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Abstract
Leukocytes are inherently motile and interactive cells. Recent advances in
intravital microscopy approaches have enabled a new vista of their behavior
within intact tissues in real time. This brief review summarizes the
developments enabling the tracking of immune responses .in vivo
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Introduction
The elicitation of an immune response against invading patho-
gens or tumor cells relies on a complex and highly orchestrated 
interplay among leukocytes, blood vessels, and stromal cell pop-
ulations. During this process, immune cells need to identify and 
interpret structural and molecular guidance cues such as extracellu-
lar matrix fibers and chemokines to navigate through diverse tissue 
microenvironments towards foci of tissue injury, where they finally 
mediate their effector functions. Microscopic investigations into 
this highly orchestrated behavior of immune cells have provided 
insight into the workings of innate and adaptive immunity in live 
mice at a level of resolution previously unattained.

To visualize the behavior of immune cells in vivo, initial studies 
relied on bright field and epifluorescence video microscopy. 
Although limited in resolution and restricted by tissue clarity, these 
studies were instrumental for dissecting the molecular mechanisms 
regulating leukocyte homing during the process of extravasation1–4. 
However, the advent of advanced confocal5 and two-photon6,7  
imaging modalities revolutionized our understanding of lymphocyte 
behavior within the interstitial space of intact organs, initially 
within re-aggregated thymic organ cultures6 and explanted intact 
lymph nodes5,7. These studies illuminated the complex in situ 
behavior of T cells within lymph nodes in the absence or presence 
of antigen5,7 and during their selection within the thymus6. These 
advancements in imaging technologies further catalyzed the emerg-
ing field of intravital imaging of the immune system. Indeed, shortly 
after the explant models, imaging of intact organs in situ in living 
mice was reported8,9. Since then, a large number of tissues/organ 
systems have been adapted for in vivo imaging, revealing insights 
into the functioning of the immune system in the steady state, dur-
ing initial pathogen encounter, during the priming phase of adap-
tive immune responses, and within effector organs during infection, 
inflammation, and within tumors. The impact of intravital imaging 
on the field of leukocyte biology and immunology has recently been 
reviewed in detail elsewhere10–13.

In summary, the development of new imaging tools and molecu-
lar probes, coupled with a wealth of transgenic fluorescent reporter 
mice, has ushered in a new era for understanding the cellular and 
molecular regulators of leukocyte function in situ. In this review, we 
highlight some of the technical advances in this field of research, 
with a focus on multi-photon imaging.

Advances in two-photon imaging methodologies
Without doubt, the introduction of two-photon microscopy into 
biological imaging has enormously furthered our understand-
ing of physiological and pathological processes at the level of 
intact organs. Unlike single-photon excitation used in confocal 
microscopy, two-photon excitation is spatially restricted to the 
focal plane10,12,14,15. This results in reduced levels of phototoxicity 
and photobleaching, enabling deep tissue imaging for prolonged 
periods of time10,12. Nevertheless, several technical challenges 
still persist. For example, physiological tissue movement due to 
pulsation of blood vessels, contraction of muscles, respiration, or 
heartbeat can be detrimental to the overall quality of the data. In 
addition, surgical and anesthetic requirements may alter the behav-
ior of cells due to the induction of hypoxia, changes in tissue pH, 

or the generation of pro-inflammatory mediators. It is therefore 
imperative to develop standardized, reproducible procedures for 
the exposure of organs during the imaging session.

For many peripheral tissues like skin16 and draining lymph 
nodes8,9,17, and internal organs such as the liver18–21 and spleen22–24, 
tissue stabilization during imaging has been carried out using rela-
tively simple methodologies and devices. Similarly, intravital imag-
ing of bone marrow cavity within the skull calvaria has been adapted 
for two-photon microscopy25 and has played a significant role in 
highlighting immune cell behavior within this environment25–28. 
Akin to this, various methodologies have been developed for lon-
gitudinal imaging of tumors15. Cumulatively, these new imaging 
methodologies have provided unprecedented understanding of 
leukocyte behavior in vivo in a variety of tissues11–13,29–31.

