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Abstract
Disseminated intravascular coagulation (DIC) is an acquired condition that
develops as a complication of systemic and sustained cell injury in conditions
such as sepsis and trauma. It represents major dysregulation and increased
thrombin generation  . A poor understanding and recognition of thein vivo
complex interactions in the coagulation, fibrinolytic, inflammatory, and innate
immune pathways have resulted in continued poor management and high
mortality rates in DIC. This review focuses attention on significant recent
advances in our understanding of DIC pathophysiology. In particular, circulating
histones and neutrophil extracellular traps fulfil established criteria in DIC
pathogenesis. Both are damaging to the vasculature and highly relevant to the
cross talk between coagulation and inflammation processes, which can
culminate in adverse clinical outcomes. These molecules have a strong
potential to be novel biomarkers and therapeutic targets in DIC, which is still
considered synonymous with ‘death is coming’.
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Introduction
Disseminated intravascular coagulation (DIC) represents a major 
dysfunction in the hemostatic system, which is a physiological  
response to vascular injury. Upon injury, immediate interactions  
between components of the vessel wall and circulating blood 
lead to activation of the extrinsic and intrinsic pathways of  
coagulation to generate a burst of thrombin. Thrombin is imme-
diately pro-coagulant in converting fibrinogen to fibrin but also  
mediates the anti-coagulant pathway by interacting with throm-
bomodulin (TM) to activate the protein C (PC) pathway. This  
controls the extent of localized clot formation, but when injury is 
of a systemic or sustained nature, regulation of thrombin genera-
tion is lost with adverse functional consequences. Owing to the 
ubiquitous nature of thrombin in affecting coagulation, fibrinoly-
sis, and inflammation1–3, this can result in DIC and cause organ 
failure from microvascular thrombosis and endothelial barrier  
disruption.

This dynamic complexity in DIC pathogenesis is clinically  
important because its presence is well validated as an independ-
ent predictor of mortality4. Development of DIC significantly  
increases risk of death beyond that of the underlying pathology. 
For example, DIC development in patients with sepsis and trauma  
doubles the risk of mortality5. Despite this awareness, and the 
fact that its acronym could stand for ‘death is coming’, it remains  
poorly recognized by critical care clinicians and poorly managed 
because of the lack of high-quality evidence. DIC diagnosis is 
based on scoring a number of hemostatic parameters6. Although 
measurements of the prothrombin time, fibrinogen, platelets, and 
fibrin-related products are generally available, changes in all of 
these parameters may not occur at the same time and can delay 
recognition and diagnosis. In some critical care settings, not all of  
these tests might be requested. Together with the lack of under-
standing that the manifestation of DIC can vary depending on  
primary disease-specific drivers of thrombin generation in  
causing multi-organ failure, this has resulted in poor management 
and mortality rates of 50%7.

With the overall aim of improving our understanding of how  
DIC contributes to adverse clinical outcomes, this review will  
build upon key criteria in DIC. These were set out by the  
International Society on Thrombosis and Hemostasis (ISTH)  
Scientific and Standardization Sub-Committee (SSC) in describ-
ing how DIC can arise from the vasculature but also cause  
damage to the vasculature4. Furthermore, the direct coupling of 
inflammation to coagulation processes facilitates the develop-
ment of organ dysfunction. Specifically in this review, we will  
examine how extracellular histones and neutrophil extracellu-
lar traps (NETs) fit the DIC criteria and key principles in our  
understanding of DIC pathogenesis. Insight into this rapidly  
growing area of research could pave the way for improved  
clinician understanding and better approaches to manage the  
patient with DIC.

