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Abstract: Traumatic brain injury (TBI) is a primary injury caused by external physical force and also
a secondary injury caused by biological processes such as metabolic, cellular, and other molecular
events that eventually lead to brain cell death, tissue and nerve damage, and atrophy. It is a common
disease process (as opposed to an event) that causes disabilities and high death rates. In order to treat
all the repercussions of this injury, treatment becomes increasingly complex and difficult throughout
the evolution of a TBI. Using high-throughput microarray data, we developed a systems biology
approach to explore potential molecular mechanisms at four time points post-TBI (4, 8, 24, and 72 h),
using a controlled cortical impact (CCI) model. We identified 27, 50, 48, and 59 significant proteins
as network biomarkers at these four time points, respectively. We present their network structures
to illustrate the protein–protein interactions (PPIs). We also identified UBC (Ubiquitin C), SUMO1,
CDKN1A (cyclindependent kinase inhibitor 1A), and MYC as the core network biomarkers at the four
time points, respectively. Using the functional analytical tool MetaCore™, we explored regulatory
mechanisms and biological processes and conducted a statistical analysis of the four networks. The
analytical results support some recent findings regarding TBI and provide additional guidance and
directions for future research.

Keywords: brain injury; network biomarker; systems biology; protein–protein interaction; drug
target; cell cycle
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1. Introduction

Traumatic brain injury (TBI) is not only a primary injury, caused by external physical forces, but
also a secondary injury caused by a series of biological processes. These include metabolic, cellular,
and other molecular events that eventually lead to the death of brain cells, tissue and nerve damage,
and atrophy [1]. Due to the importance of the brain, damage to this organ usually causes particularly
complex symptoms relative to other injuries. For example, if the blood–brain barrier (BBB), a selectively
permeable barrier to the transport of crucial elements for the brain, is damaged by an external force,
several complications can occur due to disrupted homeostasis of the brain [2]. In order to take all
aspects of the consequences of a TBI into account, and as knowledge on TBIs develops, treatment has
become extremely complex and increasingly difficult [3]. Immediately after a TBI, primary injuries
resulting from the initial trauma cause rupture of blood vessels, hemorrhaging, structural deformation
of tissues, and massive death of neurons and other cells at injured sites [4]. Treatment of the primary
injuries of a TBI is similar to those of other traumas. As a result of advances in the treatment of
emergency traumas, secondary injuries have become the main cause of morbidity and mortality in TBI
patients. Several studies have therefore concentrated on the treatment of secondary injuries resulting
from TBIs in an effort to reduce the extent and effect of these injuries.

Secondary injuries are influenced by the vascular perturbations, cerebral metabolic dysfunction,
and inadequate cerebral oxygenation related to primary injuries [5]. Vascular perturbations can affect
the permeability of the BBB, pinocytotic activity of endothelial cells, and the redistribution of ions
and neurotransmitters [6,7]. Increased permeability of the BBB leads to edema and subsequent brain
swelling, and can increase the risk of brain infections [8]. Intracellular accumulation of potassium and
calcium ions can affect the functioning of neurons in information transduction and of mitochondria
in metabolism [9]. Elevated glutamate can be observed as early as 5 min after experimental trauma,
which may cause excitotoxicity after a TBI [10] and can also affect mitochondrial functioning through
oxidative stress [6]. Increased oxidative stress following a TBI is directly related to the pathogenesis of
TBIs. Several oxidative markers, including reduced glutathione (GSH), the GSH/oxidized glutathione
(GSSG) ratio, glutathione peroxidase (GPx), glutathione reductase (GR), glutathione-S-transferase
(GST), glucose-6-phosphate dehydrogenase (G-6PD), superoxide dismutase (SOD), and catalase (CAT)
are observed after a TBI. Hence, development of antioxidant strategies is of primary interest in ongoing
efforts to optimize brain injury treatment [11]. Recently, inflammation was also recognized as a critical
element in recovering from a TBI provided that TBI treatment is an option [12]. Inflammation is a
general response to external insults and is also modulated by oxidative stress, mitochondrion-mediated
metabolism, and cellular states [5]. An interwoven network of a wide variety of functions complicates
TBIs and impedes the development of efficient treatments. Therefore, a systematic perspective of the
evolution of a TBI is needed to provide a global view of molecular interactions.

In this study, we used a systems biology approach to elucidate protein–protein interactions (PPIs)
very soon (4 h) and longer (8, 24, and 72 h) after a TBI [13]. A systems biology approach can provide
a systematic view on the interwoven network of functions and interactions between the proteins
involved in these complex networks, which are regarded as systems with sub-units (e.g., proteins)
connected as a whole. Many PPIs can form PPI networks (PPINs), in which proteins are nodes and
their interactions are the edges of the network. We also used a mathematical model with the microarray
data to generate quantitative descriptions of the molecular interactions. By comparing injured and
control networks, we were able to select some specific interactions and proteins as potential therapeutic
or monitoring targets, according to their differential interactions. Connections between these targets
and the physiological phenomena of a TBI provide insights into early interventions for TBIs.

2. Results and Discussion

We built the network biomarkers for the four time points post-TBI. We then used the commercial
pathway analysis software MetaCore™ and the free network ontology analysis (NOA) web server to
do a functional pathway analysis to reveal the underlying molecular mechanisms of TBI. The main
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results of this research are the network biomarkers generated by our model, i.e., the proteins with the
highest TBI relevance values (TRVs), and the network structure. However, MetaCore™ and NOA
enabled us to add deeper medical and biology significance to our results and make them useful for
identifying novel strategies for therapy or recovery processes. The powerful MetaCore™ software uses
data mining and statistical methods to select valuable information from the biological and medical
literature. It provides a more general perspective and enhanced interpretation of our research. The
original results from our primary analysis thus form the core findings of this study, and the additional
results generated by MetaCore™ and NOA can be viewed as supplementary information that is of
wider benefit.

2.1. Evolution of Network Biomarkers at the Four Post-Traumatic Brain Injury (TBI) Time Points

We built a Differential PPIN (DPPIN) for each of the four post-TBI time points (4, 8, 24, and 72 h)
(Figure 1) and calculated the TRV of each protein in the four networks (Table 1). The network diagrams
(Figure 1) contain more information than just the TRVs, such as that encoded by the edges and nodes.
Node size represents the TRV of each protein, and edge width the interaction ability between the two
proteins. Red and blue edges respectively indicate positive and negative values of dij in Equation (7).
We identified statistically significant network marker proteins for the four post-TBI stages by screening
the TRV p-values. As in our previous study on stroke, we wanted to reveal the repair mechanisms that
operate at these four post-TBI time points. After fold change screening (FC (Fold Change) > 1.5), we
identified 27, 50, 48, and 59 significant proteins at 4, 8, 24, and 72 h post-TBI, respectively. We only
list the top 20 for each time point in Table 1, but provide the full lists in a supplementary table. Their
corresponding TRVs were in the ranges 4.5–64.5, 4.9–17, 5.3–30.4, and 5.1–34.2, respectively. We used
these significant proteins and their PPIs to construct network markers for the four post-TBI time points.
The protein relevance values for TBI were much smaller than those we calculated for carcinogenesis
in our previous study on cancer [9,10], and the cancer networks were much more complex than the
TBI networks. However, the TBI values and network structures were similar to those we identified
for stroke. We do not discuss the UBC (Ubiquitin C), protein in this paper because it is a complex
issue. UBC is a housekeeping gene for many different diseases, such as cancers, stroke, and TBI. Recent
findings also demonstrate that Ubiquitin Carboxyl-Terminal Esterase L1 (Ubiquitin Thiolesterase,
UCHL1) is a promising biomarker that physically interacts with UBC [14,15]. Our demonstration of
UBC’s role in the first 72 h after TBI supports the significance of UCHL1 in TBI.

Table 1. The 20 proteins with the highest TBI relevance values (TRVs) at four time points post-TBI
(traumatic brain injury). AvgExp: average expression; Log2 FC: log2 fold change. This table was
generated using the Matlab program developed by our team according to the algorithms described in
Section 3.3 and Supplementary Materials.

Protein TRV p-Value TBI_AvgExp Normal_AvgExp Log2 FC

4 h

UBC 64.77 <10´9 9545 20,349 ´1.09
HSP90AA1 12.45 0.000167 11,942 22,341 ´0.9

ITGA4 11.92 0.000167 172 280 ´0.7
SUMO1 10.22 0.000167 8999 9258 ´0.04

UBD 9.73 0.000333 126 209 ´0.73
ELAVL1 8.33 0.000667 1549 1785 ´0.2

APP 8.29 0.000667 9608 19,299 ´1.01
NEDD8 8.1 0.000667 4903 5672 ´0.21
PARK2 7.45 0.001833 47 167 ´1.83
EZH2 7.42 0.002 633 362 0.8

CDKN1A 6.63 0.0045 3046 1920 0.67
ACTB 6.53 0.005 15,663 26,523 ´0.76

NFATC1 6.53 0.005167 273 77 1.84
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Table 1. Cont.

