar

to the results of Pang et al [29].

In this study, we used data on 1927 HIV/AIDS patients with T. marneffei coinfection at the

time of admission to develop and test an Machine learning-based prediction model to predict the

risk of death during patient hospitalization. Our XGBoost prognostic model exhibited good dis-

crimination for the prediction of death during patient hospitalization. The clinically meaningful

cutoff value of 0.5 was bounded by a sensitivity and specificity of approximately 70% for both the

training and test sets. There was no decrease in model performance between the training data and

test validation, which should allay most concerns about overfitting of the training data. Finally,

robust hypothetical trade-offs in the occurrence of mortality events are observed for each patient

according to the SHAP value of each feature. Specifically, septic shock and respiratory failure

were the most important variables affecting death, and we also considered serum uric acid, urea,

platelet, and AST/ALT levels as relatively important variables.

The results of a recent prognostic model developed to predict outcomes in patients with

HIV-associated tuberculosis were published [30]. Accurate prediction of patient death after

coinfection with HIV/AIDS and T. marneffei still represents an unmet need. Our previous

study developed a simple-to-use nomogram for predicting the survival of hospitalized

HIV/AIDS patients [31], however, it did not involve laboratory measures, so it is not an opti-

mally comprehensive evaluation of the specific conditions of patients. Thuy Le developed a

prognostic model using Bayesian logistic regression to identify predictors of death [32]. In

general, the value of models for prognostic evaluation of T. marneffei infection populations

using available data is increasingly recognized as a very economical means to aid clinical prac-

tice, but thus far, there is a lack of relatively well-developed studies with large samples sizes

and especially well-performing predictive models. Our XGBoost predictive model offers rela-

tively high accuracy in detecting the risk of in-hospital death in a population of 28.7% patients

(553/1927) treated with current standard ART therapies during the study period.

There is growing evidence that respiratory failure, shock, urea levels, and platelet levels sig-

nificantly impact adverse outcomes, such as death. A study in Vietnam found that urea levels

were higher in fatal cases of patients with HIV/AIDS complicated by T. marneffei infection

compared with those of nonfatal patient cases. Dyspnea is an independent predictor of in-
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Fig 6. Analysis of clinical complications/coinfections and laboratory results of misclassified cases. (A-B) Percentage of deaths of all patients with different clinical

complications/coinfections in the training dataset (A) and testing dataset (B). (C-D) Violin diagram comparing the levels of laboratory measures between the four groups.

Survival: correctly classified to be alive; Death: correctly classified to be dead; FN: those whose actual prognosis was death and were classified to be alive; FP: those whose

actual prognosis was survival and were misclassified as death.

https://doi.org/10.1371/journal.pntd.0010388.g006
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hospital mortality [2]. Not coincidentally, another article reported that both respiratory diffi-

culty and lower platelet count predict poor in-hospital outcome [33]. Infection shock accounts

for 10.2% of the total causes of death among HIV patients with T. marneffei infection at the

Beijing Ditan Hospital, ranking fourth [34]. Septic shock and respiratory failure are often man-

ifestations of a patient’s progression to cachexia. Patients with combined respiratory failure

and shock are often clinically classified as high-risk patients, which also indicates that the prog-

nosis for these patients may be relatively poor, in other words, they are more likely to die. Our

study found that both were indicators of poor prognosis.

We ranked the contribution of all the independent variables, the AST/ALT ratio was the

highest in the feature contribution ranking, we found that patients who died had significantly

higher AST/ALT ratios compared with those who survived (3.07 versus 1.96). The previous

study has shown an elevated AST/ALT ratio in talaromycosis patients.[33]. Two other studies

also showed abnormal changes in AST or ALT levels in HIV/AIDS patients with talaromycosis
[35,36]. In fact, other fungal studies have also found this phenomenon, a study suggested that

the mean ratio of AST to ALT in patients with disseminated histoplasmosis (A fungal disease)

was higher than localized pulmonary disease and other endemic mycoses [37]. As we know,