Extracellular histones and neutrophil extracellular 
traps
While the intra-nuclear function of histones as proteins that  
package DNA into nucleosomes has been well understood7,8, it is 

their role when released extracellularly upon cellular damage or 
death that is of interest and relevance to DIC. The cytotoxicity 
of extracellular histones, whereby their neutralization in sepsis  
models with anti-histone antibodies or activated PC (APC)  
conveyed survival benefit were first described in 20099. This  
discovery, followed by further in vitro and in vivo work, has  
translated into studies in patients with sepsis, trauma, and pan-
creatitis to illustrate the clinical relevance of extracellular histones  
and histone-DNA complexes (nucleosomes) to systemic inflam-
mation, microvascular thrombosis10–14, organ injury10,11,15–18, and  
death. Extracellular histones may be found in the circulation 
(either free or complexed with DNA ‘nucleosomes’) or localized 
(and modified) as part of the extracellular traps released upon  
damage or activation of nucleated cells, primarily neutrophils. The  
various roles of neutrophils as key modulators of the complex  
interaction between innate immunity, inflammation, and coagu-
lation (also known as ‘immunothrombosis’) are increasingly  
recognized and were recently well reviewed by Stiel et al.19. The 
focus of this review is on one aspect of neutrophil contribution; 
which is mediation by NETs.

NETs were first described in 2004 as a neutrophil-derived  
amalgam of elastases, histones, and DNA that collectively trap 
and kill bacteria20. Like histones, NETs have important physi-
ological but potential pathological manifestations. Their uncon-
trolled or inappropriate release by neutrophils can contribute to 
the pathogenesis of sepsis, micro- and macro-vascular throm-
bosis, and multiple organ injury21–26. Consequences of NETs are 
typically site-specific, but breakdown products, such as cell-free 
DNA (cfDNA) or DNA-myeloperoxidase (DNA-MPO) com-
plexes, can be found in the circulation27–31. However, cfDNA can 
arise from damaged cells and not only from NETs32. As such, 
high circulating cfDNA levels should not be assumed to correlate 
directly with in vivo NET formation. Furthermore, intact NETs 
are structurally different and functionally dependent on its asso-
ciated contents both locally and when cleaved and present in the  
circulation33,34.

Importantly, there is a bi-directional relationship between NETs 
and histones (Figure 1). First, NETs bear exposed histones (and  
numerous potent enzymes such as elastase) on their meshwork 
and therefore facilitate local histone-mediated cytotoxicity,  
pro-coagulant and pro-inflammatory effects. Histones can also 
be released from NETs into the circulation to disseminate its 
adverse effects35,36. Second, histones can directly stimulate  
neutrophils to form NETs10,37,38 and therefore there is a vicious 
circle triggered by cellular injury that is then propagated by this 
bi-directional relationship between histones and NETs to promote 
further thrombin generation and contribute to DIC pathogenesis. 
These will be specifically detailed below in addressing how the  
various pathophysiological aspects of DIC can be contributed to  
by circulating histones and NETs.

Relevance of histones and neutrophil extracellular 
traps to disseminated intravascular coagulation
The discussion will be divided into how histones and NETs  
contribute to the initiation, amplification, and propagation of  
coagulation activation (Table 1).
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Table 1. Mechanisms by which histones and neutrophil extracellular traps cause disseminated intravascular 
coagulation.

Triggering coagulation  
•  Tissue factor expression on endothelial cells and macrophages (mediated by Toll-like receptors and pro-inflammatory 
pathways: nuclear factor-kappa B and activator protein 1)12,39 
•  Neutrophil extracellular traps bearing tissue factor40–42 
•  Pro-inflammatory cytokine release, production, and activation10,43–48 
•  Cellular activation and injury, including platelets9,10,13,26,49–54

Amplifying coagulation  
•  Reduced endogenous anti-coagulant activity by consumption, liver damage, and extravascular extravasation12,16,55–59 
•  Intrinsic pathway activation60–63 
•  Impaired fibrinolysis64–66

Propagating coagulation  
•  Cytotoxic effects in circulation9,10,15,49,59,67–69 
•  Circulating microparticle effects70–73 
•  Distant organ injury9,10,15,74

Figure 1. Bi-directional relationship between histones and neutrophil extracellular traps (NETs). Cell damage releases histones which 
trigger NET formation and the formed NETs are a source for both localized and systemic histone release. The increased thrombin generation, 
which is the hallmark of disseminated intravascular coagulation, simultaneously affects coagulation, fibrinolysis, and inflammation processes 
to amplify the reciprocal relationship between histones and NETs.

