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a b s t r a c t 

Human activity recognition is attracting increasing research 

attention. Many activity recognition datasets have been cre- 

ated to support the development and evaluation of new al- 

gorithms. Given the lack of datasets collected in real environ- 

ments (In The Wild) to support human activity recognition 

in public spaces, we introduce a large-scale video dataset 

for activity recognition In The Wild: POLIMI-ITW-S. The fully 

labeled dataset consists of 22,161 RGB video clips (about 

46 h) including 37 activity classes performed by 50 K+ sub- 

jects in real shopping malls. We evaluated the state-of-the- 

art models on this dataset and get relatively low accuracy. 

We release the dataset including the annotations composed 

by person tracking bounding boxes, 2-D skeleton, and ac- 

tivity labels for research use at: https://airlab.deib.polimi.it/ 

polimi- itw- s- a- shopping- mall- dataset- in- the- wild . 
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pecifications Table 

Subject Computer Vision and Pattern Recognition 

Specific subject area Human activity recognition 

Type of data 2-D RGB video 

Annotation composed by person tracking bounding boxes, 2-D skeleton, and 

activity labels in JSON format 

How the data were acquired This dataset was taken from RGB cameras of two smartphones with resolution 

1920 × 1080 pixels, 30 fps. 

The models of the two smartphones are VIVO S7 5G and Honor 30 S . 

Data format Raw 

Description of data collection We collected the dataset in shopping malls in the Hubei province of China. The 

shopping malls have multiple floors providing different services, e.g., main hall 

with grocery stores on the ground floor; clothes shops on the second and third 

floor; restaurants and drink bars on the fourth floor; cinema with a waiting 

room on the fifth floor; supermarket on the underground floor. The diverse 

settings guarantee the desired variety of subjects and situations. The subjects 

are clients and staff in the shopping malls having different genders and ages, 

including men and women, babies, children, teenagers, adults and elderly 

people. So we have different subjects for almost every recorded video clip. 

The cameras were held by hands at about 90 cm from the floor. The recorders 

imitated the mobile robot, keeping moving or staying still by looking around 

to capture persons that are performing actions. 

We did not mount the cameras on a robot in order to avoid uncommon 

situations that the presence of a robot may trigger. We did not use 3-D 

stereo/depth cameras as recording tools since this type of camera suffers for 

the moving issue, which is not suitable for data collection for mobile robots. 

Moreover, they may not perform well when subjects are far away from the 

camera. 

Data source location • Public space: shopping malls 

• City: Shiyan 

• Province: Hubei 

• Country: China 

Data accessibility Repository name: Science Data Bank 

Data identification number: sciencedb.01694 

Direct URL to data: https://doi.org/10.57760/sciencedb.01694 

alue of the Data 

• The data are useful for those working in the area of human activity recognition from skeletal

data or from RGB videos; 

• It will be possible to develop new algorithms to classify a more detailed set of activities

based on semantic meanings, thus improving the performance of the applications; 

• It could be used to support the development and evaluation of the models of human activity

recognition from mobile robots operating in public environments; 

• Basing on these data, it will be possible to classify actions performed In The Wild, thus open-

ing a wide sort of applications for Social Robotics and other disciplines; 

• Except for the topic of human activity recognition, the dataset could be useful for other hu-

man subjects related tasks. Since the clips include many crowded scenes, this dataset is in-

teresting for investigating opening problems like person tracking, pose tracking, person re-

identification, body/head orientation. 

• The data may also contribute to the autonomous robotic research field to develop new path

planning, and obstacle avoidance methods. 

• Other researchers will become interested in problems and algorithms arising when operating

in the wild. 

https://doi.org/10.57760/sciencedb.01694
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1. Data Description 

Human activity recognition (HAR) involves skeleton representations of human bodies instead

of raw RGB videos. Due to its strong adaptability and highly abstract characteristics, many signif-

icant models were developed based on skeletal data [1–7] . Compared to the RGB video represen-

tation, the greatest benefits of the skeletal data are that they are free of dynamic environment

noise and robust against complicated backgrounds (lighting conditions, color of clothing, object

obstruction, etc.). It is important for service robots to recognize the actions of people in the real

world to further enhance their capabilities to offer services. 