Protein TRV p-Value TBI_AvgExp Normal_AvgExp Log2 FC

NEDD4 6.22 0.006833 4030 4698 ´0.22
YWHAB 5.81 0.011333 2014 3474 ´0.79
SUMO3 5.77 0.012333 16,117 13,002 0.31
NR4A1 5.75 0.0125 8539 3969 1.11
BRCA1 5.46 0.016667 82 216 ´1.4
PRKG2 5.43 0.017667 29 60 ´1.06
LMNA 5.25 0.021333 10,185 5878 0.79

8 h

ELAVL1 16.97 0.000868 1609 1082 0.57
MYC 13.35 0.001157 356 96 1.9

TRIM27 12.28 0.00135 3114 2773 0.17
RELA 11.34 0.001446 6282 3408 0.88
MDM2 10.9 0.001543 2615 2317 0.17
NXF1 10.48 0.001543 1086 1240 ´0.19
SRPK2 10.4 0.001639 1183 1232 ´0.06
ITGA4 10.26 0.001639 138 231 ´0.74

SUMO1 9.35 0.002314 9180 10,837 ´0.24
CDKN1A 8.92 0.002893 3417 661 2.37
NEDD8 8.43 0.003857 4659 5525 ´0.25

AR 8.35 0.003857 824 1585 ´0.94
HSPA1A 7.5 0.005593 5663 2112 1.42
PARK2 7.34 0.006268 28 51 ´0.87
CUL1 7.22 0.006847 4406 4936 ´0.16

PPARG 7.17 0.007329 169 126 0.42
UBC 6.93 0.0081 26,887 29,005 ´0.11
TDP2 6.69 0.00974 719 1230 ´0.78
BMI1 6.58 0.010511 2465 3576 ´0.54

NFKB1 6.49 0.011765 1896 1398 0.44

24 h

CDK2 30.4 0.000563 612 302 1.02
FN1 25.07 0.000805 2652 1701 0.64

EGFR 20.02 0.001689 315 197 0.68
RHOA 17.25 0.002816 4082 4140 ´0.02

HDAC5 16.31 0.003057 4914 7484 ´0.61
UBD 13.24 0.004023 97 219 ´1.17

MAP3K1 12.48 0.004586 876 364 1.27
MSN 12.27 0.004666 4631 1331 1.8
BAG3 12.13 0.004747 1206 419 1.52

SUMO1 12 0.004747 9074 10,206 ´0.17
CDKN1A 11.59 0.004988 4037 740 2.45

STUB1 10.71 0.005632 6156 5743 0.1
LYN 10.59 0.006034 350 312 0.17

APOA1 10.52 0.006195 102 63 0.71
UBC 10.27 0.006436 30,215 27,824 0.12

ISG15 10.26 0.006436 1137 469 1.28
MDFI 9.46 0.007723 659 547 0.27
SHC1 9.31 0.008045 788 441 0.84
GRB2 8.91 0.008286 3458 3862 ´0.16
MYC 8.41 0.00901 251 120 1.06
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Table 1. Cont.

Protein TRV p-Value TBI_AvgExp Normal_AvgExp Log2 FC

72 h

APP 34.02 <10´9 31,743 38,874 ´0.29
ELAVL1 31.92 <10´9 1937 1169 0.73

FN1 18.2 0.000309 3441 1562 1.14
PIK3R2 14.17 0.000386 1495 1625 ´0.12
CDK2 13.29 0.000464 529 383 0.47
EGFR 12.62 0.000464 325 384 ´0.24

VCAM1 12.3 0.000541 1691 994 0.77
ISG15 11.52 0.000696 1651 628 1.4
UBC 11.33 0.00085 31,436 28,733 0.13

CAV1 10.69 0.001005 2024 802 1.34
TRAF2 9.53 0.001468 1479 1636 ´0.15
BAG3 8.94 0.002473 1205 506 1.25

SUMO1 8.94 0.002473 7368 9430 ´0.36
NFKB1 8.7 0.002782 2636 1476 0.84
FBXO6 8.6 0.003014 5920 4444 0.41
TERF2 8.52 0.003091 878 1464 ´0.74

HNRNPU 8.43 0.003246 150 291 ´0.95
GNB2L1 8.26 0.003632 17,568 10,465 0.75

SKIL 7.99 0.004405 149 43 1.79
AURKA 7.89 0.004637 518 175 1.56

We also identified four significant proteins of core network biomarkers (intersections) for the
four post-TBI time points: UBC, SUMO1, CDKN1A, and MYC (Table 2). Core and specific network
biomarkers are important when discussing evolutionary processes. The discovery of these significant
proteins, which are consistent throughout the four post-TBI time points, is especially interesting as
Natale et al. [16] show MYC was the only one of these proteins identified as common to the different TBI
models using controlled cortical impact (CCI) and fluid percussion injury (FPI). To comprehensively
discuss the evolutionary behavior of TBI, we also summarized the core network (intersections) of each
adjacent time point, i.e., 4–8, 8–24, and 24–72 h.
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reproduce the same results across studies. This is primarily because of variations in animal species, 
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Figure 1. The constructed traumatic brain injury (TBI) differential protein–protein interaction networks
(PPINs; DPPINs) for four time points post-TBI. These figures include edge and node information. The
DPPIN is the difference between the TBI PPIN (TPPIN) and non-TBI PPIN (NPPIN). The size of nodes
depends on the TBI relevance value (TRV). The proteins with the highest TRVs are defined as the
network markers. These figures were created using Cytoscape. (a) 4 h; (b) 8 h; (c) 24 h; (d) 72 h. Blue
edge means the difference in interaction activity ďmean ´ STD; Red edge means the difference in the
interaction activity ěmean + STD; Yellow node means the protein with significant CRV.

Table 2. The four significant proteins of core network biomarkers (intersections) for the four post-TBI
time points. AvgExp: average expression; Log2 FC: log2 fold change; Time point: number of hours
post-TBI. This table was generated by the Matlab program developed by our team according to the
algorithms described in Section 3.3 and Supplementary Materials.

Gene Time Point (h) CRV_Value p-Value Case_AvgExp Control_AvgExp Log2 FC

UBC 4 64.77 <10´9 9545 20,349 ´1.09
UBC 8 6.93 0.0081 26,887 29,005 ´0.11
UBC 24 10.27 0.006436 30,215 27,824 0.12
UBC 72 11.33 0.00085 31,436 28,733 0.13

SUMO1 4 10.22 0.000167 8999 9258 ´0.04
SUMO1 8 9.35 0.002314 9180 10,837 ´0.24
SUMO1 24 12 0.004747 9074 10,206 ´0.17
SUMO1 72 8.94 0.002473 7368 9430 ´0.36

CDKN1A 4 6.63 0.0045 3046 1920 0.67
CDKN1A 8 8.92 0.002893 3417 661 2.37
CDKN1A 24 11.59 0.004988 4037 740 2.45
CDKN1A 72 6.68 0.010974 2257 757 1.58

MYC 4 4.84 0.035667 281 144 0.96
MYC 8 13.35 0.001157 356 96 1.9
MYC 24 8.41 0.00901 251 120 1.06
MYC 72 5.93 0.022411 268 63 2.08

Of the biomarkers identified in our analysis, UBC has also been identified in other systems biology
reviews of TBI datasets. As Feala [17] mentions, “Animal experiments do not always reproduce the
same results across studies. This is primarily because of variations in animal species, injury type and
severity, time course of collection, and sampled tissue”. For example, MAPT (Microtubule Associated
Protein Tau), also known as Tau (Tau proteins are proteins that stabilize microtubules), appears to
be a promising biomarker, yet it does not appear to increase in mTBI (mild traumatic brain injury)
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scenarios. The change in genetic profiles across different time points was especially problematic for us
because a practical biomarker should ideally be present and examinable at different time points after
the injury. Of the four proteins common among the different time points, only UBC was mentioned in
Feala’s article [17]. We feel that other proteins that are persistent throughout the course of sampling
should also receive additional attention.

The unique genetic profile for UBC, SUMO1, and CDKN1A at the four time points for CCI suggests
the need to further assess current biological modeling designs. We have previously found that even the
sham control groups require more precise treatment in CCI experimentation [17] and have proposed
that unicortical drilling should be performed on the control group. Since improved biological modeling
requires additional funding and repeating previous experiments, we have used a systems biology
approach to re-analyze the controversial penumbra region. Given that the penumbra region contains
salvageable brain tissue and that it lies between the heavily-injured region and the nearly-normal
region, we feel that appropriate analysis of this region should disclose valuable information and targets
for treatment.