Nonetheless, stable imaging of certain tissues, such as the brain, 
heart, and lung, still presents a significant challenge. In the case 
of the brain, the two most frequently used methodologies involve 
either bone thinning32,33 or removal of the cranial bone34–36 for imag-
ing of the underlying meninges and brain parenchyma. Similarly, 
longitudinal imaging of the brain has been made possible by 
implantation of an optical window34,37,38. These methodologies allow 
studying the behavior of various immune cells like microglia36,39,40,  
monocytes41,42, and T cells13,43–46 within the intact brain and spine 
under homeostasis, infection, or inflammation. Newer techniques, 
such as implantation of glass prisms47 or micro-optical probes48, 
have been developed for imaging of deeper structures within 
the brain47,48, but they are yet to be harnessed for understanding 
leukocyte behavior.

In vivo imaging of lungs presents a significant technical challenge 
due to tissue movement and its localization within the pleural 
cavity. Nonetheless, several strategies have been developed that 
involve the closing of ventilation to the imaged lung49 or synchro-
nizing image acquisition with respiration50. Recently, several new 
methodologies51–53 have described the creation of a small thoracic 
window, wherein the tissue is stabilized via application of a mild  
negative pressure51,52 or surgical glue53. These approaches main-
tain ventilation and perfusion within the tissue and permit imaging 
throughout the respiratory cycle51,52. These recent advances have 
highlighted the dynamic nature of T cells51,54, neutrophils28,51,53, 
monocytes53, macrophages55, and dendritic cells54,55 within the pul-
monary tissue in the steady state and during inflammatory condi-
tions. For instance, in vivo imaging of the lungs during influenza 
virus infection has identified a unique cooperative behavior between 
neutrophils and CD8+ effector T cells. Thus, within influenza- 
infected lungs, migrating neutrophils leave behind a trail of the 
chemokine CXCL12, which is used by effector CD8+ T cells as a 
guidance cue within the interstitium56. This study enforces the role 
of in vivo imaging in understanding the dynamic spatiotemporal 
cooperation between immune cells required for generating an  
efficient immune response.

By using endoscopic time-lapse imaging57 or optical windows58–60, 
researchers have recently addressed the challenges associated with 
in vivo imaging of leukocytes within the beating heart61. Endo-
scopic imaging of the heart under physiological conditions revealed 
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the patrolling behavior of monocytes within coronary vessels57.  
Post-infarction, rapid recruitment of both monocytes and neu-
trophils was observed57,58. Surprisingly, unlike most tissues, large 
coronary veins but not post-capillary venules13 were the predomi-
nant sites for neutrophil extravasation post-ischemia/reperfusion 
injury58. Most neutrophils migrated via “hotspots” within the 
inflamed coronary veins58. Although this technique is still in its 
early days, in vivo imaging of the heart nonetheless holds immense 
potential in understanding leukocyte/lymphocyte behavior post-
cardiac transplant and during organ rejection.

In addition to the intravital imaging of the beating heart, several 
methodologies have been developed to image blood vessels  
in vivo62–65. Studies have highlighted, for example, the dynamic 
migratory behavior of neutrophils63,64 and T lymphocytes63 within 
atherosclerotic lesions. Recently, the use of cardiac triggered acqui-
sition coupled with image registration and post-processing image 
correction has provided further advancement of stable imaging of 
blood vessels65. This methodology enables improved temporal reso-
lution, which has been used to define the dynamic scanning behav-
ior of dendritic processes of leukocytes within the atherosclerotic 
plaques of pulsatile blood vessels65.