We analyzed some relevant skeleton-based HAR models in the last three years to check how

public datasets were used to train and evaluate models in the community. As shown in Table 1 ,

the most commonly used datasets are (in descending order): NTU RGB + D 60 [8] , NTU RGB + D

120 [9] , Kinetics [10] , Northwestern-UCLA Multiview Action 3D [11] , SYSU 3D Human-Object

Interaction [12] datasets. Among those, only Kinetics was not collected from a constrained en-

vironment but from online streaming resources by using the crowd-sourcing method instead,

while all the other datasets were collected in the respective laboratories. 

The state-of-the-art models got about 90% accuracy on the datasets collected in laboratory

environments as shown in Table 2 , 3 , 5 and 6 . Nevertheless, they got only less than 40% accuracy

on the Kinetics dataset which was collected from online streaming resources by crowd-sourcing

methods as shown in Table 4 . It hints that the state-of-the-art models could perform well on the

datasets collected in constrained environments, but they may meet challenges when recognizing

actions from unconstrained, natural environments. 

Because the main datasets for evaluating new HAR models are collected in the specific lab-

oratories and the accuracy is about 90%, we think that there is little optimizing space for the

models trained on such a type of datasets. Meanwhile, we argue that reliable HAR models to

support the production of mobile service robots should not only be evaluated on the datasets
Table 1 

Datasets used for recent human recognition models. 

Model Publisher NTU 60 [8] NTU 120 [9] Kinetics-Skeleton [10,13] NUCLA [11] SYSU [12] 

Efficient GCN [14] TPAMI 22 � � 

CTR-GCN [7] ICCV 21 � � � 

SGN [5] CVPR 20 � � � 

MSG3D [3] CVPR 20 � � � 

4S-Shift-GCN [15] CVPR 20 � � � 

NAS-GCN [4] AAAI 20 � � 

2S-AGCN [1] CVPR 19 � � 

Total 7 5 3 2 1 

Table 2 

The state-of-the-art methods on NTU 60 dataset in accuracy (%). 

NTU 60: collected from laboratory 

Model Publisher X-Sub a (%) X-View 

b (%) 

Efficient GCN [14] TPAMI 22 92.1 96.1 

CTR-GCN [7] ICCV 21 92.4 96.8 

MS-G3D [3] CVPR 20 91.5 96.2 

4S-Shift-GCN [15] CVPR 20 90.7 96.5 

SGN [5] CVPR 20 89.0 94.5 

NAS-GCN [4] AAAI 20 89.4 95.7 

2S-AGCN [1] CVPR 19 88.5 95.1 

Average Value 90.5 95.8 

a X-Sub: Cross-Subject evaluation [8] . 
b X-View: Cross-View evaluation [8] . 
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Table 3 

The state-of-the-art methods on NTU 120 dataset in accuracy (%). 

NTU 120: collected from laboratory 

Model Publisher X-Sub120 a (%) X-Set120 b (%) 

Efficient GCN [14] TPAMI 22 88.7 88.9 

CTR-GCN [7] ICCV 21 88.9 90.6 

MS-G3D [3] CVPR 20 86.9 88.4 

4S-Shift-GCN [15] CVPR 20 85.9 87.6 

SGN [5] CVPR 20 79.2 81.5 

Average Value 85.9 87.4 

a X-Sub120: Cross-Subject evaluation [9] . 
b X-Set120: Cross-Setup evaluation [9] . 

Table 4 

The state-of-the-art methods on Kinetics-Skeleton dataset in accuracy (%). 

Kinetics-Skeleton: collected by crowd-sourcing method 

Model Publisher Kinetics-Skeleton (%) 

MS-G3D [3] ICCV 21 38 

NAS [4] CVPR 20 37.1 

2S-AGCN [1] CVPR 19 36.1 

Average Value 37.1 

Table 5 

The state-of-the-art methods on NUCLA dataset in accuracy (%) . 

NUCLA: collected from laboratory 

Model Publisher NUCLA (%) 

CTR-GCN [7] ICCV 21 96.5 

4S-Shift-GCN [15] CVPR 20 94.6 

Average Value 95.6 

Table 6 

The state-of-the-art method on SYSU dataset in accuracy (%). 

SYSU: collected from laboratory 

Model Publisher X-Sub a (%) Same-Sub b (%) 

SGN [5] CVPR 20 90.6 89.3 

a X-Sub: Cross-Subject evaluation [12] . 
b Same-Sub: Same-Subject evaluation [12] . 
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ollected in controlled environments but also on datasets collected in the final, public environ-

ents, situation defined in the community as “In The Wild” (ITW). Due to the well-known issues

like having unbalanced taxonomies, unnatural scenes, label noise and invalid websites links) of

he crowd-sourcing methods, the dataset like Kinetics collected from online streaming resources

y crowd-sourcing methods may not satisfy the needs of developing robust models which are

ble to perform well in the real world. 