Our analyses revealed significant information regarding the recovery and damage processes
in the post-TBI stages. This information provides clues for selecting novel drug targets for
therapeutic and recovery processes. Because of article length restrictions, we present these results in a
supplementary table.

2.2. Network Structure Interpretation of the Four Post-TBI Time Points

Figure 1 and Table 1 show the difference between the network structures of the four time
points. At 4 h post-TBI, the UBC node dominated the network (TRV = 64.8), while the TRVs of
the other nodes were all <15. We discuss the next two most important proteins, heat shock protein
HSP90AA1 (Heat shock protein 90) and ITGA4 (integrin α-4 precursor gene) (TRV = 12.4 and 11.9,
respectively), below. At 8 h, there were no TRVs greater than 20. However, ELAVL1 (embryonic lethal
abnormal vision-like protein 1) (TRV = 17.0) appeared to be a significant protein of neuron-related
diseases. At 24 h, CDK2 (cyclin-dependent kinase-2), FN1, and epithelial growth factor receptor (EGFR)
(TRV = 30.4, 25, and 20, respectively) dominated the network. We discuss these significant nodes
below. Finally, at 72 h, APP (amyloid precursors protein) and ELAVL1 (TRV = 34 and 31.9, respectively)
dominated the network. The color and width of the edges in Figure 1 reveal some information about
the regulatory mechanisms of the proteins, but the model we used in this research focused on PPIs,
not genetic regulatory networks (GRNs). We think that the significant nodes we identified are more
like “hubs” than drivers. Our team has also developed GRN models [18], but due to limited data types
it was not appropriate to apply a GRN model to this dataset.

We discuss the five aforementioned proteins here.

(i) HSP90AA1: White et al. [19] discussed the relationship between gene expression patterns post-TBI
and the inflammatory response. They identified the following significant genes: HSP90AA1,
ERAP1 (endoplasmic reticulum aminopeptidase 1), PSMB9 (proteasome subunit beta type-9),
CBL (calcineurin B-like), BTK (Bruton’s tyrosine kinase), RORA (retinoic acid receptor-related
orphan receptor alpha), THRA (thyroid hormone receptor alpha), and ITGA5 (Integrin, alpha 5,
fibronectin receptor).

(ii) ITGA4 (Integrin, α-4 precursor gene): White et al. identified ITGA5, but not ITGA4 [19]. They are
in the same family. ITGA4 is always related to inflammation caused by stroke or TBI. Fulmer
discussed epilepsy drug effects on these proteins [20].

(iii) CDK2: Zhang discussed the relationships between the expression of BAD, CDK2, and STAT3,
and brain function after a TBI in rats [21].

(iv) FN1: White et al. discussed the complex behaviors of FN1, such as its extracellular matrix/cell
adhesion (FN1, matrix metalloproteinases (MMPs), and ICAM1) module, its fold changes in a
gene interaction hierarchy (GIH) analysis, and others [19].
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(v) EGFR: This is a well-known cancer oncogene and the vascular EGFR (VEGFR) receptor is always
reported in brain injuries [22]. It is a novel clue for us to identify the relationship between EGFR
and TBI.

2.3. Comparison with Our Previous Results for Stroke

We compare our results with our recently conducted work on human stroke [23]. We identified
five significant proteins common to both stroke and TBI: UBC, APP, NEDD8, PAN2, and EVAVL1.

APP activates voltage-dependent calcium channels and may induce neuronal apoptosis. Its
protein product binds growth factor receptor and plays a role in the regulation of peptidase activator
and acetylcholine receptor activities. It is involved in the positive regulation of peptidase activity,
locomotor behavior, and axon cargo transport. It also participates in the glypican signaling pathway
and Alzheimer disease (AD) pathway [24,25]. It is involved in many cellular behaviors and thus forms
one of the key hubs in TBI.

NEDD8 (neural precursor cell expressed) encodes a protein that exhibits ubiquitin protein ligase
binding. It is involved in protein neddylation. It participates in the p53 signaling pathway, the
neddylation pathway, and the cullin-dependent proteasome degradation pathway. It is also associated
with Parkinson’s disease [25,26].

There are few reports that PAN2 is directly related to TBI or stroke, so this could be a novel target
for therapy. The ELAVL1/Hu family of RBPs (RIM binding proteins) plays a key role in neuroscience.
Skliris et al. [27] discuss how neuroprotective behavior requires the functions of the RNA-binding
protein, HuR, and give a full description of the mechanisms of ELAVL1/HuR. Usually, three members
of this family (HuB/HEL-N1/ELAVL2, HuC/ELAVL3, and HuD/ELAVL4) are expressed by neurons,
but ELAVL1/HuR is always expressed in both neuronal and non-neuronal tissues. These findings
concur with descriptions of the involvement of synaptic dysfunction and cytoarchitectural degradation
in stroke [28].

2.4. MetaCore™ Results

We used the MetaCore™ Analyze Networks (AN) algorithm to analyze the network biomarkers
that were unique to or common to all or some of the networks we identified for the four time points
post-TBI (Table 3). The detailed algorithm is given in Supplementary Material S0, showing that
completely different cellular behaviors are operating at the four time points. Briefly, most biomarkers
at 4 h post-TBI were related to cell activation and signaling behaviors. In contrast, most at 8 h post-TBI
were related to immune response. At 24 h post-TBI, most were related to DNA behavior, whereas in
the final 72 h post-TBI stage, most were related to regulation and apoptotic behaviors. The evolution
of cellular behavior at these four time points post-TBI is thus clear.

A canonical pathway in MetaCore™ represents a set of consecutive signals, or metabolic
transformations, confirmed as a whole by experimental data or by inferred relationships. They are
linear sets of carefully defined steps that form a map; in MetaCore™, complete biochemical pathways
or signaling cascades in the commonly accepted sense correspond to maps. Over 70,000 pathways
are stored in MetaBase™, which are mainly used for network generation and visualized as canonical
pathway maps. The AN algorithm creates a large network and divides it into smaller sub-networks
that can be separately built. Networks are more interactive than pathway maps and can sometimes be
more complex.
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Table 3. Analysis of networks using MetaCore™. The gene content of the uploaded files was used as
the input list for generating biological networks using the Analyze Networks (AN) algorithm with
default settings. This is a variant of the shortest paths algorithm, with the following main parameters:
(1) relative enrichment with the uploaded data and (2) relative saturation of networks with canonical
pathways. These networks are built on the fly and are unique to the uploaded data. In this workflow,
the networks are prioritized based on the number of fragments of canonical pathways in the network.
S: size; T: target; P: pathways; G: gScore.

No. Processes S T P G

Common to All Four Networks

1

Viral transcription (97.1%), viral genome expression (97.1%),
translational termination (97.1%), cellular protein complex disassembly
(97.1%), SRP (signal recognition particle)-dependent cotranslational
protein targeting to membrane (97.1%).

38 1 0 11.39

Common to Two or Three of the Networks

1

Positive regulation of nucleobase-containing compound metabolic
process (75.5%), positive regulation of biosynthetic process (77.6%),
enzyme-linked receptor protein signaling pathway (65.3%), positive
regulation of nitrogen compound metabolic process (75.5%), positive
regulation of macromolecule biosynthetic process (73.5%).

50 16 0 69.15

2

Positive regulation of response to stimulus (60.4%), regulation of
response to stimulus (75.0%), response to organic substance (72.9%),
transmembrane receptor protein tyrosine kinase signaling pathway
(45.8%), response to hormone stimulus (56.2%).

50 14 0 56.71

3
Cell surface receptor signaling pathway (96.0%), signal transduction
(96.0%), signaling (96.0%), single organism signaling (96.0%), cell
communication (96.0%).

50 2 30 45.94

Unique to the 4 h Post-TBI Network

1 Cell activation (54.0%), signal transduction (94.0%), signaling (96.0%),
single organism signaling (96.0%), response to wounding (62.0%). 50 6 0 43.25

2

G-protein coupled receptor signaling pathway (71.4%), neuropeptide
signaling pathway (30.6%), G-protein coupled receptor signaling
pathway, coupled to cyclic nucleotide second messenger (32.7%), cell
surface receptor signaling pathway (75.5%), chemokine-mediated
signaling pathway (20.4%).

50 5 0 36.02

3
Axis specification (38.0%), canonical Wnt receptor signaling pathway
(36.0%), pattern specification process (46.0%), Wnt receptor signaling
pathway (38.0%), anterior/posterior pattern specification (36.0%).