The use of two-photon excitation can also be exploited for induc-
ing localized injury without physical manipulation of the surround-
ing tissue. This provides opportunities for studying the behavior of  
tissue-resident and recruited leukocytes during sterile inflammation 
in situ. This methodology has been used, for example, to highlight 
the dynamic behavior of microglia within the brain post injury36,39 
and to delineate the cellular and molecular players required for inter-
stitial migration of neutrophils66,67, monocytes67, and dendritic cells68 
within the skin13,69,70. Thus, laser-induced injury has been crucial 
for understanding the cellular and molecular interplay required for 
interstitial migration of neutrophils and the damage response within 
the inflamed dermis66,67. Following injury, scarce initial neutrophils 
rapidly migrate towards the site of injury following chemokine 
gradients. This has been dubbed the “neutrophil scouting phase”, 
which is followed by an “amplification phase” wherein a large 
number of neutrophils display directed migration towards the injury 
site. This second phase is dependent on cyclic-adenosine diphos-
phate ribose (c-ADPR) and leukotriene B4 (LTB4) signaling66,67. 
The large influx of neutrophils at the injury site leads to the for-
mation of a stable neutrophil cluster also referred to as the “sta-
bilization phase”. The stability of the cluster is governed by 
signaling via G-protein-coupled receptors such as C-X-C chem-
okine receptor 2 (CXCR-2), N-formyl peptide receptor 2 (FPR-2), 
and LTB4 receptor-1 (BLT-1). Surprisingly, although integrins were 
dispensable for neutrophil migration within the inflamed dermis, 
they were required for migrating within the injury foci devoid of 
extracellular matrix. Together, these studies uncover the crucial role 
of intravital imaging in understanding the spatiotemporal dynamics 
of the innate immune response in vivo.

The use of in vivo imaging has also been instrumental for 
understanding immune responses against invading pathogens13,71,72 
and has highlighted the dynamic behavior of innate and adaptive 
immune cells during various infections including Leishmania 
major73–77, Leishmania donovani78–80, Toxoplasma gondii43,81–83, 
Borrelia burgdorferi84,85, Staphylococcus aureus86–88, Plasmodium 

spp.42,46,89–93, and Mycobacterium-induced granulomas19,21. These 
studies have identified various strategies used by pathogens to 
evade immune responses; for instance, post-intradermal inocula-
tion, Plasmodium berghei sporozoites rapidly migrate into the 
blood vessels and lymphatics89. In contrast, experiments performed 
with another vector-borne parasite, Leishmania major, revealed 
that these parasites do not actively migrate but rather induce neu-
trophil recruitment to aid parasite survival73,74,94–97. Similarly, in vivo 
imaging of mycobacterial granulomas within the liver have high-
lighted the presence of numerous antigen-presenting cells (APCs) 
and CD4+ T cells within the granulomatous tissue19,21. A paucity 
of mycobacterial antigens limited the number of stable interactions 
between APCs and antigen-specific CD4+ T cells and thereby sup-
pressed the release of immunomodulatory/protective cytokines21. 
Cumulatively, in vivo imaging of host-pathogen interactions have 
identified novel cellular and molecular mechanisms involved in 
regulating pathogen uptake and transport, generation of adaptive 
immune responses, identification of new migratory strategies used 
for scanning infected tissues, and elicitation of effector immune 
responses.

Similarly, two-photon imaging of tumors has provided fascinat-
ing insights into leukocyte behavior within the tumor milieu: 
for example, effector CD8+ T cell-mediated scanning of tumor 
tissue98–100, induction of tumor cell apoptosis101, generation of T cell 
tolerance102, co-migration of macrophages and tumor cells103, and 
the role of perivascular macrophages in tumor cell dissemination104. 
Using experimental models that recapitulate the pathophysiology of 
multiple sclerosis, investigators have revealed fibrinogen-mediated 
perivascular clustering of microglia40, formation of immunological 
synapse between APCs and effector CD4+ T cells44, and neuronal 
cell death105 with the use of in vivo imaging.

The latest development in the use of optical phase-locked ultra-
sound lens provides a new methodology for high-speed volumetric 
imaging in vivo106. This allows for the imaging of Ca2+ signaling 
as well as alterations in cell morphology at high speeds106. This 
methodology has been used to highlight intravascular and extravas-
cular neutrophil dynamics at a temporal resolution previously  
unattainable106.

Altogether, the advancements in imaging instrumentation and 
development of new and improved physiological models have been 
crucial in developing a deeper and dynamic understanding of innate 
and adaptive immunity.