To fill this gap, we propose the POLIMI-ITW-S dataset to develop reliable skeleton-based hu-

an activity recognition models that could be deployed on mobile service robots to recognize

ctions that happen in the real world. 

We propose that a reliable ITW dataset of clips useful for robotic applications should have

he following characteristics: 

1. viewpoint similar to the one of the robot, including subjects viewed both in full figure when

the robot is far from the subject and only in part, when the robot is close, taken from a
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Table 7 

Comparison between different datasets and ITW dataset requirements: 1. viewpoint similar to the one of the robot, 2. 

video taken from moving camera, 3. representative actions, 4. different people performing the same action, 5. different 

genders and ages, 6. real life background, 7. crowded scenes with occlusions, 8. no “actors” and unscripted actions, 

9. presence of sequences of actions, 10. presence of human-object and multi-agent interactive actions, 11. large-scale 

dataset. 

Datasets Year Classes Subjects Samples Scenes Views 1 2 3 4 5 6 7 8 9 10 11 

SYSU [12] 2015 12 40 480 1 1 Y N Y Y N N N N N N N 

ActivityNet [16] 2015 203 – 849 h – 1 N Y N Y Y Y Y Y Y Y Y 

NTU [8] 2016 60 40 56,880 1 3 Y N N Y N N N N N Y Y 

Kinetics [10] 2017 400 – 30 0,0 0 0 – 1 N Y N Y Y Y Y Y Y Y Y 

AVA [17] 2018 80 – 437 – 1 N Y N Y Y Y Y N Y Y Y 

NTU 120 [9] 2019 120 106 114,480 1 3 Y N N Y N N N N N Y Y 

Toyota S.H. [18] 2019 31 18 16,115 1 7 N N Y Y N Y N Y Y N Y 

ETRI [19] 2020 55 100 112,620 1 4 Y N Y Y N Y N Y Y Y Y 

FineGym [20] 2020 530 – 708 h – 1 N Y N Y N Y N Y Y Y Y 

BABEL [21] 2021 256 – 43.5 h 1 1 Y N Y N N N N N Y Y Y 

UAV-Human [22] 2021 155 Multiple 67,428 – 1 N Y Y Y Y Y N Y Y Y Y 

HOMAGE [23] 2021 75 27 25.4 h – 2–5 N N Y Y Y Y N N Y Y Y 

POLIMI-ITW-S 2022 37 50 K + 233,446 ∼46 h malls robotic Y Y Y Y Y Y Y Y Y Y Y 
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camera having characteristics typical of the ones that are mounted on commercial, mobile,

service robots; 

2. video clips recorded from free moving viewpoints like the ones of mobile robots; 

3. clips representative of the common actions in the selected environment, evenly distributed

among the classes; 

4. a large number of different subjects performing the same action; 

5. different genders of subjects with a large range of ages, from babies to elderly people; 

6. real-life background, possibly including people and objects that could typically be in the con-

text; 

7. presence of crowded scenes with large quantities of persons, including subjects occluded by

person(s) or object(s). 

8. unscripted, natural actions: there are no “actors”, people are recorded without knowing in

advance that they are, so they are supposed to perform naturally; 

9. real-life sequencing of actions, so that it is possible to consider typical sequences of actions

from realistic clips; 

0. possible inclusion of human-object and multi-person interactive actions (such as “calling”,

“talking”, “drinking”, “eating”, “holding baby in arms”, etc.); 

1. large-scale dataset. 

As shown in Table 7 , the available datasets are usually collected in controlled contexts, such

as laboratory, home, or conveniently extracted from streaming sources produced for other pur-

poses. 

The main advantages of these datasets are that they are easy to obtain and with relatively

low labor cost comparing to the datasets collected in public spaces. In addition, datasets creators

could take advantages of the limited environments to deploy RGB-D cameras to get 3-D human

skeletal data. Since the actors know what they should do in advance and there are rarely con-

sidered crowded scenes, they did not need to dedicate a lot of resources for annotation. 

However, most datasets do not consider the viewpoint of mobile robots in public spaces.

Furthermore, there is no large-scale visual dataset that deals with real, daily behavior of people.