50 4 0 28.78

Unique to the 8 h Post-TBI Network

1

Response to abiotic stimulus (61.7%), regulation of apoptotic process
(63.8%), regulation of programmed cell death (63.8%), positive
regulation of cellular process (85.1%), positive regulation of metabolic
process (74.5%).

50 9 0 41.50

2

Positive regulation of immune response (43.8%), positive regulation of
response to stimulus (58.3%), regulation of response to stress (52.1%),
regulation of immune response (47.9%), TRIF (Toll/IL-1 receptor
domain-containing adapter inducing interferon-β)-dependent toll-like
receptor signaling pathway (27.1%).

50 8 0 36.87

3

Immune response-activating signal transduction (25.0%), immune
response-regulating signaling pathway (25.0%), T cell costimulation
(17.5%), lymphocyte costimulation (17.5%), cellular defense
response (17.5%).

50 5 2 25.40
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Table 3. Cont.

No. Processes S T P G

Unique to the 24 h Post-TBI Network

1

Double-strand break repair via synthesis-dependent strand annealing
(100.0%), DNA recombinase assembly (100.0%), DNA excision (100.0%),
telomere maintenance via semi-conservative replication (100.0%),
nucleotide-excision repair, DNA gap filling (100.0%).

4 2 0 33.30

2
Lipoprotein metabolic process (46.2%), protein-lipid complex assembly
(34.6%), plasma lipoprotein particle assembly (34.6%), lipid transport
(50.0%), lipid localization (50.0%).

49 6 0 30.34

3

Immune response (56.5%), immune system process (67.4%), positive
regulation of response to stimulus (58.7%), activation of immune
response (39.1%), positive regulation of immune system
process (47.8%).

50 6 0 28.11

Unique to the 72 h Post-TBI Network

1

Positive regulation of biological process (98.0%), positive regulation of
cellular process (90.0%), enzyme linked receptor protein signaling
pathway (56.0%), regulation of immune system process (60.0%),
regulation of response to stimulus (76.0%).

50 13 0 65.57

2

Positive regulation of apoptotic process (58.0%), positive regulation of
programmed cell death (58.0%), positive regulation of cell death
(58.0%), positive regulation of biological process (90.0%), regulation of
apoptotic process (66.0%).

50 11 0 55.45

3

Enzyme linked receptor protein signaling pathway (63.8%), membrane
protein intracellular domain proteolysis (25.5%), nerve growth factor
receptor signaling pathway (40.4%), membrane protein proteolysis
(25.5%), transmembrane receptor protein tyrosine kinase signaling
pathway (46.8%).

50 10 0 50.91

2.4.1. Statistical Interpretation of MetaCore™

Figures 2d and 4d are statistical interpretation of MetaCore™. The comparison tool, after the user
has set the various options, generates a number of intersecting sets. The number of sets generated
depends on the number of active experiments (in this case, time points post-TBI under consideration,
i.e., four). They overlap where they have network objects in common. The different elements of the
resulting Venn diagram comprise of the following: (1) a “common” area in the middle, including the
network objects found in all the experiments (in this case, at all four time points); (2) an area “unique”
to each experiment, consisting of objects unique to that experiment; and (3) one or more sets of objects
common to two or more experiments, but not all (MetaCore™).

2.4.2. Three Statistical Results for the Four Time Points Post-TBI

Figure 2a gives the top 10 pathway maps. Figure 2b gives the top 10 process networks. They are
highly related to the cell cycle, DNA damage, and signal transduction. These pathways and process
networks may provide clues for new uses of conventional drugs. From the literature review, we
also found that it was important to pay attention to the relationship between the cell cycle and
TBI [29]. Simone et al. discuss the fact that cell cycle inhibition provides neuroprotection and
reduces glial proliferation and scar formation after traumatic brain injury. This article has been
cited more than 250 times, and therefore the discussion of the relationship of the cell cycle and TBI
is very important. Figure 2c gives results for related diseases. While one can make comparisons of
common hidden embryological and molecular mechanisms of these diseases, the correlation and
embryological relationship amongst TBI and these diseases, however, would require additional
investigation and validation.
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Figure 2. Results of the MetaCore™ analysis for all four time points post-TBI (4 h, 8 h, 24 h, and  
72 h). All results are sorted according to those most strongly represented in the “common” set.  
(a) Pathway maps. Canonical pathway maps represent a set of signaling and metabolic maps that 
comprehensively cover human biological functioning. All maps are created by Thomson Reuters 
scientists using a high quality manual curation process based on published peer reviewed literature. 
Experimental data are visualized on the maps as blue (for downregulation) and red (upregulation) 
histograms. The height of the histogram corresponds to the relative expression value for a particular 
gene/protein; (b) Process networks. The content of these cellular and molecular processes is defined 
and annotated by Thomson Reuters scientists. Each process represents a pre-set network of protein 
interactions characteristic of that process; (c) Related diseases (determined based on biomarkers). 
Related disease folders are organized into a hierarchical tree. Gene content may vary greatly between 
such complex diseases as cancers and some Mendelian diseases. Also, coverage of different diseases 
in literature is skewed. These two factors may affect p-value prioritization for diseases; (d) Figure 
legend giving the meanings of the colors and statistical interpretation of the above three figures. 
These figures were generated by MetaCore™. 

Figure 2. Results of the MetaCore™ analysis for all four time points post-TBI (4 h, 8 h, 24 h, and 72 h).
All results are sorted according to those most strongly represented in the “common” set. (a) Pathway
maps. Canonical pathway maps represent a set of signaling and metabolic maps that comprehensively
cover human biological functioning. All maps are created by Thomson Reuters scientists using a high
quality manual curation process based on published peer reviewed literature. Experimental data are
visualized on the maps as blue (for downregulation) and red (upregulation) histograms. The height of
the histogram corresponds to the relative expression value for a particular gene/protein; (b) Process
networks. The content of these cellular and molecular processes is defined and annotated by Thomson
Reuters scientists. Each process represents a pre-set network of protein interactions characteristic
of that process; (c) Related diseases (determined based on biomarkers). Related disease folders are
organized into a hierarchical tree. Gene content may vary greatly between such complex diseases as
cancers and some Mendelian diseases. Also, coverage of different diseases in literature is skewed.
These two factors may affect p-value prioritization for diseases; (d) Figure legend giving the meanings
of the colors and statistical interpretation of the above three figures. These figures were generated by
MetaCore™.
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2.4.3. The Highest-Scoring Pathway Map of Post-TBI-Related Biomarker Genes at the Four
Time Points

The highest-scoring pathway map we identified using MetaCore for the four time points was
DNA damage ATM (Ataxia-telangiectasia mutated )/ATR (Ataxia-telangiectasia and Rad3-related)
regulation of G1/S checkpoint (Figure 3a). The ATM-Chk2 (ataxia telangiectasia mutated–checkpoint
kinase 2) and ATR-Chk1 pathways are two distinct kinase signaling cascades that primarily coordinate
cellular responses to DNA damage. The DNA damage checkpoints may arrest or delay progression
of cell cycles in response to DNA damage. Notably, NF-κB, c-MYC, and P21 were up-regulated at all
four time points relative to the time at which the injury occurred. Ubiquitin was down-regulated at
both 4 and 8 h and up-regulated at 24 and 72 h. BRCA1 was down-regulated and MDM2 and I-κB
were up-regulated at 4 h. PCNA was up-regulated at 24 h and CDK2 was up-regulated at 24 and
72 h. The second highest-scoring map was Cell Cycle ESR1 regulation of G1/S transition, which is
also a cell cycle associated pathway (Figure 3b). C-MYC and P21 were up-regulated at all four time
points. ATF-2/c-Jun, c-Jun, and c-Jun/c-Fos were up-regulated at both 8 and 24 h. SP1, Cullin 1, and
Cul1/Rbx1 E3 ligase were down-regulated at 8 h. CDK2 was up-regulated at both 24 and 72 h. These
results show that our identified biomarker genes are strongly associated with the cell cycle and may
play important roles in post-TBI regulation.
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Figure 3. The two highest-scoring maps for all four time points post-TBI. (a) DNA damage ATM/ATR
regulation of G1/S checkpoint; (b) Cell cycle ESR1 regulation of G1/S transition. These figures were
generated by MetaCore™.

2.4.4. Three Statistical Results for the Last Two Time Points Post-TBI

The 10 top-scoring pathway maps (Figure 4a) and process networks (Figure 4c) for the last two
time points post-TBI (24 and 72 h) are strongly related to the cell cycle, DNA damage, and signal
transduction. The results regarding related diseases (Figure 4c) provide clues about new uses for
conventional drugs and facilitate comparisons of the hidden molecular mechanisms common to some
of these diseases.

