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Abstract

A characteristic aspect of the robust, systemic inflammatory state in sickle cell

disease is dysfunction of endothelial nitric oxide synthase (eNOS). We identify

10 aberrant endothelial cell inputs, present in the specific sickle context, that are

known to have the ability to cause eNOS dysfunction. These are: endothelial arginase

depletion, asymmetric dimethylarginine, complement activation, endothelial glyc-

ocalyx degradation, free fatty acids, inflammatory mediators, microparticles, oxidized

low density lipoproteins, reactive oxygen species, and Toll-like receptor 4 signaling

ligands. The effect of true eNOS dysfunction on clinical testing using flow-mediated

dilation can be simulated by two known examples of endothelial dysfunction mimicry

(hemoglobin consumption of NO; and oxidation of smooth muscle cell soluble

guanylate cyclase). This lends ambiguity to interpretation of such clinical testing. The

presence of these multiple perturbing factors argues that a therapeutic approach

targeting only a single injurious endothelial input (or either example of mimicry)

would not be sufficiently efficacious. This would seem to argue for identifying thera-

peutics that directly protect eNOS function or application of multiple therapeutic

approaches.

1 | INTRODUCTION

The complicated pathophysiology of sickle cell disease (SCD, all sickle

genotypes except sickle trait) includes a multitude of vascular aber-

rancies. In general, these are derived from the disease's two dominant

pathogenic vectors that result from proximate abnormalities of the

sickle erythrocyte: vasoocclusion-induced ischemia–reperfusion injury

(I/R)1 and hemolysis.2 Although it is fashionable to view these as dis-

crete processes having divergent clinical consequences, our view is

that, for the most part, both hemolysis and I/R contribute to all clinical

manifestations, albeit in varying ways and proportions.1

Since the endothelium comprises the homeostatically-dynamic,

biological interface between blood and tissue, it is not surprising that

endothelial cell abnormalities are a prominent pathobiological feature

of SCD. A note on terminology to avoid confusion: we emphasize that

use of “endothelial cell dysfunction” (ECD) herein refers specifically to

dysfunction of the endothelial cell itself. Thus, this is distinct from the

two known special examples of ECD mimicry due to effects outside

of the endothelial cell (hemolytic consumption of NO and oxidative

smooth muscle cell dysfunction).

Sickle cell disease exhibits each of the potential categorical mani-

festations of ECD: permeability barrier dysfunction, assumption of a

pro-adhesive/pro-inflammatory phenotype, acquisition of a pro-

coagulant phenotype, and vasoregulatory dysfunction. This review

focuses solely upon the latter – specifically, the characteristic mal-

adaptive dysfunction of the vasodilatory enzyme endothelial nitric

oxide synthase (eNOS). Dysfunction of eNOS is evident in both

humans with SCD3–5 and sickle transgenic mice.6
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After briefly summarizing eNOS itself, we individually discuss

each of the 10 identified features of SCD that have been shown in

other and experimental contexts to induce eNOS dysfunction

(Table 1). We conclude with some thoughts about the implications of

the data reviewed herein for therapeutics of SCD.

2 | ENDOTHELIAL NITRIC OXIDE
SYNTHASE

The functional eNOS dimer is a complicated enzyme7 having binding

domains for the metabolic substrate L-arginine (arginine) and six nec-

essary cofactors: tetrahydrobiopterin (BH4), calmodulin, heme,

NADPH (reduced nicotinamide adenine dinucleotide phosphate), fla-

vin adenine nucleotide, and flavin mononucleotide. It is influenced by

post-translational modifications, for example, several possible sites of

phosphorylation and S-glutathionylation. Furthermore, the interaction

of eNOS with caveolin affects function, as does its cellular location,

for example, caveolar or cytoplasmic. And oxidation can adversely

impact the necessary dimerization of the enzyme.

Under normal circumstances, the enzyme's product is NO.

However, if endothelial cell arginine or tetrahydrobiopterin (BH4) are

deficient, or a steric inhibitor such as asymmetric dimethylarginine

(ADMA) is elevated, eNOS becomes “uncoupled” and produces super-

oxide instead of NO (Figure 1).