In most cases, actions are performed upon request, often by actors, usually separated from each

other. Results obtained starting from such constrained conditions may not completely hold in a

real-world scenario, as we have verified on our dataset for state of art models. There is a lack

of adequate dataset to train models that could be used by robots to recognize common human

activities in public spaces. The absence of datasets for human activity recognition in the wild is

a serious impediment to computer vision and robot intelligence research. 
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Table 8 

Activity labels. 

General Level (10) : 

cleaning, crouching, jumping, laying, riding, running, scooter, sitting, standing, walking 

Modifier Level (3) : 

sittingTogether, standingTogether, walkingTogether 

Aggregate Level (24) : 

sittingWhileCalling, sittingWhileDrinking, sittingWhileEating, sittingWhileHoldingBabyInArms, 

sittingWhileTalkingTogether, sittingWhileWatchingPhone, standingWhileCalling, standingWhileDrinking, 

standingWhileEating, standingWhileHoldingBabyInArms, standingWhileHoldingCart, standingWhileHoldingStroller, 

standingWhileLookingAtShops, standingWhileTalkingTogether, standingWhileWatchingPhone, walkingWhileCalling, 

walkingWhileDrinking, walkingWhileEating, walkingWhileHoldingBabyInArms, 

walkingWhileHoldingCart, walkingWhileHoldingStroller, walkingWhileLookingAtShops, 

walkingWhileTalkingTogether, walkingWhileWatchingPhone 
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Different from the state of art datasets, our dataset satisfies all the requirements mentioned

bove for a reliable ITW dataset. 

We have collected 22,161 video clips with more than 15.4 million frames. The average dura-

ion of each video clip is about 7 s. The total length of the dataset is about 45.97 h. The dataset

as collected in Hubei province of China. According to the population statistics published by the

ocal government [24] , the gender distribution of the city is 51.48% (male) and 48.52% (female).

he age distribution is 18.7% (0–14), 62.28% (15–59), 19.03% (over 60). We believe the distribu-

ion of gender and age in the dataset matches the distribution of the population of the city. In-

ividuals were anonymized by blurring faces using RetinaFace [25] . We used OpenPifPaf [26] to

xtract person tracking bounding boxes and 2-D skeleton data. 

Before starting the annotation work, we analyzed a subset of the collected video clips and

sed the proposed detailed labeling mode to define 37 activity classes. Actually, except for the

efined activity classes, there are also other activities that occurred in videos such as “falling

own”, “fighting”, “kicking”, “throwing trash”, etc. We didn’t add these activities to the dataset

ince they have a relatively small number of clips, which would have dramatically affected the

earning performance. 

The defined classes were distributed on three levels: The labels of the general level are used

or describing single actions. We have defined “standing”, “walking”, “sitting”, “crouching”, “clean-

ng”, “jumping”, “laying”, “riding”, “running” and “scooter” for this level. The modifier level labels

re “walkingTogether”, “sittingTogether”, “standingTogether”, etc , which refer to multiple persons

r a group of people walking, sitting, or standing together, etc. The aggregate level detailed la-

els aim at describing multiple actions in a single label, such as “standingWhileCalling”, “stand-

ngWhileLookingAtShop”, “walkingWhileWatchingPhone”, “sittingWhileHoldingBabyInArms”, etc. The

omplete list of the defined labels is shown in Table 8 . 

We have also defined a rule for the labels containing the keyword “together”. It is only used

or the groups of persons performing social activities. For example, if two or more persons are

tanding closely, but are not involved in any social activities, their activities will not be consid-

red as done “together”. 

The dataset was fully labeled by HAVPTAT [27] . We provide RGB videos, persons’ tracking

ounding boxes, 2-D skeleton data (17 body keyjoints) and labeled activities’ classes in JSON

ormat. To build a high-quality dataset that offers correct annotations, we adopt a series of ap-

roaches including: training annotators with tutorial slides and video demos, pre-testing the

nnotators rigorously before formal annotation, and cross-validating across annotators. 

For the reader’s convenience, Table 9 shows the COCO body 17 keypoint arrange-

ent [28,29] adopted in our dataset. We notice that the entire dataset misses joints 4 (left ear)

nd 5 (right ear) of the COCO’s 17 keypoints. 

The skeletons of the data collected from the real world are often incomplete. A frame con-

aining few joints could lead the ambiguity for the learning model. For instance, a frame with

nly 2 and 3 joints may reduce the possibility for a system to identify the corresponding activity
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Table 9 

COCO body keypoints . 