2.4.5. The Highest-Scoring Pathway Map of Post-TBI-Related Biomarker Genes at 24 and 72 h

The highest-scoring pathway map at 24 and 72 h, according to the MetaCore™ analysis, is Cell
Cycle Role of SCF Complex (Skp, Cullin, F-box containing complex) in Cell Cycle Regulation (Figure 5a).
The S-phase kinase-associated protein (SKP1)/Cullin/F-box (SCF) complex is one of the E3-ubiquitin
ligases, and plays a critical role in the cell cycle. Surprisingly, ubiquitin was down-regulated at 4 and
8 h, but up-regulated at 24 and 72 h. CDK1 and CDK2 were up-regulated at 24 and 72 h, and P21 was
up-regulated at all four time points. Another pathway related to the cell cycle, influence of Ras and
Rho proteins on G1/S transition, was also identified as strongly associated with biomarker genes at 24
and 72 h (Figure 5b). These genes, such as P21, CDK2, ERK1/2, MDM2, STAT3, RhoA, NF-κB, might
provide clues for deciphering the regulatory mechanisms of post-TBI processes at different time points.
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Figure 4. Results of the MetaCore™ analysis for the last two time points post-TBI (24 and 72 h). 
Results are sorted according to those most strongly represented in the “common” set. (a) Pathway 
maps. Canonical pathway maps represent a set of signaling and metabolic maps that 
comprehensively cover human biological functioning. All maps are created by Thomson Reuters 
scientists using a high quality manual curation process based on published peer reviewed literature. 
Experimental data is visualized on the maps as blue (for down-regulation) and red (up-regulation) 
histograms. The height of the histogram corresponds to the relative expression value for a particular 
gene/protein; (b) Gene ontology (GO) cellular processes. Since most GO processes have no 
gene/protein content, the “empty terms” are excluded from p-value calculations; (c) Process 
networks. The content of these cellular and molecular processes is defined and annotated by 
Thomson Reuters scientists. Each process represents a pre-set network of protein interactions 
characteristic for the process; (d) Figure legend giving the meanings of the colors and statistical 
interpretation of the above three figures. These figures were generated by MetaCore™. 

Figure 4. Results of the MetaCore™ analysis for the last two time points post-TBI (24 and 72 h). Results
are sorted according to those most strongly represented in the “common” set. (a) Pathway maps.
Canonical pathway maps represent a set of signaling and metabolic maps that comprehensively cover
human biological functioning. All maps are created by Thomson Reuters scientists using a high quality
manual curation process based on published peer reviewed literature. Experimental data is visualized
on the maps as blue (for down-regulation) and red (up-regulation) histograms. The height of the
histogram corresponds to the relative expression value for a particular gene/protein; (b) Gene ontology
(GO) cellular processes. Since most GO processes have no gene/protein content, the “empty terms” are
excluded from p-value calculations; (c) Process networks. The content of these cellular and molecular
processes is defined and annotated by Thomson Reuters scientists. Each process represents a pre-set
network of protein interactions characteristic for the process; (d) Figure legend giving the meanings
of the colors and statistical interpretation of the above three figures. These figures were generated by
MetaCore™.
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Figure 5. The highest-scoring and fifth highest-scoring pathway maps for the last two time points
post-TBI (24 and 72 h). (a) Cell cycle: role of SCF complex in cell cycle regulation; (b) Cell cycle:
Influence of Ras and Rho proteins on G1/S Transition. These figures were generated by MetaCore™.
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2.4.6. Top-Scoring AN (Analyze Networks Algorithm) Results for the Four Time Points Post-TBI

The AN results for the four time points provide information about canonical pathways,
up-regulated and down-regulated genes, and mixed expression genes (Figure 6).

2.4.7. Discussion of the Cell Cycle Behavior of TBI

Our results show that the cell cycle is strongly related to brain injury (Figure 1). Wu et al. [30]
discuss cell cycle activation and cord injury, stating that a traumatic spinal cord injury (SCI) causes
a series of events involving initial mechanical damage, secondary injury processes, and eventually
results in tissue loss and functional impairment. They also found that the cell cycle is activated
following an SCI [30].

2.5. Network Ontology Analysis (NOA) Results

The detailed analytical results of the network ontology analysis (NOA) highlight the evolutionary
process at the four time points post-TBI with respect to biological processes, cellular components, and
molecular functions (Table 4). For example, the most statistically significant biological process at 4 h
post-TBI was protein modification by small-protein conjugation, while the top processes at the other
three time points were positive regulation of cellular metabolic processes. The top cellular components
at the four time points were protein complex, nucleus, intracellular part, and cytoplasm, respectively.
The top molecular function at all four time points was protein binding, followed by enzyme binding,
promoter binding, receptor signaling protein activity, and identical protein binding, at 4, 8, 24, and
72 h post-TBI, respectively.
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Figure 6. Top-scoring networks for (a) 4 h; (b) 8 h; (c) 24 h; and (d) 72 h post-TBI. Scoring was based 
on the number of pathways. Thick cyan lines indicate fragments of canonical pathways. 
Up-regulated genes are marked with red circles, and down-regulated with blue circles. A 
“checkerboard” pattern indicates mixed expression for the gene between files or between multiple 
tags for the same gene. These figures were generated by MetaCore™. 
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Here, we emphasize the importance of the results of the MetaCore™ and NOA analyses. They 
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hidden mechanisms of network biomarkers, and will also help these researchers to develop novel 
strategies for TBI therapy or recovery processes. Our original results can also be used for further 
analysis using other methods, so we present them here. 

Figure 6. Top-scoring networks for (a) 4 h; (b) 8 h; (c) 24 h; and (d) 72 h post-TBI. Scoring was based on
the number of pathways. Thick cyan lines indicate fragments of canonical pathways. Up-regulated
genes are marked with red circles, and down-regulated with blue circles. A “checkerboard” pattern
indicates mixed expression for the gene between files or between multiple tags for the same gene.
These figures were generated by MetaCore™.

2.6. Summary of the Results in Table 4

In addition to our original analysis that identified the PPINs and their corresponding network
biomarkers, we have generated abundant results using DAVID (The Database for Annotation,
Visualization and Integrated Discovery; Available online: https://david.ncifcrf.gov/home.jsp),
MetaCore™, and NOA. Based on our previous experience with cancer research, we applied the
David analysis to the four time points post-TBI and expected it to yield the results of KEGG (Kyoto
Encyclopedia of Genes and Genomes; Available online: http://www.genome.jp/kegg/). However, we
did not find the KEGG database suitable for analyzing TBI (most entries were linked to cancer-related
pathways), so we present these results in Supplementary Material S4 and do not describe them here.

Here, we emphasize the importance of the results of the MetaCore™ and NOA analyses. They can
be used as references for medical and basic researchers performing further explorations of the hidden
mechanisms of network biomarkers, and will also help these researchers to develop novel strategies
for TBI therapy or recovery processes. Our original results can also be used for further analysis using
other methods, so we present them here.
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Table 4. Network ontology pathway analysis and gene set enrichment analysis for four time points post-TBI with respect to (1) biological processes; (2) cellular
components; and (3) molecular functions. Each of these tables is presented for each of the four time points. R: number of genes in reference set; T: number of genes in
test set; G: number of genes annotated by given term in reference set; O: number of genes annotated by given term in test set. This table is produced based on data
stored in the network ontology analysis (NOA) web server.

GO: Term p-Value Corrected p-Value R T G O Term Name

4 h Post-TBI

(1) Biological Processes

GO:0032446 1.1 ˆ 10´8 1.0 ˆ 10´5 14,791 26 168 7 protein modification by small protein conjugation
GO:0070647 4.5 ˆ 10´8 3.8 ˆ 10´5 14,791 26 204 7 protein modification by small protein conjugation or removal
GO:0043687 3.7 ˆ 10´7 3.1 ˆ 10´4 14,791 26 1243 12 post-translational protein modification
GO:0048518 5.1 ˆ 10´7 4.4 ˆ 10´4 14,791 26 2188 15 positive regulation of biological process
GO:0043067 8.5 ˆ 10´7 7.2 ˆ 10´4 14,791 26 850 10 regulation of programmed cell death
GO:0010941 9.0 ˆ 10´7 7.7 ˆ 10´4 14,791 26 856 10 regulation of cell death
GO:0048522 1.1 ˆ 10´6 9.8 ˆ 10´4 14,791 26 1984 14 positive regulation of cellular process
GO:0042221 1.3 ˆ 10´6 0.0011 14,791 26 1402 12 response to chemical stimulus
GO:0009314 1.5 ˆ 10´6 0.0013 14,791 26 215 6 response to radiation
GO:0006464 2.6 ˆ 10´6 0.0022 14,791 26 1490 12 protein modification process

(2) Cellular Components

GO:0043234 7.1 ˆ 10´6 9.3 ˆ 10´4 16,768 25 2748 14 protein complex
GO:0044451 1.8 ˆ 10´5 0.0024 16,768 25 594 7 nucleoplasm part
GO:0005737 2.3 ˆ 10´5 0.0030 16,768 25 4549 17 cytoplasm
GO:0017053 3.4 ˆ 10´5 0.0045 16,768 25 43 3 transcriptional repressor complex
GO:0044428 4.4 ˆ 10´5 0.0057 16,768 25 1932 11 nuclear part
GO:0016235 4.4 ˆ 10´5 0.0058 16,768 25 7 2 aggresome
GO:0032991 6.5 ˆ 10´5 0.0085 16,768 25 3312 14 macromolecular complex
GO:0035098 7.6 ˆ 10´5 0.0100 16,768 25 9 2 ESC/E(Z) complex (Extra Sex Combs/Enhancer of Zeste complex)
GO:0034708 7.7 ˆ 10´5 0.0100 16,768 25 56 3 methyltransferase complex
GO:0035097 7.7 ˆ 10´5 0.0100 16,768 25 56 3 histone methyltransferase complex
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Table 4. Cont.