Transgenic fluorescent reporter mouse models for  
in vivo imaging
Visualization of cells and structures within tissues via laser exci-
tation relies, on the one hand, on their inherent (auto)-fluorescent 
features; for example, second and third harmonic generation facili-
tate highlighting large extracellular molecules such as collagen and 
elastin fibers without the need for counterstaining107–110. In addition, 
certain auto-fluorescent metabolites such as NADPH enable the 
interrogation of metabolic states of cells111,112. On the other hand, 
most leukocyte subsets require external or genetic tagging for 
their detection. Initial imaging studies made use of ex vivo labeled, 
adoptively transferred immune cells. Although manipulation 
of cells may alter their behavior, these studies were crucial in 
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understanding migratory and interactive cellular dynamics in vivo. 
Nevertheless, advances in genetic engineering technology coupled 
with the availability of a wide array of genetically encoded fluoro-
phores have significantly expanded the scope of in vivo imaging. 
Introduction of transgenic fluorescent proteins at specific genetic 
loci or under the control of tissue- or cell-specific promoters has 
been crucial for following cells of interest under physiologic condi-
tions. Numerous fluorescent reporter mouse strains are now avail-
able for in vivo imaging, and the choice of a particular reporter 
relies on the experimental design and the scientific question being 
pursued113,114. Although the detailed description of these strains is 
beyond the scope of this review, a few of the novel and versatile 
reporter mouse strains are detailed below.

The dynamic nature of immune cells presents a significant challenge 
while tracking the individual cell longitudinally. This challenge 
can be overcome by using photoactivatable fluorescent reporters, 
for example photoactivatable GFP115. Using such an approach, 
Victora and colleagues deciphered B cell116 and T follicular helper 
cell117 dynamics within the germinal center of murine lymph nodes, 
providing valuable information regarding the regulation of humoral 
immunity. This strategy is useful for tracking the migration and  
distribution of immune cells in vivo. However, the degradation of 
photoactivated GFP within the marked cells limits the timespan 
available for tracking, usually in the order of days (t½ 

- 30 hours 
for naive B cells116). More recently, photo-switchable transgenic 
reporters like KikGR118,119 and Kaede120 mice have become avail-
able. Briefly, in Kaede mice, ubiquitously expressed photoconvert-
ible GFP121 undergoes peptide cleavage and alteration within the 
chromophore upon exposure to ultraviolet light, resulting in a shift 
from green to red fluorescence120. This conversion is irreversible 
and thereby marks the treated cell until the photoconverted Kaede 
is degraded and replaced by new Kaede protein120. Kaede mice 
have been used to decipher the migratory kinetics and behavior 
of T follicular helper cells under homeostasis or during memory 
responses122. In brief, the above-mentioned strategies coupled with 
in vivo imaging have revealed the dynamic behavior of T follicu-
lar helper cells during primary and secondary immune responses. 
During the primary response, T follicular helper cells are restricted 
within the germinal center, where they provide cognate help to 
developing B cells. However, during secondary immune responses 
(akin to a recurrent infection), the memory T follicular helper 
cells show unrestricted migration in and out of the germinal cent-
ers, a strategy that might be useful in eliciting rapid humoral 
responses122.

Although both KikGR and Kaede mice have been used for track-
ing the dynamics of various immune cell subsets like neutrophils123,  
T cells124,125, innate lymphoid cells126, and dendritic cells127 at a pop-
ulation level, great opportunities still persist in understanding the 
behavior of these immune cells at single-cell resolution.

Another strategy to irreversibly mark individual cells in vivo 
relies on the Cre/lox recombination system. Using this strategy, 
Livet and colleagues generated the Brainbow mouse strain where 
Cre-mediated recombination stochastically permutates multiple 
copies of the construct containing several different fluorescent 
proteins128,129. This recombination strategy results in a mosaic of 
fluorescent colors leading to the detection of nearly 90 separate 

