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Summary Epidemics of novel or re-emerging infectious diseases have quickly spread globally
via air travel, as highlighted by pandemic H1N1 influenza in 2009 (pH1N1). Federal, state, and
local public health responders must be able to plan for and respond to these events at aviation
points of entry.

The emergence of a novel influenza virus and its spread to the United States were simulated
for February 2009 from 55 international metropolitan areas using three basic reproduction
numbers (R0): 1.53, 1.70, and 1.90. Empirical data from the pH1N1 virus were used to validate
our SEIR model.

Time to entry to the U.S. during the early stages of a prototypical novel communicable
disease was predicted based on the aviation network patterns and the epidemiology of the
disease. For example, approximately 96% of origins (R0 of 1.53) propagated a disease into
the U.S. in under 75 days, 90% of these origins propagated a disease in under 50 days. An R0
of 1.53 reproduced the pH1NI observations.

The ability to anticipate the rate and location of disease introduction into the U.S. provides
greater opportunity to plan responses based on the scenario as it is unfolding. This simulation
tool can aid public health officials to assess risk and leverage resources efficiently.
ª 2012 Elsevier Ltd. All rights reserved.
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Introduction

Infectious-Recovered (SEIR) model20,21 and an illustrative
Figure 1 Mutually exclusive, allowable disease states of the
model: susceptible (S), exposed (E), asymptomatically infec-
tious (I_a), symptomatically infectious (I_s), and recovered (R).
As the world’s population becomes ever more closely con-
nected and as the numbers of international flights and air
passengers continue to increase, so too has the spread of
communicable diseases of public health concern via air
travel.1 Novel infectious diseases have emerged and rapidly
spread around the globe during the modern jet travel era.
Examples include the Severe Acute Respiratory Syndrome
(SARS) outbreak that started in southern China in 20022 and
the pandemic influenza A (pH1N1) virus that was first re-
ported in Mexico in 2009.3 Recent evidence, including
analyses of the spread of pH1N1,4e6 has demonstrated how
quickly transmissible diseases can be spread by air trav-
elers.7,8 Due to these health issues, the dramatic increase
of international aviation travel and security concerns, the
term “border” no longer denotes a static, fixed entity that
begins and ends at political boundaries, but instead has
been extended virtually to include pre- and post-travel geo-
temporal space.9 Because of this global interconnected-
ness, adverse health consequences and economic and
travel disruptions can result from the emergence of rapidly
spreading novel communicable diseases anywhere in the
world.1

Whenever global or regional public health threats
emerge, countries predictably implement mitigation
measures at their international points of entry.4,10e12

Anticipating how such events will emerge and unfold is
the essence of preparedness planning, and a critical prac-
tice for public health authorities who wish to mitigate the
impact of such events.13 Previous aviation point of entry
modeling studies have evaluated the potential effective-
ness of some measures for mitigating global outbreaks of
communicable disease, such as improving the timeliness of
diagnostic testing for epidemic diseases,14,15 and rapidly
developing and distributing sufficient quantities of phar-
maceutical countermeasures, such as vaccines and anti-
microbial drugs.6,16e18 Post-pH1N1 airport-based public
health interventions including traveler screening have been
described.19 While collectively these reports remain useful
in analyzing the potential value of public health interven-
tions at airports, to our knowledge no studies have used
modeling to provide operational planning guidance
assumptions for policy makers and public health authorities
who would implement such measures.

For this paper, and as part of pre-pandemic preparedness
planning, we estimated the geo-temporal components of
disease spread between city pairs via air travel. More
specifically, we examined the time-course for infectious air
travelers to arrive in the United States (U.S.) from interna-
tional cities with the highest U.S.-bound flight traffic for the
month of February. Previous U.S. modeling and planning
efforts for point of entry response to pandemic influenza
assumed a system-wide “all or nothing” initiation of traveler
screening, aligned with World Health Organization phases.
Temporal and geographical risk-based response stratifica-
tion was underrepresented in those analyses, while spatial
considerations and disease epidemiological characteristics
guided most airport response planning. This paper describes
a method that would allow for a more flexible approach,
which could be applied to threats other than pandemic
influenza. We used a traditional Susceptible-Exposed-

scheduled-flight dataset, to demonstrate how public health
authorities could prioritize the allocation of response-
resources in the U.S. at point of entry in response to
a novel disease that was spreading rapidly outside of North
America.