3 | ECD-PROMOTING FACTORS

The following promoters of eNOS dysfunction, extant in the specific

SCD context, are known consequences of I/R and/or hemolysis, as

identified in experimental and/or clinical literatures (Table 1). Since

there is no way at present to rank the relative importance of these dif-

ferent promotors on endothelial biology in SCD, we discuss them in

alphabetical order. In the discussion of each individual stressor, we

identify its biological context, document its hemolytic and/or I/R

origin in general, indicate its presence in SCD, and describe its specific

relevance to ECD in the SCD context.

3.1 | Arginase, asymmetric dimethylarginine

Arginine availability to eNOS is determined by the endothelial cell's

cytoplasmic arginine concentration, availability of required cofactors,

and level of any steric eNOS inhibitors such as ADMA.8,9

3.1.1 | Plasma arginase

In SCD, the increased plasma arginase derives mostly from sickle RBC

via intravascular hemolysis, and this lowers plasma arginine.10 How-

ever, it does seem likely that arginase release from activated

leucocytes, as seen in sepsis, also contributes somewhat in SCD. Also,

I/R can be another source of plasma arginase, in which case it is

released from the affected tissue.11

3.1.2 | Endothelial arginase

Of more direct relevance, the activity of arginase within endothelial cells

can be increased, thereby depleting endothelial arginine. This can be

induced by inflammatory signaling, so presumably as a consequence of

both I/R and hemolysis. Indeed, several factors that are elevated in

SCD are experimentally documented enhancers of endothelial arginase

activity, for example: TNF (tumor necrosis factor),12 oxidized low-

density lipoproteins (oxLDL),13 and thrombin.14 However, the status of

endothelial arginase activity has not been studied in SCD.

3.1.3 | Asymmetric dimethyl arginine

This naturally occurring metabolite of arginine is formed excessively

under I/R conditions, as evidenced by increased plasma levels.15 So,

ADMA is probably elevated by hemolysis since this has been observed

in severe malaria,16 and in SCD ADMA level correlates with plasma

LDH (lactate dehydrogenase).17

3.1.4 | ECD impact of arginine/ADMA disturbance

When endothelial cell arginine is insufficient, eNOS uncouples.7,9 It is

believed, however, that the critical determinant of eNOS status is not

arginine alone, but rather the endothelial ADMA:arginine ratio. When

this is abnormally elevated, it causes ADMA to compete with arginine

for association with eNOS,7 and it also is believed to inhibit endothe-

lial import of arginine from plasma.8 Consistent with the ADMA:argi-

nine ratio being critical, in non-sickle experimental I/R models

supplementation with arginine improves eNOS function in face of

high plasma ADMA.8

TABLE 1 Known inducers of eNOS dysfunction present in SCD

Seen in hemolysis Seen in I/R

" arginase + +

" asymmetric dimethyl arginine + +

" complement activation + +

" glycocalyx degradation + +

" free fatty acids � +

" inflammatory mediators + +

" microparticles + +

" oxidized LDL + +

" oxygen radicals + +

" TLR4 ligands (HMGB1, heme) + +

Abbreviations: HMGB1, high mobility group box 1; LDL, low density

lipoproteins;TLR4, Toll-like receptor 4.
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3.1.5 | The sickle context

Arterial rings removed from sickle transgenic mice manifest deficient

acetylcholine-induced, eNOS-dependent vasorelaxation that is miti-

gated if the mice had been treated with an inhibitor of both the

plasma and endothelial arginases.18 However, a very small study of

SCD subjects supplemented with arginine found no benefit for flow-

mediated dilation, the common clinical test for eNOS functionality

(most commonly performed by using Doppler to assess post-occlusion

hyperemia at the brachial artery19). A study of sickle mice found argi-

nine supplementation to blunt oxidant stress.20 A larger study did find

that arginine supplementation can reduce vasoocclusive crisis fre-

quency. Given available data, we expect the endothelial cell's intracel-

lular AMDA: arginine ratio to be elevated in SCD subjects.