colors that can be used to mark individual cells. This strategy was 
initially used to identify individual neurons within the CNS and for 
tracing neuronal circuitry128. The generation of the Brainbow mouse 
paved the way for the development of several new approaches like 
LeGO130, Confetti131, and Ubow132 to mark cells for tracing the fate 
of individual cells. Ubow mice have been used for fate mapping of 
Langerhans cells132 and follicular dendritic cells133 within the skin 
and lymph node, respectively. Recently, a combination of fluores-
cent reporters and the Cre/lox system has been used exquisitely to 
highlight in vivo transfer of metastatic information between tumor 
cells134. Use of the Cre/lox system provides a significant advantage 
over other strategies such as photoactivation or photoconversion by 
genetically/permanently labeling the cells, thereby enabling track-
ing throughout the lifetime of the cell. However, in most scenar-
ios, the genetic labeling is targeted to a subset of cells and not to 
spatiotemporally selected individual cells.

Taken together, the recent advances in recombinant DNA technol-
ogy like TALEN and the CRISPR/Cas9 genome editing system 
along with the availability of a multitude of reporter and knockout 
mouse strains promise a more colorful and dynamic future for the 
in vivo imaging of leukocytes.

Other methodologies
Although the use of transgenic fluorescent reporter strains for  
in vivo imaging has been gaining momentum, the transduction of 
immune cells using various fluorescent reporters still provides a 
valuable tool for understanding leukocyte function. These strategies 
have been used to delineate activation45,102,135, calcium signaling136, 
and apoptosis137 within T cells in vivo. Similarly, several fluores-
cent probes are available to highlight cellular and molecular events 
crucial for leukocyte function in vivo. These fluorescent probes 
have been utilized to decipher various cellular processes: for exam-
ple, NETosis88,138, the generation of reactive oxygen species139, and 
cell death67,140. The use of fluorescent probes to mark DNA coupled 
with in vivo imaging has been crucial in deciphering the physi-
ological role of DNA-NETs (DNA-neutrophil extracellular traps). 
Intravital imaging in various infectious model systems has uncov-
ered the important role of DNA-NETs in ensnaring and killing  
pathogens88,141–143. Although DNA-NETs are an essential arsenal of 
the innate immune response, release of DNA-NETs in vivo can trap 
circulating tumor cells and enhance metastasis144.

Likewise, novel approaches have been developed to couple immune 
cell behavior with receptor-based signaling in vivo via administra-
tion of labeled antibodies. In this methodology, labeled Fab frag-
ments are administered in vivo and the distribution of cell surface 
receptors and the behavior of labeled cells are recorded, segmented, 
and analyzed as flow cytometry plots145. This methodology is of 
immense importance where the migratory dynamics of immune 
cells need to be analyzed in context with the receptor signals deliv-
ered to individual immune cells in situ.

Concluding remarks
In the past decade, in vivo two-photon imaging has provided 
researchers with unparalleled views of immune cell behavior 
under homeostasis or pathology. This has resulted in the identi-
fication of new molecular and cellular regulators of the immune 
system.
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In our laboratory, in vivo imaging has been instrumental in 
highlighting the dynamic behavior of neutrophils66, monocytes42, 
T cells146,147, dendritic cells73, type-2 innate lymphoid cells148, and 
perivascular macrophages86 under homeostasis or during various 
infections or inflammatory conditions.

Nonetheless, the use of in vivo imaging to understand cell-to-cell 
communication and the generation of complex interaction networks 
still requires extensive investigation. Intravital multiphoton imag-
ing in most tissues is restricted to approximately 500 μm from the 
surface, which limits the visualization of processes within deeper 
tissues in vivo, therefore leaving certain aspects of the immune 
response in the dark. Various other strategies such as optical fre-
quency domain imaging (OFDI)149 and speckle-variance optical 
coherence tomography (svOCT)150 have been developed for over-
coming this limitation; however, these methodologies currently 
lack the necessary resolution for imaging immune cell behav-
ior and are mostly useful for imaging tissue architecture and the  
vasculature151,152.

We believe that the increased availability of fluorescent reporters 
for in vivo marking of cellular and molecular signaling, technical 
improvements in instrumentation (for example, adaptive optics), 
and better analytical capability will be crucial for understanding the 
complex behavior of leukocytes in vivo.
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