Factors that trigger coagulation in disseminated 
intravascular coagulation
Tissue factor expression. It is widely acceptable that the most 
important trigger of coagulation in sepsis and trauma-associated 
DIC is excessive tissue factor (TF) expression by circulating 
monocytes and its exposure from the vascular sub-endothelium  
following injury75. This is supported by the observation that  
patients with DIC have significantly higher levels of circulating 
TF compared with controls76. Exaggerated TF expression in septic  
and trauma DIC was historically attributed to systemic inflam-
mation triggered by the invading microorganisms or their toxins 
(such as lipopolysaccharides)39–41. However, two recent studies 
have shown that extracellular histones can directly induce TF 
expression in a dose- and time-dependent manner on the surface of  

endothelial cells and macrophages via Toll-like receptor-4  
(TLR-4) and TLR-2 and activation of the nuclear factor-kappa B  
(NF-κB) and activator protein 1 (AP-1) pathways12,42. With 
regard to NETs, recent studies have reported that NETs bear 
TF and contribute to thrombosis in myocardial infarction77 and  
anti-neutrophil cytoplasmic antibody-associated vasculitis78,79.  
One study in the cancer setting reported significant interactions 
and correlations between NET components (primarily circu-
lating DNA and nucleosomes) and TF-bearing microparticles  
culminating in overt DIC43. Interestingly, both TF-bearing NETs  
and TF-bearing microparticles were found to be triggered 
by complement C5a79, highlighting a significant interaction  
between the coagulant and innate immune systems that include 
complement in contributing to pathology.
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Pro-inflammatory cytokine involvement. In sepsis and trauma, 
the DIC process is directly linked into, and triggered by, the  
systemic inflammatory host response, of which pro-inflammatory 
cytokines play critical roles beyond induction of TF expression44. 
Excessive cytokine activities disrupt the fine balance and cross 
talk between coagulant, anti-coagulant, and inflammatory path-
ways to augment the pro-coagulant phenotype44,45. Histones can  
directly induce the release of several pro-inflammatory cytokines, 
including interleukin-6 (IL-6), IL-1β, and tumor necrosis  
factor-alpha (TNF-α)10,46–48. NETs act as scaffolds to potentiate IL  
production and activation80–82. Conversely, cytokines can induce 
NETosis83 in a bi-directional relationship akin to that between  
histones and NETs (Figure 1).

Platelet activation. Platelets are important for both the initial 
burst and further sustenance of thrombin generation by acting as  
scaffolds on which further coagulation activation takes place84  
and through platelet-derived polyphosphate activation of fac-
tor XI85. Platelets also promote a pro-coagulant phenotype 
via P-selectin expression which enables adherence to the vas-
cular endothelium and leukocytes while also augmenting TF  
expression49 and phosphatidylserine exposure on monocytes50,51 
which collectively enhances thrombin generation51. Histones 
can directly induce platelet activation via calcium influx with 
subsequent platelet aggregation and consumption in vitro and  
in vivo13,52,86. Histones can also promote thrombin generation in a  
platelet-dependent manner via P-selectin expression, phosphati-
dylserine exposure, and FV/Va availability on platelet surfaces87.  
Histone-induced TF expression and subsequent thrombin  
generation can further activate platelets. In terms of clinical rel-
evance, a case control study in intensive care patients recently 
illustrated a strong association between high histone levels and  
subsequent platelet consumption and thrombocytopenia to trans-
late the findings of histone-induced thrombocytopenia in animal  
models88. In parallel, NETs can interact with platelets to induce 
platelet aggregation, polyphosphate release, and subsequent 
thrombin generation to cause intravascular coagulation in septic 
mice26. Conversely, platelets can directly induce NETosis33,89,90 
(Figure 1) and contribute to pathology, including that of  
transfusion-associated acute lung injury33,90.