3.1.6 | The arginine paradox

A positive endothelial response to increasing plasma arginine can

reflect “arginine paradox”. This term refers to the fact that exogenous

arginine supplementation boosts endothelial eNOS activity— even

when plasma and endothelial arginine levels are normal. In fact,

F IGURE 1 Central role of endothelial NO synthase (eNOS) uncoupling in the pathogenesis of endothelial dysfunction. eNOS is localized at
the plasma membrane caveolae. In endothelial cells, eNOS is inactive when it is bonded with caveolin 1 (cav-1). When it becomes active, eNOS
disassociates from cav-1 and binds with calmodulin (CAM) and heat shock protein 90 (Hsp90) and together with phosphorylation of serine sites
(e.g., Ser1177). The functional eNOS protein is a dimer (so-called coupled eNOS). Tetrahydrobiopterin (BH4), an essential cofactor of eNOS, is
necessary for optimal eNOS activity. BH4 facilitates NADPH-derived electron transferring from the eNOS reductase to the oxygenase domain to
convert L-arginine to NO and L-citrulline. NO plays a major role in relaxation of smooth muscle surrounding arterioles and maintaining vascular
function by inhibition of vasoconstriction, platelet aggregation, leukocyte adhesion, and cell proliferation through the cGMP-dependent
downstream signaling cascade. Interaction between L-arginine and asymmetric dimethylarginine (ADMA; endogenous competitive inhibitor of
NOS) is likely direct competition for eNOS. When availability of L-arginine or BH4 levels are inadequate, eNOS becomes unstable and uncoupled,
leading to subsequently less NO production and more superoxide generation. Moreover, interaction between NO and superoxide leads to
formation of peroxynitrite, a potent oxidant, which further oxidizes BH4, resulting in eNOS uncoupling as a vicious cycle, with subsequent
endothelial dysfunction. Figure is reproduced with permission from Ref.21
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endothelial arginine is normally abundant, from 10 to 30 times higher

than the arginine Km for isolated eNOS.8,9 So, a beneficial endothelial

response to infused arginine does not prove that deficient plasma argi-

nine was a constraint on eNOS function.

3.2 | Complement

The complement (C) cascades are part of the innate immune sys-

tem, normally functioning to damage and clear organisms or cells

(Figure 2). Pathogenic complement activation can be triggered by

both I/R22,23 and hemolysis.24

3.2.1 | The sickle context

The complement system is activated in SCD.25,26 This occurs through

assembly of alternative pathway C3 and C5 convertases on the

phosphatidylserine-rich outer membrane of sickle RBCs and

the microparticles they release.27 It also is partially heme depen-

dent.25 A study of SCD subjects identified not only an increased level

of activation fragment C5a but also evident microvascular deposition

of C5b-9 in small vessels of skin biopsies.28 Treatment of SCD

patients with hydroxyurea produces substantial reductions in comple-

ment activation.25

3.2.2 | ECD impact of complement activation

The complement terminal attack complex impairs endothelial-

dependent vasorelaxation, possibly by uncoupling eNOS.29–31 Inflam-

matory consequences of complement activation in SCD are relevant;

for example, recombinant C5a induces inflammation and vaso-

occlusion in sickle mice.26 In hemolytic processes, TLR4 signaling can

apparently activate complement in an endothelial and P-selectin

dependent manner.32 Interestingly, factor H (a complement control

protein) prevents the P-selectin mediated adhesion of sickle red cells

to endothelial cells.

3.3 | Endothelial glycocalyx thinning

The endothelial glycocalyx (EGX) covers the luminal surface of

all endothelial cells, and the spaces between them, as a 200–

1000 nm thick layer immediately adjacent to the plasma membrane

(Figure 3).34 It is composed of a complex variety of glycoproteins

F IGURE 2 Basic structure of the
complement system. C, complement;
C4BP, C4b binding protein; CR,
complement receptor; DAF, decay
accelerating factor; INH, inhibitor; LPS,
endotoxin. Reproduced with permission
from Figure 1 from Ref. 33
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carrying sialic acid and proteoglycans decorated with glycosamino-