Methods

Disease-spread model

To characterize possible patterns and rates of spread for an
emerging infectious disease that could enter North America
from various geographic points of origin, a prototypical
novel pandemic influenza virus was simulated as an
example of a human-to-human transmissible disease that is
known to spread rapidly via air travel. The model propa-
gates disease based on population sizes from metropolitan
areas using calculations that estimate the dynamics of
disease spread within each city and by air travel of indi-
viduals from one city to another, as previously described
and calibrated by Epstein et al. and Bobashev et al.20,21 The
simulated population is mutually assigned into one of the
following disease states: susceptible (S), exposed (E),
symptomatically infectious (I_s), asymptomatically infec-
tious (I_a), and recovered (R). These disease states are
illustrated in Fig. 1. A person can move from being
susceptible, to exposed, then to either asymptomatically or
symptomatically infectious prior to recovery. The model is
implemented such that people in the infectious state have
a 66.67% chance of being symptomatic and a 33.33% chance
of being asymptomatic.18 People who transition to the
recovered state would no longer be susceptible and remain
in the recovered state for the duration of the simulation.
Unlike prior implementation of this model, people in the
infectious states were disallowed from entering a dead
state in part to maximize person-to-person spread in the
early stages of a pandemic and to create an upper boundary
for this modeling study. As such the case-fatality proportion
was intentionally set to zero.

The model was propagated so that a susceptible person
could become exposed, on average for 1.2 days. The
exposed person could then become symptomatically
infectious or asymptomatically infectious on average for
4.1 days, with a maximum infectious duration of 6 days. Our
SEIR model does not differentiate symptomatic and
asymptomatic infection in the average infectious period
calculation, nor does the model account for enhanced level
of infectivity which could for example occur during early
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stages of influenza while a person is asymptomatic. The
simulation evolved in discrete units of 1 day. Selected
parameters used in this model are given in Supplemental
Table S1. Unlike prior implementations of the model20e22

which permitted only asymptomatically infectious people
to travel, the present implementation permitted both
asymptomatically and symptomatically infectious people to
travel.

In addition, the model includes 177 major metropolitan
areas (see Supplemental Table S2) around the world,
including the 100 largest airports, the 100 largest cities
worldwide,20,21 and 35 cities in the U.S. (Supplemental
Tables S3 and S4). This approach led to some parts of the
globe being sparsely represented, commensurate with the
level of direct aviation traffic those regions send to the U.S.
All estimates of population data were from sources
released in 2007 or later.23e25 International metropolitan
population data were taken from United Nations estimates
and the World Gazetteer. U.S. metropolitan population
data were based on US Census estimates for the 35
metropolitan statistical areas, totaling 126 million people.

Points of origin

Points of origin were selected on the basis of the numbers
of actual flights between international metropolitan areas
and the U.S. during February 9e13, 2009. The study used
the top 55 points of origin, which accounted for approxi-
mately 94% of all international air passengers traveling to
the U.S.

America’s neighbor countries, Mexico and Canada, each
have numerous ground border crossings with the U.S., many
of them heavily trafficked; therefore it has been assumed
that infectious diseases that originated in Mexico or Canada
would quickly propagate to the U.S. through these ground
channels. In fact, in the recent pH1N1 pandemic, the virus
spread rapidly into the U.S. from Mexico through multiple
points of entry.3 For this reason in the points of origin
analysis presented here, Mexico, Canada and the U.S. have
been treated as a single world region, and we have not
calculated times required for an infectious disease to
propagate to the U.S. from points of origin in Canada or
Mexico.

In contrast, Honolulu was treated as an international
point of origin because the state of Hawaii has limited non-
aviation links to the rest of the world, including the U.S. In
fact, public health authorities watching for the spread of
disease to North America from East Asia consider Honolulu
an important sentinel site for surveillance.26 Thus, Hono-
lulu’s role in the model closely resembles that of other
points of origin outside North America.