Vascular endothelial injury. The vascular endothelium, one 
of the biggest organs in the body, has a natural anti-coagulant  
surface mediated by the generation of APC91, tissue factor  
pathway inhibitor (TFPI)92, and expression of heparan sulfate and 
glycosaminoglycans that convey anti-thrombin (AT) activity93. 
Endothelial cells also participate in fibrinolysis through release 
of tissue plasminogen activator (tPA) upon activation94,95.  
Therefore, damage or dysfunction of the vascular endothe-
lium is another vital aspect of DIC pathogenesis. To this end, 
histone-induced toxicity on the vascular endothelium is well  
documented9 and further extended in clinical studies with 
strong correlations observed between levels of circulating his-
tones and soluble TM, a marker of endothelial cell injury, in  
critically ill patients10. In addition, histones have been reported 
to induce the release of ultra-large von Willebrand factor (vWF)  
multimers96, which are involved in platelet adhesion, platelet 
consumption, and microvascular thrombosis. Reports in patients 

with sepsis have indeed documented elevated levels of ultra-large 
multimers of vWF together with deficiency of a disintegrin and 
metalloproteinase with a thrombospondin type 1 motif, member 
13 (ADAMTS-13), which is responsible for degradation of these 
multimers53,54, but the direct effect of histones on ADAMTS-13 
is not currently known. As to NETs, a recent study showed that 
vascular endothelial cells have limited phagocytic capacity for  
NETs, which could result in poor NET clearance and subse-
quent damage to endothelial tight junctions to increase vascular  
permeability77. Another study illustrated that matrix metallopro-
teinases within NETs contribute to endothelial dysfunction67.  
Indeed, activated endothelial cells can also induce NETosis98. As 
such, these histone- and NET-induced changes are also likely to 
play relevant roles in DIC pathogenesis.

A physical consequence of cellular injury induced by histones 
and NETs is the exposure of negatively charged phospholipid  
surfaces from membrane disruption99. Availability of such phos-
pholipid surfaces is highly pro-coagulant and can accelerate 
the prothrombinase reaction by 250,000-fold100. In addition,  
histones can directly bind prothrombin and cause its auto- 
activation into thrombin. The implications would be that histones 
can directly generate thrombin without requiring coagulation  
activation101. Although this reaction takes about eight hours and 
therefore may not be physiologically relevant, the available  
evidence points to the diversity in how histones directly contribute 
to thrombin generation and disseminate coagulation activation.

Factors that amplify coagulation in disseminated 
intravascular coagulation
Reduced endogenous anti-coagulant activity. The three  
endogenous anti-coagulant pathways—AT, PC, and TFPI—play 
a critical role in regulating the extent of clot generation. All of 
these pathways are significantly compromised in DIC. Declining  
trends in AT and PC levels can be used to identify patients in a 
non-overt stage of DIC before full decompensation6. Low AT and 
PC levels have been validated as strong predictors of mortality in 
patients with sepsis and DIC55,102.

Although low levels of endogenous anti-coagulants can be due 
to pathological consumption by the excessive coagulopathy in 
DIC, other mechanisms also contribute to reduced activity and  
levels103. Related to histones and NETs are two studies show-
ing that histones can disrupt the PC pathway by downregulating  
TM12 or dampening TM-dependent PC activation56. This would 
impair APC anti-coagulant, anti-inflammatory, and cyto-protective  
functions57, including its ability to proteolytically cleave  
histones9. NET-associated elastases can potently degrade AT 
and TFPI58–60. In addition, two other potential mechanisms for  
endogenous anti-coagulant loss are reduced synthesis by the 
liver and loss to the extravascular space from enhanced vascular  
permeability60. Histones can potentially contribute to both of  
these mechanisms by inducing liver injury and inflammation16,61 
and significantly increasing vascular permeability through  
endothelial damage9,10.

Intrinsic pathway activation. In physiological terms, the intrinsic 
pathway of coagulation plays an important role in increasing 
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thrombin generation and accelerating hemostatic clot forma-
tion. This is well exemplified by the significant bleeding issues  
in patients without factor VIII or IX. cfDNA- and NET-bound  
DNA can exert pro-coagulant effects through activating the  
intrinsic pathway of coagulation via FXI and FXII62,63. Likewise, 
histones can activate the intrinsic pathway through an FXII- 
dependent mechanism, and histone-DNA complexes signifi-
cantly contribute to elevated FXII in patients with overt DIC104.  
Indirectly, histone-induced release of platelet polyphosphate 
can stimulate factor XI auto-activation as well as accelerate its 
thrombin-mediated activation105.