glycan chains having negatively charged sulfates (�70% heparan

sulfate). Other components include membrane-anchored syndecans

and glycosylphosphatidylinositol-anchored glypican. Also, embed-

ded within it are long strands of high molecular weight hyaluronan,

either unanchored or anchored to CD44. Normally, the integrins,

the selectins and CAMs, and the outer aspects of membrane chan-

nels and receptors are mostly buried within the EGX. Biophysically,

this EGX is a hydrated, negatively charged, porous gel—the “pores”
of which normally are sized so as to prevent solutes larger than

albumin from passing to subendothelial space. Thus, despite being

an external feature, the EGX is not only attached but is also a func-

tionally an integral part of the endothelial cell.

The remainder of the overall endothelial surface layer is com-

posed of an overlying mat of proteins deposited on top of the EGX.

This is an “interactome” that includes >200 proteins having heparan

sulfate binding capability.34 Examples include: anti-thrombin III, hepa-

rin cofactor II, von Willebrand factor, tissue factor pathway inhibitor,

C1 esterase inhibitor, extracellular superoxide dismutase, xanthine

oxidase, inflammatory chemokines, and albumin. A number of these

proteins are functionally optimized via association with EGX.34

Even normally, EGX thickness is not uniform; rather, it varies in

different parts of the vasculature. Of particular relevance to interpre-

tations of experimentation, the EGX thickness on cultured human

umbilical vein endothelial cells was found to be only one-twentieth of

the EGX thickness of the parent umbilical vein endothelium from

which they came.35 This suggests it would be optimal if in vitro obser-

vations of endothelial functions are confirmed in a whole-animal

model.

3.3.1 | EGX degradation

Pathologic thinning of the EGX is a hallmark feature of I/R specifi-

cally and inflammation generally.36 Thinning is accomplished

by a variety of blood- and endothelial-derived inflammatory

“sheddases”, for example, heparanase, proteases, and hyaluroni-

dase.37 We find no reports of hemolysis causing EGX degradation.

However, it is likely that hemolysis does so, for example., via its

TLR4 signaling impact of increasing TNF and ROS, both of which

promote EGX shedding.

3.3.2 | The SCD context

Given the complex, robust inflammatory milieu of SCD, it would seem

virtually certain that EGX thinning is a feature of its endothelial biol-

ogy. However, the EGX has been largely ignored in this disease.

F IGURE 3 The endothelial glycocalyx (EGX) basic features. bFGF, basic fibroblast growth factor. LPL, lipoprotein lipase. Figure reproduced
with permission from Figure 1 from Ref. 50
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A single imaging study revealed evidence for abnormal EGX thinning

in sickle patients.38 The elevation of natriuretic peptides in SCD39

may be implicated, since A,B, and N peptides are each implicated in

EGX shedding.40

3.3.3 | ECD Impact of EGX thinning

Known consequences of abnormal EGX thinning include increased

barrier porosity and permeability, abnormal exposure of adhesion mol-

ecules, compromise of anti-thrombotic capacity, and loss of endothe-

lial mechanosensing of shear stress.32 Indeed, EGX integrity is a

critical endothelial component enabling sensing of wall shear stress –

it is known to be required for normal shear stress-induced eNOS acti-

vation.41 Conversely, the replacement of any shed EGX is dependent

upon the endothelial cell's eNOS/NO-dependent EGX husbandry.