Flight data

To populate the disease-spread model, weekly direct flight
data were extracted from scheduled flights listed in
a market intelligence source for aviation industry data
(i.e., Diio� LLC27) for one week of February 2009, because
the 1918 and H1N1 pandemics emerged in late winter.
Database extraction included origins and destinations from
272 airports in 177 metropolitan areas (Supplemental Table
S4). Weekly seats for flights between different airports in
the same city pair were combined. If the summed seats
between a city pair differed in directionality, the average
seat counts were applied. Weekly seat counts were con-
verted to daily seat counts and then multiplied by 70% to
obtain enplanement estimates for all city pairs. The 70%
load factor is consistent with information reported by the
Bureau of Transportation and Statistics for the average of
scheduled and non-scheduled flights (http://www.bts.gov).
The flight matrix used in this study is available upon
request. Since this study focused on forecasting and
predictions, best available scheduled flight data were used,
with the understanding that not all flights into the U.S.
were recorded in scheduled flight databases (e.g., char-
tered flights and unscheduled flights were not
represented).
Rationale for model, analysis assumptions, and
limitations

Known assumptions for pandemic influenza are summarized
in Supplemental Table S1. Model output included how
quickly the disease reached the U.S. via the global airline
transportation network and also which U.S. metropolitan
areas the disease reached first. Time to reach the United
States, referred to as “early disease arrival time,” was
defined as the number of days it took for the tenth symp-
tomatically infectious person from anywhere in the simu-
lated worldwide network to appear in U.S. metropolitan
areas. It is important to note that the “early disease arrival
time” includes the period of time during which the virus is
spreading person-to-person but unknown to public health
authorities. The 10-person threshold was selected on the
basis of a 2005 report by the U.S. Department of Homeland
Security’s National Infrastructure and Simulation Analysis
Center, which showed that the arrival of as few as 10
infected people would be sufficient to propagate a disease
in the U.S. for simulations seeded with an attack rate of 25%
or greater.28 In this case, “attack rate” referred to the
cumulative number of people infected at the peak of the
pandemic, normalized by the population at the start of the
pandemic. In a given simulation, the 10 symptomatically
infectious people used to determine the early disease
arrival time could be 10 infectious travelers arriving in the
U.S., or a combination of infectious travelers and people
within the U.S. who became infected following contact
with an infectious traveler.

In addition to modeling an R0 of 1.53 which best
approximates the 2009 pH1N1, we selected two additional
R0’s, 1.7 and 1.9, to simulate based on evaluations of R0
values from all actual 20th century influenza
pandemics.8,17,29,30 Although R0 values for some of these
pandemics have been estimated as being greater than
1.9,6,17,20,29 research has shown that mitigation measures
such as point of entry interventions may be less effective at
such high R0 values.29,31 For the purpose of pandemic
response planning, we assumed that well over 100 exposed
persons at each point of origin was a realistic scenario.32

The model accounted for seasonality by assuming that
cities within the tropics have the same viral transmission
year round, while cities outside the tropics exhibit

http://www.bts.gov
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transmission rates that vary sinusoidally with peak trans-
mission occurring on January 1 in the northern hemisphere
and July 2 in the southern hemisphere. Although the model
can be implemented with flight data files reflecting true
traveler patterns across city pairs for each simulated
increment in time, we choose to use representative data
from the month of Feb. 2009 for the purpose of this pre-
pandemic baseline study. Clearly, the analysis presented in
this paper would depend on the granularity of the actual
data used by the model.

Visualization

All simulation outputs were interactively accessed via
a visualization tool, written in AnyLogic 6, XJ Technologies,
St. Petersburg, Russian Federation. We vertically grouped
points of origin by world regions, as follows: (1) Central
America, Caribbean, South America, (2) Africa, (3) Europe
including Russia, (4) Asia, (5) Southeast Asia with India, (6)
Near East including North African Arab States and Middle
East Mediterranean States, and (7) Oceania (see
Supplemental Table S2 for world region classification).
Results are shown in the left-, middle-, and right-hand
panels of Fig. 2 respectively for the three reproduction
numbers modeled: R0Z 1.53, 1.7, and 1.9. Gray-scale
raster plots represent the trial-average number of symp-
tomatically infected people over time as a fraction of the
aggregate simulated U.S. metropolitan populations. A solid
red dot was superimposed onto each aggregate wave to
indicate the median early disease arrival time across all
trials for a given point of origin. A green bar illustrating the
minimum and maximum range of the early disease arrival
time was also superimposed on each aggregate wave. To
determine which airports have the highest probability of
being affected by disease spread via air travel, we
computed the number of times a particular U.S. airport
received any of the first ten symptomatically infectious
passengers for all points of origin and for points of origin
segregated by their respective world regions.