ALT is primarily distributed in the liver, kidneys, heart, and skeletal muscle, while AST is pri-

marily distributed in the heart, liver, skeletal muscle, and kidneys. Given our results, AST/ALT

ratio may be a predictor of death. Nevertheless, talaromycosis is a disseminated disease, the

exact site of the damage, the cause of AST and AL changes, and the biological mechanism in

talaromycosis, which deserves further research. Similarly, the association of platelets with the

poor in-hospital outcome of talaromycosis has been reported previously. The platelet elevated

level in the group of deceased patients (64.5×109/L) was less than half of that in the survival

group (131×109/L). The lower the platelet levels are, the more likely the patient is to bleed and

develop coagulation disorders, which is also consistent with the results of the misclassification

case analysis. The higher the urea level is, the lower the levels of platelets, and the higher the

AST/ALT ratio is, the more likely the surviving patient is judged to be deceased, and con-

versely, the patients with a high risk of death may be judged to be alive. Therefore, it is valuable

to clarify the significance of these indicators for death to correctly identify and predict the

prognosis of patients. The combination of chloride, calcium, and phosphorus levels points to

the electrolyte status of the body, which may indicate electrolyte disturbances in patients at

high risk of death. Cys-C levels, BUN/CREA, PDW, and RDW-CV are less clinically signifi-

cant and may receive less attention, but they are also essential for model prediction. We also

note that deceased patients showed higher CD4/CD8 ratios, and from the data of S2 Table we

can clearly see that the median CD4+ T-cell count was 22 in survival patients and 21 in death

patients (p> 0.05), while the median CD8+ T-cell count was 271,215, (p< 0.001). This result

shows that the main feature underlying patient death was a higher CD4/CD8 ratio due to the

lower CD8+ T-cell count, which suggests that CD8+ T-cell count is also important and that

focusing on CD4+ T-cell count alone may not be enough to avoid death. This brings us to the

question of how to reduce deaths in the HIV/AIDS with T. marneffei infection population,

which is usually to change the method of treatment, including the change of drugs, the change

and choice of treatment timing, recommendations for dosage of treatment drugs, etc.

Notably, patients with T. marneffei infections have many similar clinical symptoms to

patients who have many other infections, which makes early diagnosis of talaromycosis diffi-

cult, so special clinical attention needs to be paid to the early diagnosis of talaromycosis
patients, and the earlier the diagnosis, the more deaths can be reduced. This study attempted

to build four machine learning-based prognostic prediction models for HIV/AIDS patients

with talaromycosis during hospitalization. Our XGBoost model stems from the exploration of

15 variables that are routinely assessed during the management of patients admitted to the
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hospital to identify which factors are more predictive of death in talaromycosis patients. This

prediction machine learning model helps clinicians reduce talaromycosis deaths to some

extent. We remind clinicians to differentially diagnose the symptoms caused by other opportu-

nistic infections, such as tuberculosis, which is clinically and radiologically similar to T. mar-
neffei, to mitigate the pneumonia arising from the combination of tuberculosis while treating

pneumonia caused by T. marneffei, and then to take targeted treatment to reduce deaths.

Although this is the only study, to our knowledge, to propose an in-hospital machine learn-

ing-based mortality prediction model for HIV/AIDS patients with T. marneffei infection in

such a large sample of patients in China, our research should be interpreted considering some

limitations. In fact, the time from onset to diagnosis, the antifungal treatment regimen, the

time of fungal culture positivity, the types and number of the other comorbidities, the identi-

ties and timing of antifungal treatments, delays in diagnosis after admission, the severity of

coinfections, the timing of antiretroviral therapy, etc., are more comprehensive information

that we unfortunately, for various objective reasons, did not obtain. Second, our data were

only from one hospital, and there was no external validation dataset for this hospital, which is

the largest HIV/AIDS treatment center in Guangxi Province. The model we built could guide

mortality prediction in this hospital. It is a remarkable fact that we did not have data from

external validation. Our model was validated in internally and maintained a good and stable

level of discrimination for the explored outcome. Finally, the data we used are cross-sectional

data, but it is noted that the data can be updated in real time when truly applied to the clinic,

and further efforts will have to continue to increase the sample size.

In conclusion, we have developed and tested a XGBoost predictive model, an machine

learning-based tool to predict the risk for death. This study showed that the machine learning-

based approach in this setting is feasible and effective with potentially significant application

in mortality prediction in HIV/AIDS with talaromycosis population.
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