Thus, EGX structural components are in a dynamic equilibrium

between their mechanosensing-triggered assembly and their degrada-

tive loss by shedding.34,42 Thus, it seems highly likely that compromise

of endothelial mechanosensing due to EGX thinning is a major con-

tributor to eNOS dysfunction in the SCD context, given the promi-

nence of its degradation as a feature of both I/R and other

inflammatory pathobiologies.34

3.4 | Free fatty acids

We find no evidence that hemolysis per se increases free fatty acid

(FFA) levels. But in the context of I/R, enhanced activity of phospholi-

pase A2 (PLA2) can liberate FFA, a specific example being oleic acid.43

3.4.1 | The sickle context

In SCD, PLA2 is increased, even more so in association with acute

chest syndrome.44 Consequently, levels of some FFA are elevated in

SCD; among these, in fact, is oleic acid.45 We emphasize this because,

decades ago, oleic acid injection was a classical way to experimentally

induce an acute respiratory distress syndrome.46 Thus, it is not sur-

prising that in SCD, fat embolism is associated with acute chest syn-

drome (ACS), and that the latter tends to occur early in vasoocclusive

crises.47

3.4.2 | ECD impact of FFA

Free fatty acids can promote ECD.48 For example, in cultured endo-

thelial cells, oleic acid downregulates eNOS expression and decreases

its activity by interfering with the AMPK/PI3K/Akt/eNOS pathway of

activation.49 Free fatty acids also can, promote induction of the

NLRP3 inflammasome, stimulate endothelial NADPH oxidase, and

activate TLR4 signaling.48 Each of these occurrences is known to

directly or indirectly compromise eNOS function.

3.5 | Inflammatory mediators

Stemming from both hemolysis and I/R pathobiology, the complex

inflammatory vascular milieu of SCD includes a great variety of

perturbative substances.1,2 This includes: cytokines and chemokines,

vasoactive mediators and metabolites, growth factors, reactive oxy-

gen species, activated complement proteins, activated coagulation

and fibrinolysis components, lipid-sourced mediators, and others.

Within such general categories reside many factors that, for example,

initiate release and/or activation of EGX sheddases34,37 (see EGX

subsection) or activate NADPH oxidase, a common pathway to ECD

(see ROS subsection).

3.6 | Microparticles (MP)

Microparticles are sub-micron sized vesicles that can variably retain

some membrane features and cytoplasmic components of their cells

of origin (Figure 4). Thereby, they can be a mode of intercellular

information trafficking. Microparticles are present normally, but they

are released in far greater numbers by platelets, leucocytes, and

endothelial cells as a feature of either activation or dysfunction. Red

blood cells release them in various hemolytic disorders.51 Thus, MP

are pathologically present in a great variety of vascular disorders.52

Microparticles also are released in experimental and naturally occur-

ring I/R contexts, the parent cell source depending upon the

affected tissue; for eample, liver MP in hepatic I/R,53 endothelial MP

in stroke I/R.54

F IGURE 4 An endothelial-derived microparticle (EMP) showing
accompanying functionalities reported in literature. Not all EMP
display each moiety shown here. eNOS, endothelial nitric oxide

synthase; EPC, endothelial protein C; EPCR, endothelial protein C
receptor; ICAM-1, intercellular cell adhesion molecule �1; MMP,
matrix metalloprotease; PECAM-1, platelet endothelial cell adhesion
molecule – 1; S-Endo (aka, P1H12, melanoma cell adhesion molecule);
TF, tissue factor; TM, thrombomodulin; uPA, urokinase plasminogen
activator; uPAR, uPA receptor; VCAM-1, vascular cell adhesion
molecule – 1. Reproduced with permission from Figure 1 from Ref. 86
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3.6.1 | The sickle context

Sickle cell disease plasma contains abnormally increased MP from

RBC, platelets, leucocytes, and endothelial cells, those from RBC being

the most abundant.55–57 Their numbers increase during a vaso-

occlusive crisis. The RBC MP probably are released from sickle RBC as

a response to sickling/unsickling,58 aided by Hb spicule-mediated

deformation of the plasma membrane59 and by thiol oxidation of

membrane proteins.60 In SCD up to half of total plasma cell-free heme

is accounted for by hemoglobin trapped within RBC MP.55

3.6.2 | ECD impact of MP

Sickle RBC-derived, heme laden MP adhere to and transfer heme into

endothelium, resulting in oxidant stress, impaired acetylcholine-

dependent NO-mediated vasorelaxation, and even vaso-occlusion.61

In the sickle mouse, RBC MP also increased endothelial adhesion mol-

ecule expression, reportedly via a TLR4 signaling dependent mecha-

nism.62 Interestingly, endothelial-derived MP in various experimental

contexts similarly impair NO-dependent vasorelaxation,63–65 indicat-

ing that the adverse impact of MP need not be a function of con-

tained heme per se. One study found that endothelial-derived MP

induced permeabalization and acute lung injury.64

3.7 | Oxidized low density lipoproteins (oxLDL)