Impaired fibrinolysis. Impaired or excessive fibrinolysis is  
an important aspect of sepsis- and trauma-induced DIC,  
respectively64,65,106. All studies investigating the effects of histones, 
cfDNA, and NETs on the fibrinolytic system have consistently  
shown an overwhelmingly anti-fibrinolytic effect66,68,107. This 
effect is mediated by enhanced clot resistance to fibrinolysis by  
plasmin and downregulation of plasminogen activation by  
tPA66,68,107. As such, it appears that the effects of histones and NETs 
on the fibrinolytic system are relevant for sepsis-induced DIC but 
may not directly account for the hyper-fibrinolytic phenotype in  
trauma-associated DIC, although high histone levels in such 
patients may increase tPA release through significant endothelial 
stimulation and damage69.

Factors that propagate coagulation in disseminated 
intravascular coagulation
The development of multiple organ injury further augments 
thrombin generation and dysfunction in DIC. Microvascular  
thrombosis can be triggered by the factors discussed above in 
leading to organ ischemia and failure. There is increasing under-
standing of the role mediated by circulating histones in particular.  
In addition to causing direct injury to endothelial and other 
hematopoietic cells9,10,52,99, histones have been shown to mediate  
distant organ injury and dysfunction. In mice models of trauma10 
and sepsis15, histones are major mediators of lung and cardiac 
injury and dysfunction, respectively. The clinical relevance of these  
findings has also been demonstrated in cohorts of critically ill 
patients with trauma10 and sepsis15. The evidence for the distant 
organ-damaging properties of histones in trauma comes from the 
consequent development of acute lung injury after significant 
non-thoracic trauma. Translational relevance is supported by the 
increased development of acute lung injury in patients with severe 
non-thoracic trauma with high histone levels. Similarly, sepsis 
patients without pre-existing cardiac disease were significantly 
more likely to develop new-onset cardiac arrhythmia (nine-fold 
increase) and left ventricular dysfunction (two-fold increase) if 
they had high histone levels15. Equally, circulating histones can  
mediate renal108, liver91,109, and brain109 injury. Notably, the  
incubation of plasma or serum from critically ill patients (with  
sepsis, trauma, or pancreatitis) with cultured endothelial cells or 
cardiomyocytes induces cell death, which can be prevented in the 
presence of an antibody to histones10,15.

Cellular damage is associated with microparticle forma-
tion and release70,71. Their pro-coagulant properties include TF  
expression43,78,79, as discussed above. Circulating microparticles 
from damaged or activated hematopoietic cells also have exposed 

phosphatidylserine and these surfaces provide attachment sites 
for coagulation factors, which contribute to thrombotic compli-
cations in inflammatory disorders72. Significantly high levels of  
microparticles from activated endothelial cells and neutrophils 
were recently demonstrated in septic shock-induced DIC 
patients in whom elevated levels of NET surrogate markers (for  
example, nucleosomes and circulating DNA-MPO complexes) 
were evident73. These microparticles may have synergistic pro- 
coagulant effects with NETs72 and prime neutrophils to undergo 
NETosis by facilitating a pro-inflammatory environment,  
including the release of pro-inflammatory cytokines74,110.

These histone-induced cytotoxic effects not only are a mani-
festation of micro- and macro-vascular thrombosis due to 
the pro-coagulant effects described above but also are from 
direct cytotoxicity mediated by histone binding to cellular  
membranes with consequent pore formation, calcium influx, and  
overload10,11,52,99,111. Fattahi et al. have demonstrated that after  
histone infusion into mice, histones localize (in order of concen-
tration) in the lungs, spleen, kidneys, plasma, liver, heart, and  
brain112. As histones unravel from DNA binding as part of nucle-
osomes, their cytotoxicity becomes apparent because of their  
ability to bind cell membrane phospholipids. However, in intact 
nucleosomes, where histone binding sites are covered by DNA, 
no cytotoxicity could be elicited86. Collectively, these data suggest  
that circulating histones in patients with sepsis- or trauma- 
associated DIC are major mediators of distant organ injury and 
adverse clinical outcome.