GO: Term p-Value Corrected p-Value R T G O Term Name

(3) Molecular Functions

GO:0005515 7.5 ˆ 10´7 1.2 ˆ 10´4 15,767 26 8097 25 protein binding
GO:0019899 2.9 ˆ 10´6 4.8 ˆ 10´4 15,767 26 584 8 enzyme binding
GO:0050815 1.5 ˆ 10´5 0.0025 15,767 26 4 2 phosphoserine binding
GO:0032403 4.2 ˆ 10´5 0.0069 15,767 26 243 5 protein complex binding
GO:0016563 4.9 ˆ 10´5 0.0082 15,767 26 419 6 transcription activator activity
GO:0042802 8.3 ˆ 10´5 0.0139 15,767 26 677 7 identical protein binding
GO:0016564 1.7 ˆ 10´4 0.0292 15,767 26 329 5 transcription repressor activity
GO:0045309 2.7 ˆ 10´4 0.0449 15,767 26 15 2 protein phosphorylated amino acid binding
GO:0004407 3.0 ˆ 10´4 0.0513 15,767 26 16 2 histone deacetylase activity
GO:0033558 3.5 ˆ 10´4 0.0581 15,767 26 17 2 protein deacetylase activity

8 h Post-TBI

(1) Biological Processes

GO:0031325 4.7 ˆ 10´11 5.9 ˆ 10´8 14,791 48 965 19 positive regulation of cellular metabolic process
GO:0009893 1.1 ˆ 10´10 1.4 ˆ 10´7 14,791 48 1015 19 positive regulation of metabolic process
GO:0048523 1.9 ˆ 10´10 2.4 ˆ 10´7 14,791 48 1815 24 negative regulation of cellular process
GO:0042127 4.4 ˆ 10´10 5.6 ˆ 10´7 14,791 48 839 17 regulation of cell proliferation
GO:0031328 5.0 ˆ 10´10 6.3 ˆ 10´7 14,791 48 727 16 positive regulation of cellular biosynthetic process
GO:0009891 6.5 ˆ 10´10 8.2 ˆ 10´7 14,791 48 740 16 positive regulation of biosynthetic process
GO:0048519 1.2 ˆ 10´9 1.5 ˆ 10´6 14,791 48 1983 24 negative regulation of biological process
GO:0048518 1.5 ˆ 10´9 1.8 ˆ 10´6 14,791 48 2188 25 positive regulation of biological process
GO:0051173 2.0 ˆ 10´9 2.6 ˆ 10´6 14,791 48 683 15 positive regulation of nitrogen compound metabolic process
GO:0031323 2.2 ˆ 10´9 2.8 ˆ 10´6 14,791 48 3768 32 regulation of cellular metabolic process

(2) Cellular Components

GO:0005634 4.9 ˆ 10´11 8.3 ˆ 10´9 16768 45 5037 35 nucleus
GO:0044428 7.5 ˆ 10´11 1.2 ˆ 10´8 16,768 45 1932 23 nuclear part
GO:0032991 1.1 ˆ 10´7 1.8 ˆ 10´5 16,768 45 3312 25 macromolecular complex
GO:0005737 1.8 ˆ 10´7 3.0 ˆ 10´5 16,768 45 4549 29 cytoplasm
GO:0043231 3.3 ˆ 10´7 5.6 ˆ 10´5 16,768 45 7996 38 intracellular membrane-bounded organelle
GO:0043227 3.3 ˆ 10´7 5.6 ˆ 10´5 16,768 45 7998 38 membrane-bounded organelle
GO:0005829 5.5 ˆ 10´7 9.2 ˆ 10´5 16,768 45 1269 15 cytosol
GO:0043229 1.1 ˆ 10´6 1.8 ˆ 10´4 16,768 45 8759 39 intracellular organelle
GO:0043226 1.1 ˆ 10´6 1.9 ˆ 10´4 16,768 45 8773 39 organelle
GO:0044424 1.6 ˆ 10´6 2.8 ˆ 10´4 16,768 45 11,001 43 intracellular part
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Table 4. Cont.

GO: Term p-Value Corrected p-Value R T G O Term Name

(3) Molecular Functions

GO:0005515 1.2 ˆ 10´11 3.1 ˆ 10´9 15,767 48 8097 46 protein binding
GO:0010843 4.0 ˆ 10´11 9.9 ˆ 10´9 15,767 48 111 9 promoter binding
GO:0044212 5.6 ˆ 10´11 1.3 ˆ 10´8 15,767 48 115 9 DNA regulatory region binding
GO:0016563 4.1 ˆ 10´7 1.0 ˆ 10´4 15,767 48 419 10 transcription activator activity
GO:0042802 5.9 ˆ 10´7 1.4 ˆ 10´4 15,767 48 677 12 identical protein binding
GO:0003690 6.2 ˆ 10´7 1.5 ˆ 10´4 15,767 48 102 6 double-stranded DNA binding
GO:0035326 5.7 ˆ 10´6 0.0014 15,767 48 39 4 enhancer binding
GO:0003705 5.7 ˆ 10´6 0.0014 15,767 48 39 4 RNA polymerase II transcription factor activity, enhancer binding
GO:0043566 6.1 ˆ 10´6 0.0015 15,767 48 151 6 structure-specific DNA binding
GO:0032403 8.1 ˆ 10´6 0.0019 15,767 48 243 7 protein complex binding

24 h Post-TBI

(1) Biological Processes

GO:0048522 4.0 ˆ 10´10 4.8 ˆ 10´7 14,791 46 1984 24 positive regulation of cellular process
GO:0048518 4.5 ˆ 10´10 5.4 ˆ 10´7 14,791 46 2188 25 positive regulation of biological process
GO:0009987 9.8 ˆ 10´9 1.1 ˆ 10´5 14,791 46 9216 45 cellular process
GO:0050794 1.3 ˆ 10´8 1.5 ˆ 10´5 14,791 46 6896 40 regulation of cellular process
GO:0031325 1.4 ˆ 10´8 1.7 ˆ 10´5 14,791 46 965 16 positive regulation of cellular metabolic process
GO:0051716 1.9 ˆ 10´8 2.3 ˆ 10´5 14,791 46 847 15 cellular response to stimulus
GO:0048523 2.1 ˆ 10´8 2.5 ˆ 10´5 14,791 46 1815 21 negative regulation of cellular process
GO:0009893 3.0 ˆ 10´8 3.5 ˆ 10´5 14,791 46 1015 16 positive regulation of metabolic process
GO:0044260 4.7 ˆ 10´8 5.6 ˆ 10´5 14,791 46 3428 28 cellular macromolecule metabolic process
GO:0051128 4.9 ˆ 10´8 5.9 ˆ 10´5 14,791 46 529 12 regulation of cellular component organization
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Table 4. Cont.