Oxidized low density lipoproteins can promote hemolysis,66 and hemo-

lysis likely promotes oxLDL formation, because cell-free heme readily

partitions into and oxidizes LDL.67–69 In an experimental intestinal I/R

model, oxLDL were found to accumulate not only locally in intestine

but also in liver and lung, indicating vascular distribution.70 Further-

more, impact synergy can occur because oxLDL effects on endothelial

cells are mediated in part by LOX-1 (oxidized LDL receptor 1), the

expression of which is augmented in I/R.71 Signaling from oxLDL can

also occur via CD36 on platelets and monocytes/ macrophages, so per-

haps also by CD36 positive microvascular endothelial cells.72

3.7.1 | The sickle context

Cell-free HbS is a source of liberated free heme.73 The LDL of SCD

subjects are oxidizable by heme abnormally easily.69 Thus, plasma

levels of oxLDL are described to be proportionately elevated in both

SCD subjects74,75 and sickle mice.76

3.7.2 | ECD impact of OxLDL

These oxLDL adversely impact eNOS in several ways. They down-

regulate eNOS in a TLR4-dependent manner,77 and they inhibit

acetylcholine-induced activation of eNOS by interfering with the

eNOS/caveolae interaction.78 Note, OxLDL induce endothelial

NADPH oxidase79 and diminish eNOS activity. In addition, oxLDL trig-

gers LOX-1 signaling80 that, in turn, leads to multiple aberrancies,

including endothelial vasoregulatory dysfunction.81 Another impact of

oxLDL includes decreasing arginine transport into endothelial cells

and induction of endothelial arginase.82 Also, oxLDL are a possible

ligand for TLR4 signaling (see TLR4 sub-section).82

3.8 | Reactive oxygen species (ROS)

Both I/R83 and hemolysis84 generate ROS via multiple mechanisms.

Sources probably include hemoglobin S auto-oxidation, NADPH oxi-

dase induction, xanthine oxidase, myeloperoxidase, mitochondrial dys-

function, and uncoupled eNOS.

3.8.1 | The sickle context

Sickle cell disease subjects exhibit biological footprints of excess oxidant

activity.85 In the sickle mouse, endothelial ROS can be generated to

excess (Figure 5).87–89 Many known features of SCD biology are inducers

of NADPH oxidase activity, including: TNF, thrombin, ROS, endothelin I,

angiotensin II, vascular endothelial growth factor, interleukin-1, oxLDL,

and signaling by Toll-like receptor 4 (TLR4). Concurrently, individuals with

SCD tend to be somewhat deficient in antioxidants.85

3.8.2 | ECD impact of ROS

The NADPH oxidase generation of superoxide is believed to be a

dominant ROS source within endothelial cells in vascular diseases

generally.90 Also, NADPH oxidase activation can lead to eNOS dys-

function by exerting multiple effects. In particular, it causes (probably

via peroxynitrite) the oxidation of BH4 and GTP cyclohydrolase I,

thereby dropping the BH4:eNOS ratio to < 1 so that the enzyme

uncouples and itself generates superoxide.91

3.9 | TLR4 signaling

TLR4 is a damage-pattern recognition receptor that is functionally

expressed on monocytes/macrophages, neutrophils, immune cells,

platelets, endothelial cells, and smooth muscle cells, among others.

Upon its engagement with an appropriate ligand, TLR4 produces

inflammatory signaling causing ROS generation, NF-κB activation,

inflammasome enhancement, and release of inflammatory cytokines

and chemokines.