1 Nose 

2 left eye 

3 right eye 

4 left ear 

5 right ear 

6 left shoulder 

7 right shoulder 

8 left elbow 

9 right elbow 

10 left wrist 

11 right wrist 

12 left hip 

13 right hip 

14 left knee 

15 right knee 

16 left ankle 

17 right ankle 

Fig. 1. Original pose (left); Pose reconstructed by “interpolation” (right). 

 

 

 

 

 

 

 

 

 

 

 

 

class. To reduce such a type of learning error, we also temporal-linearly interpolated the missing

joints and hold the pose as valid only with more than a given number (nine) joints. The thresh-

old was fixed by nine since only partial bodies could be captured by a camera in some cases.

For example, as shown in Fig. 1 , when the camera is close to a person, only the upper part of

the body is present, but the keypoints of the lower part of the body (14 left knee, 15 right knee,

16 left ankle, and 17 right ankle) miss. The left picture of Fig. 1 is the original pose extracted by

OpenPifPaf [26] . Right elbow (9), left (10) and right (11) wrist were not detected. After having

been processed by the interpolation operation provided by the Python’s Pandas library [30] , the

three missing keypoints were reconstructed on the right picture. This approach was applied to

the entire dataset. We call it the “original version” dataset in the experimental phase. 

From Table 10 and Fig. 2 a, we could see that the imbalance issue is present in the origi-

nal dataset. The most frequent activities are “walking”, “standing”, and “walkingTogether”, which

occur in about 55% of the dataset. 

We show two snapshots with annotation in Fig. 2 . Fig. 3 a shows bounding boxes with track-

ing ID and annotated action labels. Fig. 3 b shows the same information and skeletons. 
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Table 10 

Number of sequences and frames in the original and the cropped versions of datasets. 

Label ID Activity class #Seq. orig. #Frame orig. #Seq. crop. #Frame crop. 

0 cleaning 665 60,814 665 60,814 

1 crouching 2735 195,537 2735 195,537 

2 jumping 260 12,564 260 12,564 

3 laying 92 7071 92 7071 

4 riding 301 13,555 301 13,555 

5 running 1457 63,498 1457 63,498 

6 scooter 208 11,919 208 11,919 

7 sitting 8070 376,905 30 0 0 182,026 

8 sittingTogether 3044 195,566 30 0 0 193,984 

9 sittingWhileCalling 334 42,693 334 42,693 

10 sittingWhileDrinking 325 32,778 325 32,778 

11 sittingWhileEating 776 81,780 776 81,780 

12 sittingWhileHoldingBabyInArms 467 34,998 467 34,998 

13 sittingWhileTalkingTogether 766 82,371 766 82,371 

14 sittingWhileWatchingPhone 5602 546,327 30 0 0 357,020 

15 standing 34,399 1,785,446 30 0 0 158,669 

16 standingTogether 13,367 902,424 30 0 0 202,879 

17 standingWhileCalling 2303 307,560 2303 307,560 

18 standingWhileDrinking 439 46,009 439 46,009 

19 standingWhileEating 1148 125,342 1148 125,342 

20 standingWhileHoldingBabyInArms 2059 144,727 2059 144,727 

21 standingWhileHoldingCart 576 44,719 576 44,719 

22 standingWhileHoldingStroller 1216 121,875 1216 121,875 

23 standingWhileLookingAtShops 15,524 1,193,938 30 0 0 220057 

24 standingWhileTalkingTogether 10,310 1,032,687 30 0 0 362779 

25 standingWhileWatchingPhone 9727 990,380 30 0 0 268797 

26 walking 67,615 3,384,638 30 0 0 142640 

27 walkingTogether 26,276 1,621,113 30 0 0 179645 

28 walkingWhileCalling 3338 401,582 3338 401,582 

29 walkingWhileDrinking 896 86,520 896 86,520 

30 walkingWhileEating 1256 128,535 1256 128,535 

31 walkingWhileHoldingBabyInArms 3373 198,582 3373 198,582 

32 walkingWhileHoldingCart 2381 206,911 2381 206,911 

33 walkingWhileHoldingStroller 2806 268,606 2806 268,606 

34 walkingWhileLookingAtShops 1674 94,657 1674 94,657 

35 walkingWhileTalkingTogether 479 38,259 479 38,259 

36 walkingWhileWatchingPhone 7182 581,222 30 0 0 195,973 

Total 233,446 15,464,108 65,330 5317931 

Fig. 2. Number of sequences by activity. 
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Fig. 3. Annotation samples. 
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. Experimental Design, Materials and Methods 