Results

The time-course of disease entry into the U.S is presented
in Fig. 2 as aggregate pandemic waves from all points of
origin seeded for three R0’s. For response planning
purposes, we are most interested in the time leading up to
the day in which ten infectious people appear in the U.S.
(red dot). It is apparent that at least two clusters of median
early disease arrival times appeared for each panel of
Fig. 2. The separation in clusters was most pronounced
from the R0Z 1.53 simulation, followed by a decrease in
separation as the R0 values increased (see Fig. 3A). More
specifically, median early disease arrival times in the 25th
and 75th percentile were under and over 25 days, respec-
tively (see Table 1). This observation suggests that response
planning could be conducted differently for points of origin
depending on their respective quartile and R0
classifications.

When points of origin were grouped by their respective
world regions (see Table 2), median early disease arrival
times from Central America, the Caribbean, South America,
Europe, the Near East, and Oceania (Honolulu) were shorter
than those from Asia, Africa, Southeast Asia including India,
and Oceania (Australia). Fig. 3B, in which median early
disease arrival times into the U.S were plotted in
decreasing magnitude for each point of origin and R0,
further elucidates this trend.

A summary examination of how U.S. airports would be
affected by the first ten symptomatic people entering the
U.S. revealed that New York, Miami, Newark, Atlanta, Los
Angeles would experience the earliest impact (Fig. 4A).
Further, detailed examinations of how these airports would
be affected by points of origin from specific world regions
are also presented: Central America, Caribbean, or South
America (Fig. 4B), Africa (Fig. 4C), Europe (Fig. 4D), Asia
and Southeast Asia (Fig. 4E and F), Near East (Fig. 4G) and
Oceania (Fig. 4H). Our analysis indicated that Los Angeles
and San Francisco airports would experience the earliest
impact for disease originating from Asia, Southeast Asia and
Oceania, while New York and Atlanta airports would expe-
rience one of the earliest impacts for diseases originating
from all other world regions.

Unlike our points of origin analysis, when we validated
our model based on data from the 2009 pH1N1, we did not
treat the U.S. and Mexico as one mixing body. Rather, we
used Mexico City as a proxy for the village of La Gloria,
Veracruz, Mexico, from where some of the earliest pH1N1
cases were reported.3 In addition, we replicated the mean
U.S. incidence rate of 0.997%, as reported by the CDC for
pH1N1 cases in the U.S. between April and July 23, 200933

based on the U.S. cities used in the model (listed in
Supplemental Table 2). In order to replicate the mean
incidence rate of 0.997%, we evaluated two parameters: 1)
The basic reproduction number, which represents
a measure of the average number of people in a totally
susceptible population to whom one infected individual
transmits a disease, was allowed to vary between 1.4 and
1.7 in increments of 0.01. 2) The number of days it takes
the model to predict the targeted mean incidence rate
which best matches July 23, 2009, i.e., the 165th day after
Feb 15th, 2009. We confirmed that our model generated
a U.S. incidence rate of 1.0482% (standard deviation of
0.0067%) on the 165th day after disease onset for an R0 of
1.53; these parameters are very close to the reported mean
incidence rate of 0.997% by July 23, 2009. An R0 of 1.53 is
well within published estimates of R0 for the 2009 pH1N1
which ranged from 1.4 to 1.6.3,34
Discussion

Since the 1968 H3N2 (Hong Kong) influenza pandemic,
global air travel has nearly increased by a factor of ten,
from 261 million passengers35 worldwide to more than 2.5
billion passengers in 2010.36,37 Air travel contributes greatly
to the rapidity of communicable disease transfer across
international borders and thus federal, state, and local
public health authorities must understand and plan for
aviation point of entry response to these threats.5,9,13 The
model results presented here resemble those from related
modeling studies in that they suggest an important influ-
ence of geographic origin of the outbreak on the timing and
location of disease introduction into the U.S. during an