3.9.1 | The sickle context

TLR4 signaling has not been measured in SCD subjects per se, but it is

elevated in sickle mice.92,93 Known TLR4 activators that are elevated

in SCD include ligands resulting from both hemolysis (e.g., heme92–94)
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and I/R (e.g., high mobility group box 1, HMGB195,96). Both heme2

and HMGB197 are elevated in plasma of both humans with SCA and

sickle mice. Other TLR4 signaling ligands that may be relevant in SCD

can include the FFA palmitate,80 RBC-derived microparticles,

hyaluronan and heparan sulfate from EGX degradation,98 abnormal

shear stress patterns,99 and oxidized LDL.98

3.9.2 | ECD impact of TLR4 signaling

A study using mouse endothelial cells demonstrated that HMGB1/

TLR4 signaling adversely impairs acetylcholine stimulated, eNOS-

dependent vasorelaxation.100 A study of murine macrophages docu-

mented that TLR4 signaling by HMGB1 and hemoglobin can be

synergistic,101 as it can be for heme and endotoxin.94

We speculate that HMGB1 is far more important in SCD than is

currently recognized. In cardiology it has been specifically implicated

in promotion of all stages of the inflammatory arteriopathy of athero-

sclerosis.102 Perhaps it plays similar role in the inflammatory

arteriopathy of SCD. We elsewhere have proposed a unique mecha-

nism by which elevated HMGB1 can compromise endothelial

mechanosensing of shear stress,103 a mechanism directly relevant to

the SCD context.

4 | VASOCONSTRICTORS

An inflammatory milieu can include a variety of vasoconstrictors and

these, of course, can impact endothelial vasoregulation. A general dis-

cussion of all endothelial-derived vasoregulatory molecules is beyond

the scope of this eNOS-focused review. However, we do note that

SCD subjects are reported to have elevated levels of the vasoconstric-

tors endothelin-1 (ET-1),104 angiopoietin-2 (Ang-2)105 and thrombox-

ane A2. Also reported is a depressed level of the vasodilator

prostacyclin, although platelet activating factor and prostaglandin E2

levels are reportedly elevated. Interestingly, exposure of endothelial

cells to sickled RBC boosts their ET-1 production.106 Also notable is

that two vasoconstrictors, ET-1 and Ang-2, are stored in Weibel-

Palade bodies. Since Weibel-Palade activation is normally inhibited by

NO, the NO deficient status of endothelium in SCD likely promote

endothelial vasoconstrictor release.

4.1 | Red cell eNOS

This produces intracellular NO which is involved in complicated rela-

tionships between hemoglobin thiols, membrane thiols, nitric oxide,

related species, and vascular resistance.107 Interestingly, RBC eNOS is

reported to participate in vascular resistance regulation (e.g., it con-

tributes to depressing blood pressure), but it does not contribute to

functional measures of endothelial eNOS activity (acetylcholine-stim-

ulated flow-mediated dilation).108 Thus, NO from RBC eNOS is

believed to decrease vascular resistance by mechanisms different than

that of NO from endothelial eNOS, perhaps via NO reaction products.

So, in theory, depressed RBC NO, as is said to be the case in SCD,

could contribute a vasoconstrictive influence, though it would not

mimic eNOS dysfunction per se. Regardless, we speculate that RBC

eNOS is of little relevance because most NO generated by it would be

readily consumed by the RBC's extremely high intracellular concentra-

tion of hemoglobin.

F IGURE 5 Oxidant generation by
endothelium in situ. In sickle mice,
cremaster venular segments were
monitored for oxidant generation, as
detected by fluorescence from DHR
(dihydrorhodamine 123). The vessel runs
vertically, the lines of signal indicating
oxidant generation by endothelial cells in
the walls of the single vessel. Bar

indicates 10 μm. (A) Normoxia control.
(B) After 3 hours of hypoxia followed by
30 min of normoxia, the DHR signal
appears confirming increased oxidant
generation. (Such exposure to hypoxia
followed by room air induces a clear I/R
state that converts endothelium of the
mild-phenotype sickle mouse to replicate
that of an unmanipulated severe-
phenotype mouse.) Reproduced with
permission from Figure 1 from Ref. 87
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5 | EXAMPLES OF ECD MIMICRY

This review has focused upon the disparate factors in the SCD

pathobiological milieu that can cause eNOS dysfunction, that is, dys-

function of the endothelial cell itself. There also are two known exam-

ples of ECD mimicry in the SCD context. The distinction between true

ECD and ECD mimicry will be important both for interpretation of

pathophysiology and if endothelial-related therapeutics are considered.