GO: Term p-Value Corrected p-Value R T G O Term Name

(2) Cellular Components

GO:0044424 5.6 ˆ 10´9 1.0 ˆ 10´6 16,768 45 11,001 45 intracellular part
GO:0005829 1.1 ˆ 10´8 2.1 ˆ 10´6 16,768 45 1269 17 cytosol
GO:0005737 1.8 ˆ 10´7 3.4 ˆ 10´5 16,768 45 4549 29 cytoplasm
GO:0043234 4.1 ˆ 10´7 7.9 ˆ 10´5 16,768 45 2748 22 protein complex
GO:0005634 4.2 ˆ 10´7 8.0 ˆ 10´5 16,768 45 5037 30 nucleus
GO:0032991 5.5 ˆ 10´7 1.0 ˆ 10´4 16,768 45 3312 24 macromolecular complex
GO:0044428 4.7 ˆ 10´6 9.1 ˆ 10´4 16,768 45 1932 17 nuclear part
GO:0000307 6.4 ˆ 10´6 0.0012 16,768 45 14 3 cyclin-dependent protein kinase holoenzyme complex

GO:0070435 7.0 ˆ 10´6 0.0013 16,768 45 2 2 Shc-EGFR complex (Src homology 2 domain containing
transforming protein-epidermal growth factor receptor complex)

GO:0043229 2.6 ˆ 10´5 0.0051 16,768 45 8759 37 intracellular organelle

(3) Molecular Functions

GO:0005515 6.4 ˆ 10´10 1.7 ˆ 10´7 15,767 46 8097 43 protein binding
GO:0005057 4.0 ˆ 10´7 1.1 ˆ 10´4 15,767 46 162 7 receptor signaling protein activity
GO:0043560 5.0 ˆ 10´6 0.0013 15,767 46 12 3 insulin receptor substrate binding
GO:0019899 5.4 ˆ 10´6 0.0015 15,767 46 584 10 enzyme binding
GO:0032403 6.0 ˆ 10´6 0.0016 15,767 46 243 7 protein complex binding

GO:0004710 8.3 ˆ 10´6 0.0022 15,767 46 2 2 MAP/ERK kinase kinase activity (mitogen-activated protein
kinases/extracellular signal-regulated kinases activity)

GO:0045309 1.0 ˆ 10´5 0.0028 15,767 46 15 3 protein phosphorylated amino acid binding
GO:0019900 2.4 ˆ 10´5 0.0067 15,767 46 201 6 kinase binding
GO:0005488 3.0 ˆ 10´5 0.0083 15,767 46 12,581 46 binding
GO:0004702 3.1 ˆ 10´5 0.0086 15,767 46 62 4 receptor signaling protein serine/threonine kinase activity
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Table 4. Cont.

GO: Term p-Value Corrected p-Value R T G O Term Name

72 h Post-TBI

(1) Biological Processes

GO:0048522 1.60 ˆ 10´17 2.50 ˆ 10´14 1.48 ˆ 104 56 1984 35 positive regulation of cellular process
GO:0048518 3.80 ˆ 10´17 5.60 ˆ 10´14 1.48 ˆ 104 56 2188 36 positive regulation of biological process
GO:0031325 1.60 ˆ 10´12 2.40 ˆ 10´09 1.48 ˆ 104 56 965 22 positive regulation of cellular metabolic process
GO:0009893 4.50 ˆ 10´12 6.70 ˆ 10´09 1.48 ˆ 104 56 1015 22 positive regulation of metabolic process
GO:0010604 9.20 ˆ 10´12 1.30 ˆ 10´08 1.48 ˆ 104 56 939 21 positive regulation of macromolecule metabolic process
GO:0032502 9.30 ˆ 10´12 1.30 ˆ 10´08 1.48 ˆ 104 56 3032 35 developmental process
GO:0048519 5.20 ˆ 10´11 7.70 ˆ 10´08 1.48 ˆ 104 56 1983 28 negative regulation of biological process
GO:0006950 1.00 ˆ 10´10 1.50 ˆ 10´07 1.48 ˆ 104 56 1591 25 response to stress
GO:0042981 1.00 ˆ 10´10 1.50 ˆ 10´07 1.48 ˆ 104 56 842 19 regulation of apoptosis
GO:0010033 1.20 ˆ 10´10 1.80 ˆ 10´07 1.48 ˆ 104 56 850 19 response to organic substance

(2) Cellular Components

GO:0005737 9.2 ˆ 10´11 1.9 ˆ 10´8 16,768 57 4549 39 cytoplasm
GO:0043234 1.8 ˆ 10´9 4.0 ˆ 10´7 16,768 57 2748 29 protein complex
GO:0005829 2.6 ˆ 10´9 5.6 ˆ 10´7 16,768 57 1269 20 cytosol
GO:0032991 6.7 ˆ 10´9 1.4 ˆ 10´6 16,768 57 3312 31 macromolecular complex
GO:0044428 2.4 ˆ 10´8 5.2 ˆ 10´6 16,768 57 1932 23 nuclear part
GO:0044424 1.6 ˆ 10´7 3.5 ˆ 10´5 16,768 57 11,001 54 intracellular part
GO:0044446 2.0 ˆ 10´7 4.4 ˆ 10´5 16,768 57 5015 36 intracellular organelle part
GO:0044422 2.9 ˆ 10´7 6.3 ˆ 10´5 16,768 57 5082 36 organelle part
GO:0005634 9.0 ˆ 10´7 1.9 ˆ 10´4 16,768 57 5037 35 nucleus
GO:0070435 1.1 ˆ 10´5 0.0024 16,768 57 2 2 Shc-EGFR complex

(3) Molecular Functions

GO:0005515 2.8 ˆ 10´17 6.5 ˆ 10´15 15,767 57 8097 57 protein binding
GO:0042802 8.7 ˆ 10´8 1.9 ˆ 10´5 15,767 57 677 14 identical protein binding
GO:0019899 1.1 ˆ 10´7 2.6 ˆ 10´5 15,767 57 584 13 enzyme binding
GO:0032403 2.4 ˆ 10´6 5.5 ˆ 10´4 15,767 57 243 8 protein complex binding
GO:0005488 2.5 ˆ 10´6 5.7 ˆ 10´4 15,767 57 12,581 57 binding
GO:0019900 7.5 ˆ 10´6 0.0017 15,767 57 201 7 kinase binding
GO:0016566 1.0 ˆ 10´5 0.0023 15,767 57 38 4 specific transcriptional repressor activity
GO:0019901 3.2 ˆ 10´5 0.0072 15,767 57 169 6 protein kinase binding
GO:0010843 4.9 ˆ 10´5 0.0112 15,767 57 111 5 promoter binding
GO:0044212 5.8 ˆ 10´5 0.0132 15,767 57 115 5 DNA regulatory region binding
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3. Experimental Section

3.1. Overview of the Traumatic Brain Injury (TBI) Network Biomarkers Identification Process

We used a theoretical framework to identify the evolution of TBI network biomarkers at four time
points representing four important stages after the occurrence of a TBI. We have successfully used a
similar theoretical framework to identify the network biomarkers of various cancers and stroke [31–33].
We therefore highlight only the key points of this framework in this section, and describe the process
in detail in the supplementary information (Supplementary Material S0). The flowchart in Figure 7
illustrates how we identified the network biomarkers of TBI at four time points. We combined two
kinds of data sets to develop our model: (i) microarray data from both TBI and normal samples
from the Gene Expression Omnibus (GEO) database, where TBI samples are divided into four groups
according to the time post-injury (4, 8, 24, and 72 h); and (ii) a protein–protein interaction database,
which was necessary to construct four candidate PPINs for TBI.
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Using several mathematical models, we constructed four TBI PPINs (TPPINs) and a normal PPIN
(NPPIN). We also constructed four Differential PPINs (DPPINs) and calculated the TBI relevance value
(TRV) for each protein in the DPPINs (Supplementary Material S0).

3.2. Data Selection and Pre-Processing

To identify the regulatory mechanisms of brain trauma, we obtained microarray datasets from
gene expression profiling of brain injury samples (4, 8, 24, and 72 h after surgery) and brain sham
samples (4, 8, 24, and 72 h after sham surgery) in mice from the NCBI GEO [34]. We chose GSE2392 [35]
and its corresponding platform, GPL81, as our research object (Table 1). We collected expression
profiling data for mice from the Gene Expression Omnibus (GEO), accession number GSE2392, and
normalized it using quantile normalization. For each of the four time points, there were three TBI
samples and two control samples, making a total of 20 samples.

The PPI dataset for Mice was downloaded from the public Biological General Repository
for Interaction Database (BioGRID) [36]. We excluded false-positive PPIs from the TBI PPINs
using BioGRID and compared the resulting PPINs to identify network biomarkers (Supplementary
Material S0).

3.3. Selection of the Differential Protein Groups and Identification of PPINs

We combined the gene expression profiles with the PPI database to construct the corresponding
TPPINs and NPPIN. First, we identified a differential protein group containing proteins with
differential expression. Protein expression profiles are not yet readily available, so we assumed
that gene expression profiles are correlated with protein expression profiles. We used a one-way
analysis of variance (ANOVA) or the fold change (FC) method to analyze the expression of each
protein and select the proteins that were differentially expressed in cells. These methods were capable
of identifying the critical proteins differentially expressed in TBI and normal samples. We eliminated
proteins with no PPI information from the differential protein group. Proteins that were not already in
the differential protein group were included if their PPI information indicated that they had a close
relationship with a protein (number of edges > 5) in the group. Thus, the differential protein group
included the critical differential expression proteins and other closely related proteins.