Figure 2 Predicted disease spread time-course. Simulations were based on 100 exposed people from each international
metropolitan point of origin across three reproduction numbers: 1.53, 1.7, and 1.9. The Y-axis displays origins that are first grouped
by continent and then sorted alphabetically. The X-axis denotes time in days relative to the start of the disease-spread simulation.
Gray-scale raster plots represent the number of infected people across time as a fraction of the aggregate U.S. metropolitan
population size employed by the model. Each row shows the median disease spread for all suprathreshold trials (out of 40) in which
at least 10 symptomatically infectious people appeared in the United States. In the R0Z 1.53 simulations, early disease arrival
times varied from about 5 days to slightly under 225 days from disease emergence in a population. Approximately 95% of origins
resulted in median early disease arrival under 75 days, with 85% of those origins resulting in median early disease arrival in less than
50 days. In the R0Z 1.7 simulations, early disease arrival time ranged from about 5 days to approximately 100 days. Approximately
95% of origins resulted in median early disease arrival in less than 50 days, with 37% of those origins resulting in median early
disease arrival in less than 25 days. In the R0Z 1.9 simulations, early disease arrival time varied from about 5 days to slightly under
80 days. Approximately 96% of origins resulted in median early disease arrival under 50 days, with 53% of those origins showing
median early disease arrival in less than 25 days.

36 G.M. Hwang et al.
emerging disease event.38 In this respect, the range of
public health tools available for point of entry intervention
(observation, health information distribution, health ques-
tionnaires, individual screening, illness response, contact
investigations, isolation and quarantine, etc.) could be
activated based on anticipated city-to-city spread of the
disease in question, rather than being “turned on” system-
wide unnecessarily, at great potential cost to taxpayers and
need for use of government resources.

Our model output shows how quickly the disease
reached the U.S. via the global airline transportation
network and which U.S. metropolitan areas the disease
reached first. We found variance in arrival times and
locations of infectious passengers from origin points at
different global locales. Model results indicated that
a staggered “turn on” of point of entry responses according
to strategic risk assessments, resources available, and time
required to mount an effective response, would be feasible
and should guide response planning.

The model, as well as the actual events during the SARS
and pH1N1 outbreaks of the past decade, reinforced that
a short time window would be available to implement
measures at points of entry that could be effective in
mitigating disease spread.13 As occurred during pH1N1, the
initial outbreak and subsequent spread could go unde-
tected for weeks or even months before the first cases were



Figure 3 Predicted median early disease arrival times. A. Histogram of median early disease arrival time for all points of origin
and R0. B. Median early disease arrival time sorted by speed of arrival into the U.S. for every point of origin and R0.
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identified and laboratory-confirmed,32 drastically curtailing
the time and options available to respond effectively. Since
the U.S. essentially serves as a global hub for aviation travel
with 88 international arrival and departure points for
regularly scheduled commercial flights27; with an additional
113 U.S. airports that received passengers from
international charter, private and/or air ambulance flights
in 2010,39 it is not surprising that once a novel infectious
disease emerges and begins person-to-person spread near
international transportation hubs anywhere in the world,
that novel disease will in all likelihood appear in the U.S.
within days or, at most, a few weeks’ time. Spurred by



Table 1 Distribution of medians based on early disease
arrival times (days).

R0 25th
percentile

50th
percentile

75th
percentile

1.53 24.5 36 44.75
1.7 21.75 29 35.5
1.9 18.25 23 29.5

Disclaimer: Table is included for illustrative purposes only.
Medians can change from day to day depending on actual travel
patterns.

38 G.M. Hwang et al.
a rise in global traveler numbers and favorable changes in
aviation regulations in many countries, the dramatic
increase in the sheer number of aviation international
arrival and departure points located within geographically
and politically distinct entities,9 has resulted in the crea-
tion of new pathways for passengers e and diseases e to
enter into local communities worldwide. Our model could
prove useful for those countries with multiple entry points
to consider when planning for a pandemic.

Although this paper describes new data for policy
makers and planners to use for planning of public health
interventions at point of entry, the effectiveness of point of
entry interventions should be examined closely so that
resources are not diverted from community infection
control and prevention efforts, where they could have
greater impact. Point of entry interventions for influenza
have been questioned, for example, because of the many
travelers who could be infected but not symptomatic at the
time of entry (thus avoiding detection), greatly reducing
the efficacy of any public health intervention. Computer
simulations have demonstrated that even drastic travel
restrictions (e.g., border closure) would achieve only
limited delays in the introduction of a severe novel influ-
enza virus, for example, into the U.S. during the early
stages of an outbreak.17,20,30,40e42 Indeed, the World Health
Table 2 Median disease arrival time by world regions.