The structure of the annotated JSON format file and the data information of the fields are

hown in Fig. 4 . An annotated file is composed by all the information of frames ordered by tem-

oral sequence. Every “frame” contains the main entry “prediction” which includes the detailed

ata: “keypoints” are composed by 17 tuples of ( X , Y , confident_score) with X , Y coordinates and

 confident score of each joint (in total [ 17 × 3 ] dimensional data shape); “bbox” is composed

y upper left X , Y coordinates, width, height of the bounding box ([4] dimensional data shape),

score” is the confident score of the bounding box ([1] dimensional data shape), “category_id”

s the constant 1 inferring a person subject following the convention of COCO annotation ([1]

imensional data shape), “id_” is the ID of a tracked person ([1] dimensional data shape), “ac-

ion” is the ground truth label. A piece of an annotation file is shown in Fig. 5 . The example

s composed by two frames of a clip and each frame includes two persons with “sittingWhile-

atchingPhone” and “standing” actions. 
Fig. 4. The structure of annotated JSON format file. 

Fig. 5. An annotation example. 
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Table 11 

The results of skeleton-based activity recognition. 

Model Publisher Accuracy (%) 

Original Cropped 

Efficient GCN [14] TPAMI 22 48.3 38.5 

CTR-GCN [7] ICCV 21 44.93 34.97 

MS-G3D [3] CVPR 20 43.37 34.05 

2S-AGCN [1] CVPR 19 44.46 34.13 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We used PyHAPT to pre-process the data [31] . 1–2 After the annotation work done by HAVP-

TAT [27] , we obtained the annotated files like the example shown in Fig. 5 . We thus represent

each joint with a couple of pairs ( X , Y ) corresponding to its extremes so that a skeleton frame is

recorded as an array of 17 couples with data shape (17, 2). Based on the field of “id_” which is

the person tracking ID, we could facilitate composing the keypoints of the same person in dif-

ferent T temporal frames to get ( T , 17, 2) data shape. For the multi-person cases, we take all the

detected persons in each clip into account. We consider each person performing the same action

in a single video clip as a valid action sequence. If the same person performs multiple actions

in a single video clip, we consider them as different action sequences performed by the same

person. Since every action sequence includes only a person’s data, so we extend the previous

data shape to ( T , 17, 2, 1) for convenience of implementation. For the whole dataset, the script

reshapes and gets the array of ( N , 2, T , 17, 1) dimensions by concatenating the single action se-

quences of persons with N action samples. We summarize the meaning of each element in the

tuple: the script generates N samples of action sequences in total; two dimensions ( X , Y ) skeletal

data; an action sequence lasts T frames; 17 keypoints of a human body; 1 person data in each

tuple. All action skeleton sequences are padded to T = 300 frames by replaying the actions as

also done by other skeletal datasets. The training set and test set split ratio is 70% and 30%. The

number of padded frames and the training-test set split ratio can be both customized by users. 

From Table 1 , we evaluated four most relevant state-of-the-art human activity recognition

models in the last three years (Efficient GCN [14] , CTR-GCN [7] , MS-G3D [1] , 2S-AGCN [3] ) on the

new POLIMI-ITW-S dataset. We believe the results are representative for the current mainstream

human activity recognition algorithms. 

To have a fair comparison, we decided to use joint data for training and test. As a result, from

Table 11 , we observe that the accuracy is only less than 50%. We infer that the state-of-the-art

activity recognition models could not perform well on real-life data. 

When we were in the data collection phase, we already noticed that most of the actions oc-

curred are “walking” and “standing” without involving any other additional actions in the shop-

ping malls. This leads to an imbalance issue: some highly frequent actions appear more often

than others. For instance, “walking” and “standing” have 80 K+ and 50 K+ sequences, while “walk-

ingWhileEating” and “sittingWhileDrinking” have only 1256 and 325 sequences. 

To evaluate whether the imbalance classes could cause the bad performance, we tried to take

only 30 0 0 sequences of some classes with huge numbers to build a “cropped” version dataset as

shown in Fig. 2 b. We evaluated the models also on the “cropped” version dataset. Unfortunately,

the accuracy was even lower than the one with the original version dataset. We could say that

the imbalanced classes might not directly affect the performance of the models. 
1 https://github.com/AIRLab-POLIMI/PyHAPT 
2 CodeOcean reproducible capsule: https://doi.org/10.24433/CO.6886084.v1 

https://github.com/AIRLab-POLIMI/PyHAPT
https://doi.org/10.24433/CO.6886084.v1
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