Summary and insights for the future
In this review, we have highlighted how extracellular histones  
and NETs fulfil the most important principles of DIC patho-
physiology, as established by the ISTH SSC4. First, histones  
can arise from endothelial cells following damage or from an 
exaggerated inflammatory response and in turn can mediate  
further significant damage to vascular endothelial cells. Directly 
and indirectly, histones can cause pro-inflammatory cytokine 
release and contribute to ‘inflammation gone amok’, as described 
in the ISTH communication4. With the bi-directional relationship  
between histones and NETs, along with their functional con-
sequences (Figure 2), histones can be considered mediators of  
distant organ injury with NETs being the effectors of multi-organ 
failure.

As to how these findings can translate into better recognition of  
DIC, there are a number of studies showing histone-DNA com-
plexes as important prognosticators in patients with DIC113, and 
their levels correlate with increasing DIC scores114. As such, there 
appears to be potential in using these molecules as biomarkers 
in early DIC before full decompensation occurs. This could be a 
major advancement in the diagnosis and management of critically 
ill patients at risk of DIC. One reason for this is that the current 
recommendations rely on a panel of coagulation tests collec-
tively forming the ‘DIC score’, which signifies that the phenom-
enon is already under way or indeed advanced (overt DIC) rather 
than presents a target for early therapeutic intervention. Further-
more, the scoring system can vary between different societies and  
countries (for example, ISTH score, the Japanese Association for  
Acute Medicine Criteria, and the Japanese Ministry of Health and 
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Welfare score), and this impacts considerably on specificities/ 
sensitivities of detection, stage of DIC (for example, overt or  
non-overt) identification, and prognostic values60. Therefore, there 
is an area of unmet need for biomarkers that can better improve 
standardization in diagnosing DIC.

One difficulty facing the implementation of such biomarkers is  
that there is no simple, rapid test for quantifying histones that  
could be suitable for the acute hospital setting. Furthermore, there 
is controversy regarding the level of circulating histones; some 
papers quote levels in the microgram-per-milliliter range using 
Western blotting quantification10,15,88, whereas others suggest that 
levels are in the nanogram-per-milliliter or picogram-per-milliliter 
range using enzyme-linked immunosorbent assay (ELISA)13,115,116. 
From our experience, current ELISAs are not sufficiently specific 
for histone measurement in clinical samples and this is due to inter-
ference from other plasma proteins. The same issue applies to NET 
measurement in patient samples. Currently, most studies rely on 
measuring cfDNA, histone-DNA, and DNA-MPO complexes as 
surrogate markers of NET formation27–31. Although these assays 
are a good development, they are also associated with problems  
relating to specificity, especially when the cfDNA may be  
released from other dying cells and not necessarily from  
NETs. Recent studies have illustrated promising potential for 
the use of neutrophil side fluorescence as a marker of neutrophil  
chromatin decondensation (hence NETosis) in predicting DIC  
development in patients with septic shock117. This new marker  
correlated significantly (yet with a weak correlation coefficient) 
with circulating nucleosomes and DNA-MPO complexes in  
patients  with DIC73. Standardization for histone and NET  
measurements using accurate high output techniques is therefore a 
pressing need.

Nonetheless, these are exciting challenges to overcome. There is 
the potential for novel therapeutic approaches using modalities that 
neutralize histones (APC9, anti-histone antibodies10,11,15, recom-
binant TM13, and heparin118) or NETs (DNase20, ADAMTS-13119,  
and PAD4-targeted therapy34) or both. Many of these inter-
ventions are clearly anti-coagulant and could convey bleeding 
risk in patients with DIC if not used with caution. These would 
require well-designed randomized control trials using appropriate  
DIC patient populations (for example, with high circulating  
histones or NETs or both) as well as the potential for modified  
non-anti-coagulant versions as is the case with non-anti-coagulant 
heparins, which can neutralize circulating histones118.
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Figure 2. Functional consequences of circulating histones and neutrophil extracellular traps (NETs). Summary of pro-coagulant,  
anti-fibrinolytic, pro-inflammatory, and cytotoxic effects of histones and NETs. IL, interleukin; NF-κB, nuclear factor-kappa B; TF, tissue factor; 
TNF-α, tumor necrosis factor-alpha.
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