World regions Median early disease arrival
time (days)

R0Z 1.53 R0Z 1.7 R0Z 1.9

Africa 43.5 35 30
Asia 47 37 31
Central America,
Caribbean,
South America

26 22 19

Europe 33 27 23
Near East (North
African Arab States,
Middle East
Mediterranean States)

34 27 24

Oceania e Honolulu 15.5 14 12
Oceania e Sydney 108.5 70.5 49.5
Southeast Asia including
India

58.5 46 39

Disclaimer: Table is included for illustrative purposes only.
Medians can change from day to day depending on true travel
patterns.
Organization (WHO) discouraged point of entry screening
measures both before and during pH1N1,43e45 and the WHO
Director-General Margaret Chan asserted very early in the
pandemic that travel restrictions would be counterpro-
ductive and “serve no purpose”.37,46 However, prudence
dictates planning for such a contingency as one possible
component of a comprehensive and coordinated public
health response to an emerging disease threat. There are
many drivers behind the decision to screen aviation trav-
elers during novel communicable disease outbreaks
spreading regionally or globally; despite recommendations
to the contrary, and known and potential limitations to
aviation traveler screening activities for novel influenza,
many countries mounted broad screening efforts at their
borders during pH1N119 nonetheless.

In calibrating an effective public health response,
knowing the “where” is just as important as knowing
the “what” and the “when.” Thus, the unique geospatial
characteristics of specific originating locations and regions
need to be identified to accurately assess risk and develop
effective response plans for point of entry interventions.
For example, if a rapidly unfolding outbreak were taking
place in Central America, it would make sense to anticipate
higher need for public health resources focused on direct
flights coming to the U.S. from high-volume contributors
such as Managua and Guatemala City. Although other
passengers from Central America may come to the U.S. via
connecting flights, these travelers would be so low in number
as to present minimal risk, and to expend resources to
address them initiallymay divert frommore effective efforts
with the bulk of travelers arriving on direct flights at a few
U.S. locations. Our analysis of 2009 flight data revealed that,
by volume, the airports most affected by flights from Central
America would be Miami (MIA), New York (JFK), Atlanta
(ATL), Newark (EWR), and Houston (IAH). With this infor-
mation, the U.S. can plan, prioritize, and position initial
public health resources accordingly. For example, from
December 21, 2010eMarch 31, 2011, the U.S. point of entry
response to the cholera outbreak in Haiti included delivering
Travelers’ Health Alert Notices (T-HANs) with symptoms and
medical information to arriving travelers from Haiti at the
highest-volume receiving U.S. airports: Miami, New York
(JFK), Fort Lauderdale, and San Juan, Puerto Rico. Out of
77,121 travelers who arrived at these ports from Haiti during
this period, U.S. Customs and Border Protection and the U.S.
Centers for Disease Control and Prevention provided T-HANs
to about 73,474 (95%) travelers.

This approach seems intuitive, but others have observed
that this risk-based, targeted approach to bolstering
surveillance and response capacities at key airports has
been the exception rather than the norm, and that careful
planning for public health response at key points of entry
can be more effective than the usual first response of
implementing travel restrictions.13,41,47

In light of current global economic uncertainties and the
overall decline of resources for public health in the U.S. and
other countries, current planning and future point of entry
interventions for global disease outbreaks must optimize
the resources that are available, quickly and accurately
assess risks and prioritize efforts to maximize impact of
intervention efforts.48 The “node-to-node” approach
embodied in our model will allow public health officials to



Figure 4 Airport first hit frequency. Calculations were based on the number of times a given airportwas an entry point for any of the
first 10 symptomatically infectious passengers over the course of all simulation trials. Analysis of simulation results for three repro-
duction numbers (1.53 in blue, 1.7 in red, and 1.9 in green) are presented according to world regions. (A) When considering all
infectious disease origination points, analysis indicates that JFK (New York) would experience the earliest impact followed by MIA
(Miami), EWR (Newark), ATL (Atlanta), LAX (Los Angeles), ORD (Chicago), SFO (San Francisco), and others. (B) For Central and South
American disease origination points, MIAwould experience the earliest impact followed by JFK, ATL, EWR, and IAH (Houston). (C) For
African disease origination points, ATL and JFK would experience the earliest impact followed by IAD. (D) For European disease
origination points, JFK andEWRwould experience theearliest impact, followedbyORD, ATL, IAD (Washington), MIA andothers. For (E)
Asian and (F) Southeast Asian disease origination points, LAX and SFOwould experience the earliest impact followed by JFK, ORD, EWR
and others. For (G) Near East disease origination points, EWR and JFK would experience the earliest impact followed by ATL and LAX.
For (H) Oceania disease origination points, LAX would experience the earliest impact followed by SFO, and others.