We combined the critical differential protein group and PPI information to construct candidate
PPINs by linking proteins that interacted with each other. In other words, proteins for which we had
PPI information via the differential protein group were linked using our mathematical model to form
the candidate TPPINs and NPPINs.

The candidate TPPINs and NPPINs included all possible PPIs under various biological conditions.
It was then necessary to confirm them using microarray expression data and identify the proper PPIs
according to the TBI processes. We used both the PPI model selection method and a model order
detection strategy to exclude the false-positive PPIs. We could then express the relationship to the PPI
of the i-th target protein in the candidate TPPINs and NPPINs with the following formula:

xipnq “
Mi
ÿ

j“1

αijxjpnq `ωipnq (1)

where xi(n) is the expression levels of target protein i for sample n; xj(n) is the expression level of the
j-th protein interacting with target protein i for sample n; αij is the association ability between target
protein i and its j-th interactive protein; Mi is the number of proteins interacting with target protein i;
and ωi(n) is stochastic noise due to other factors or model uncertainty. For the definitions of the terms,
please refer to Supplementary Material S1.
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We then used the least squares parameter estimation method [37] to determine the parameter
of association strength in Equation (1) from the TBI microarray data as follows (Supplementary
Material S1):

xipnq “
Mi
ÿ

j“1

α̂ijxjpnq, i “ 1, 2, ¨ ¨ ¨,M (2)

where α̂ij is solved using TBI microarray data and the least squares parameter estimation method.
Finally, we use AIC (Akaike information criterion) [37] with a Student’s t-test [38] for model

order determination and to determine the critical protein association strengths α̂ij (Supplementary
Material S2).

3.4. Determination of Proteins with Top TBI Relevance Value (TRV)and Their Corresponding
Network Structures

The significant remaining PPIs after pruning the false-positives are expressed by the following:

xipnq “
Mi

1
ÿ

j“1

α̂ijxjpnq `w1ipnq, i “ 1, 2, ¨ ¨ ¨,M (3)

where Mi
1 ďMi is the total number of significant PPIs remaining in the refined PPINs for target protein

i. The final refined PPIN is as follows:

Xpnq “ AXpnq `wpnq (4)

Xpnq “

»

—

—

—

—

–

x1pnq
x2pnq

...
xMpnq

fi

ffi

ffi

ffi

ffi

fl

, A “

»

—

–

α̂11 ¨ ¨ ¨ α̂1M
...

. . .
...

α̂M1 ¨ ¨ ¨ α̂MM

fi

ffi

fl

, wpnq “

»

—

—

—

—

–

w11pnq
w11pnq

...
w1Mpnq

fi

ffi

ffi

ffi

ffi

fl

The interaction matrix A of refined PPINs (i.e., after pruning, as described by Equation (4) were
constructed as follows:

AK
T “

»

—

—

–

α̂k
11,T ¨ ¨ ¨ α̂k

1M,T
...

. . .
...

α̂k
M1,T ¨ ¨ ¨ α̂k

MM,T

fi

ffi

ffi

fl

AN “

»

—

–

α̂11,N ¨ ¨ ¨ α̂1M,N
...

. . .
...

α̂M1,N ¨ ¨ ¨ α̂MM,N

fi

ffi

fl

(5)

where k is time post-injury, AK
T and AN are the interaction strength matrices of the refined TPPINs and

NPPIN for 4, 8, 24, and 72 h post-injury, respectively, and M is the total number of interaction proteins
in the refined TPPINs and NPPIN after pruning. Thus, the protein interaction model can be expressed
as follows:

xK
Tpnq “ Ak

TxTpnq
xNpnq “ AN xNpnq

(6)

where k is time post-injury and xk
Tpnq “ rxk

1T xk
2T ¨ ¨ ¨ x

k
MTs

T
and xNpnq “ rx1N x2N ¨ ¨ ¨ xMNs

T are
vectors of protein expression values. The difference matrix Dk we used to interpret the differences in
behavior between two networks is defined as follows:

Dk “

»

—

–

dk
11 ¨ ¨ ¨ dk

1M
...

. . .
...

dk
M1 ¨ ¨ ¨ dk

MM

fi

ffi

fl

“

»

—

—

–

α̂k
11,T ´ α̂11,N ¨ ¨ ¨ α̂k

1M,T ´ α̂1M,N
...

. . .
...

α̂k
M1,T ´ α̂M1,N ¨ ¨ ¨ α̂k

MM,T ´ α̂MM,N

fi

ffi

ffi

fl

(7)
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where k is time post-injury, dk
ij is the difference between the protein association capacity of the

networks at different times post-injury, and matrix Dk denotes the differences in network structures.
To investigate TBI-related factors using matrix Dk, we proposed a value we called the TBI relevance
value (TRV) to quantify the significance of each protein in Dk as follows [13]:

TRVk “

»

—

—

—

—

—

—

—

–

TRVk
1

...
TRVk

i
...

TRVk
M

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(8)

where TRVk
i “

M
ř

j“1

ˇ

ˇ

ˇ
dk

ij

ˇ

ˇ

ˇ
, and k is time post-injury (Supplementary Material S0).

3.5. Pathway Analysis

Our theory allowed us to construct the TPPINs and NPPINs and identify the network biomarkers
with the highest TRVs. However, we also wanted to explore the biological significance of these
network biomarkers; here, we used various software packages and on-line tools to do the functional
pathway analysis. For example, we used KEGG [39], the DAVID bioinformatics database [40,41], and
NOA [42,43], which are the most commonly used free on-line tools, and MetaCore™ from Thomson
Reuters, a powerful commercial software package that can do multiple functional and pathway
analyses. A detailed description of the process we followed is given in Supplementary Material S0.

3.6. Software and Databases Used in This Research

We conducted our analyses (AIC, student’s t-test and least squares) using MATLAB’s built-in
functions. We also constructed the TPPINs, NPPIN, and TRB using MATLAB (The MathWorks, Inc.,
Natick, MA, USA). The version of the programs we used is not yet open-access. However, we suggest
that readers refer to the old version of the theoretical framework and source code, which are available
to the public [44] (Supplementary Material S3).

We used the MetaCore™ Enrichment Analysis (EA) Workflow tool (Thomson Reuters, New York,
NY, USA) to analyze the experimental data in terms of their enrichment by the various ontologies in
MetaCore™, including ontologies and GO ontologies: Pathway Maps, process networks, Diseases,
metabolic networks, toxicity networks, and GO processes. The EA method involves mapping the
selected experiments onto MetaCore™ ontologies in terms of their respective sets of genes or network
objects, which are then sorted according to their p-values. We used the Compare Experiments Workflow
tool (GeneGO, Inc., Encinitas, CA, USA) to compare the experimental data for the four time points
post-TBI by analyzing their intersections in terms of their mapping onto the MetaCore™ ontologies.
The Experiment Intersections method involves mapping the intersections of the selected experiments,
which identifies the sets of genes common to all selected experiments, similar to some of them, or
unique to a given experiment. We collated all of these sets of genes for further analysis and discussion.
MetaCore™ is user-friendly, and various manuals and training materials can be download from public
websites [45,46]. However, due to copyright concerns, we have not copied the material here. We
used Cytoscape Web [47] to display the networks of critical biomarkers. Nodes and edges in the
network represent genes and expression correlations between two genes, respectively. We used the
ForceDirected approach as the default layout. Users can change the network display settings by altering
parameter settings for nodes, edges, and layout. The GO database holds both the ontologies and
the annotations in a single database and allows queries of the annotations and enrichment analyses
using the ontologies [48]. DAVID, KEGG, and NOA (A cytoscape plugin for network ontology
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analysis; Available online: http://apps.cytoscape.org/apps/noa) are easy-to-use web servers with
user-friendly interfaces.

4. Conclusions

In conclusion, we used a publicly available high-throughput microarray to construct networks
for four time points post-TBI. The powerful functional pathway analysis then extended the relevance
of our research to a wider field. This work can help scientists and medical researchers reveal the
underlying hidden mechanisms of TBI and improve biological models for TBI. However, the number
of samples in this study was small. In future, we will include more data samples from humans and
model organisms to develop a more precise and accurate model. In addition, we will integrate the
GRN and PPI models to facilitate deeper interpretation of the regulatory and interaction mechanisms.
This work can offer clues and information for developing novel biological models and strategies for
target therapy to advance recovery processes.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/17/
2/216/s1.
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