5.1 | NO consumption by cell-free hemoglobin

The consumption of NO by cell-free oxyhemoglobin residing either in

plasma or within MP is well-known and has recently been thoroughly

reviewed.2 By consuming NO outside of the endothelial cell per se,

cell-free Hb intercepts the normally unimpeded transfer of NO from

endothelial cell to smooth muscle cell (SMC). In clinical testing for

ECD by assessing flow-mediated dilation, this external NO consump-

tion could mimic a primary NO generation insufficiency resulting from

actual eNOS deficiency. We find no evidence that extracellular con-

sumption of NO affects either internal eNOS generation of NO or the

endothelial cell's internal NO-mediated functions.

5.2 | Oxidized soluble guanylate cyclase (sGC)

An elegant study of sickle transgenic mice identified a relevant exam-

ple of smooth muscle cell (SMC) dysfunction: a blunted ability of the

SMC to respond to NO, a defect caused by abnormal oxidation of

the SMC's soluble guanylate cyclase itself.109 Depending on extent of

such modification, it also could possibly mimic the effect on clinical

testing of actual eNOS dysfunction.

6 | IMPLICATIONS FOR ENDOTHELIAL-
TARGETED THERAPEUTICS

The vast complexity of SCD and the involvement of multiple patho-

genic factors leading to eNOS dysfunction (Table 1) create a difficult

challenge if endothelial-targeted therapeutics are considered. It is

impossible to identify the dominant mechanism underlying eNOS dys-

function. If there even is one, it may differ among individuals, or even

vary with time. These challenges could be taken to argue for

employing an agent exerting broad salubrious effects upon the

endothelial cell.

6.1 | Statins

In this regard, statins benefit the endothelial cell in multiple ways,

including reversing eNOS uncoupling.110 Indeed, a statin has exhibited

efficacy in sickle mice (for reducing endothelial activation markers)111

and in SCD subjects (for reducing pain).112 Statins have not been

tested for ECD impact per se in the specific sickle context, but in ath-

erosclerotic arteriopathy they do exert restorative effects. Indeed, in

general medicine rosuvastatin protected against stroke in seemingly-

healthy individuals with somewhat elevated CRP but without hyper-

lipidemia.113 Statins could perhaps be considered for application

in SCD.

7 | CURRENTLY APPROVED DRUGS

Four drugs are currently FDA approved for use in SCD: hydroxyurea,

L-glutamine, crizanlizumab, and voxelotor. The former two are known

to exert eNOS-sparing effects, whereas no such effects have been

reported for the latter two.

7.1 | Hydroxyurea

Hydroxyurea's disparate effects include increasing eNOS protein

level114 and stimulating its activity.115 A very small study of this drug's

effect on a measurement of ECD by flow mediated dilation yielded

negative results.116 Of note, however, the drug can blunt incidence of

sickle stroke.117,118

7.2 | L-glutamine

L-glutamine exerts pleiotropic effects on endothelial cells, including:

improving their redox potential (NAD+/NADH, NADP+/NADPH);

boosting glutathione; stimulating heme-oxygenase; promoting synthe-

sis of L-arginine; and fostering NO production.119 Notably, in a mouse

study glutamine ameliorated the defective eNOS function caused by

L-Nω-methylarginine, another arginine analogue exerting the same

eNOS uncoupling effect as ADMA.120

8 | CONCLUSION

Within the exceedingly complex pathobiology of SCD there are

10 identifiable factors that have been shown, largely in other con-

texts, to adversely impact eNOS function. At present, it is impossible

to identify a single, dominant, ECD-inducing agent at which therapy

perhaps could be directed. If specific endothelial-sparing therapeutics

are considered, this would seem to argue for application of agents

known to exert multiple beneficial effects upon the endothelial cell's

biology, or for use of a combination of agents. In SCD, observation of

abnormal flow-mediated dilation, the clinical test commonly used clin-

ically to detect ECD, could plausibly derive from true eNOS dysfunc-

tion (as reviewed herein) or from either of the two noted examples of

ECD mimicry.
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