g Although influenza was used, the model can be extrapolated for
other communicable diseases of public health importance.
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preserve resources for longer-term, community-based
mitigation and prevention activities by targeting response
to those points of entry likely to be affected earliest.

Limitations

Although scientific modeling and simulation have proven to
be effective tools for visualizing and planning responses to
outbreaks of infectious diseases, in particular for influenza
pandemics,28,42,49 these analyses should not be the only
drivers for planners or policy makers when anticipating
future outbreaks.50e52 As with other studies reported in the
literature, this model shows that the speed with which
a communicable disease spreads to the U.S. will depend on
the R0 of the disease in question.g This finding could
represent a limitation of using the model for planning, since
R0 is quite difficult to determine for an emerging disease.
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Further, the model employed in this study is not agent-
based, and the attack rates reported by agent-based models
cannot be computed identically using this equation-based
model. This is because the total number of people who
became infectious during a complete model run cannot be
tallied without modeling each person as an agent.

Although we used the well-known and accepted
assumptions of a prototypical pandemic influenza virus to
examine early disease arrival times, the recent pH1N1
pandemic makes it clear that novel viruses do not always
behave as expected. Some disease-specific assumptions
and outcomes of the model may therefore not be useful in
planning for future disease outbreaks.

Since this study focused on forecasting and predictions,
future scheduled nonstop flights for a single month were
utilized as the basis for estimating travel for a simulated
period of one year. This approach simplifies the complex
phenomenon of international travel. A rigorous comparison
between scheduled seats and actual enplanements (which
would include, among other things, chartered flights and
actual load factors), was not conducted in part because
such data for non-U.S. cities were not readily available. The
spread of disease during travel from infectious passengers
to susceptible passengers was not modeled separately from
spread in the general population. Variation in travel based
on seasonality was not included and thus the analysis pre-
sented in this study only applies to a disease that spread in
the month of February 2009 based on travel in that month.
Finally, this approach neglects travel between cities that
does not take place via nonstop flights on the same day e in
particular, connecting flights through gateway cities, or
non-aviation means such as car or train for nearby cities
such as Paris, France, and Amsterdam, The Netherlands.
Thus, new analyses should be conducted periodically, and
especially as an event is unfolding which may require point
of entry intervention.
Future research

Policy makers and public health authorities must always
consider aviation points of entry as potential foci for
interrupting or slowing the global spread of disease.
Therefore, future modeling should consider how to maxi-
mize effectiveness of public health interventions while
minimizing passenger delays and travel disruptions, by
analyzing the efficacy and cost of specific interventions
such as dispensing antivirals at points of entry, health
questionnaires with real-time data entry using handheld
devices, and fever detection using technology such as
thermal imaging. Further analysis and reporting of world-
wide government responses to the emergence of pH1N1 and
other regional disease outbreaks would help to fill in some
of the information gaps regarding point of entry
interventions.

Future models should also examine various pathogens
(e.g., smallpox, pneumonic plague, a SARS-like virus) and
their rates of spread. The rate of global spread from
specific geographic locations around the world should also
be studied using various known assumptions and pathogen
characteristics. Those results could usefully be compared
with the pH1N1 and SARS experiences.
Conclusion

Our findings indicate that time to disease entry to the U.S.
during the early stages of an emerging pandemic would vary
and can be predicted based on point of origin and point of
entry into the U.S. This ability to anticipate the rate and
location of disease introduction into the U.S. provides
greater opportunity to plan responses based on the scenario
as it is unfolding. This simulation tool can aid public health
officials to assess risk and leverage resources efficiently via
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targeted and scalable border mitigation measures, espe-
cially at key U.S. airports that would be most expected to
bear the initial brunt of an international outbreak.
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