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The laboratory rat is widely used as a model for human diseases. Many of these diseases
involve monocytes and tissue macrophages in different states of activation. Whilst
methods for in vitro differentiation of mouse macrophages from embryonic stem cells
(ESC) and bone marrow (BM) are well established, these are lacking for the rat. The gene
expression profiles of rat macrophages have also not been characterised to the same
extent as mouse. We have established the methodology for production of rat ESC-derived
macrophages and compared their gene expression profiles to macrophages obtained
from the lung and peritoneal cavity and those differentiated from BM and blood
monocytes. We determined the gene signature of Kupffer cells in the liver using rats
deficient in macrophage colony stimulating factor receptor (CSF1R). We also examined
the response of BM-derived macrophages to lipopolysaccharide (LPS). The results
indicate that many, but not all, tissue-specific adaptations observed in mice are
conserved in the rat. Importantly, we show that unlike mice, rat macrophages express
the CSF1R ligand, colony stimulating factor 1 (CSF1).

Keywords: macrophage, colony-stimulating factor 1 receptor, rat, Kupffer cell, lipopolysaccharide
INTRODUCTION

The importance of the laboratory rat as a model for many human diseases, including cardiovascular,
neurological, cancer, diabetes, respiratory and inflammatory disease has been widely-recognised
[reviewed in (1, 2)]. The availability of whole genome sequences of multiple rat strains with well-
characterised genetic disease susceptibility revealed evidence of selective sweeps associated with
breeding for the trait, in many cases overlapping human disease susceptibility loci (3). Many of these
diseases involve cells of the mononuclear phagocyte system (monocytes, tissue macrophages) in
different states of activation as effectors. The underlying genetic susceptibility to disease has
therefore been associated with differences in regulation or function of macrophage-expressed
genes. For example, Maratou et al. (4) identified candidate genes underlying the differential
sensitivity of rat strains to nephrotoxic glomerulonephritis by comparing the transcriptomes of
their isolated macrophages, with and without stimulation with lipopolysaccharide (LPS).

Despite the extensive use of the rat as an experimental model, the gene expression profiles of rat
macrophages have not been characterised to the same extent as mouse. Macrophages are a
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significant cellular component of all major organs and adapt in
each site to perform specific functions. In mice, tissue-specific
macrophage adaptation is associated with unique transcriptional
profiles and expression of specific markers (5). Local adaptation
is, in turn, driven by unique transcription factors; Sall1 in
microglia, Gata6 in the peritoneum, Nr1h3 in the marginal
zone of spleen and in liver, Spic in the splenic red pulp, Pparg
in alveolar macrophages, Ahr in Langerhans cells and Batf3 in
classical dendritic cells (6) (7–13).

Macrophage proliferation and differentiation is controlled by
signals from the macrophage colony-stimulating factor receptor
(CSF1R) in response to two alternative ligands, macrophage
colony-stimulating factor (CSF1) or interleukin 34 (IL34).
Macrophages generated in vitro from either monocytes, or
bone marrow (BM) progenitors, by cultivation in CSF1, have
been widely-used as models for the study of macrophage biology
in multiple species (14–20). Monocyte-derived macrophages
have not commonly been studied in mice, but can be accessed
more readily in rats. Macrophages can also be generated from
mouse embryonic stem cells (ESC), or induced pluripotent cells,
through the intermediate of embryoid bodies, providing an
avenue to analysis of macrophage-specific gene function
without the necessity of producing live animals (21–25). The
generation of ESC in rats was more challenging but is now
routine and we and others have generated knockouts in rat ESC
by homologous recombination [reviewed in (26)]. Accordingly,
the same approaches to functional genome annotation through
the use of ESC-derived macrophages are potentially available
in rats.

We have used rat ESC to generate a knockout of the Csf1r
locus. Whereas Csf1r-deficient mice have a severe phenotype,
with few animals surviving to weaning, the rat knockout is viable
as an adult and lacks many of the pleiotropic phenotypes seen in
mice (27). The skeletal phenotype of Csf1r-/- rats closely
resembled homozygous recessive mutations in CSF1R in
humans [reviewed in (28)]. A natural mutation in the Csf1
locus in rats (tl/tl) also has a distinct phenotype to the CSF1-
deficient op/op mouse (29). To dissect species-specific
differences and to set the scene for more extensive use of the
rat model, we decided to establish the methodology for
production of rat ESC-derived macrophages and to compare
their gene expression profiles to BM and monocyte-derived cells,
and to various tissue macrophage populations. The results
indicate that many, but not all, tissue-specific adaptations
observed in mice are conserved in the rat.
MATERIALS AND METHODS

Animals
Male Dark Agouti rats (8–10 weeks) were purchased from
Charles River Laboratories (UK). Csf1r deficient rats and
littermate controls were described previously (27). Approval
was obtained from The Roslin Institute’s and The University of
Edinburgh’s Protocols and Ethics Committees. The experiments
were carried out under the authority of a UK Home Office
Frontiers in Immunology | www.frontiersin.org 2
Project Licence under the regulations of the Animals (Scientific
Procedures) Act 1986. Animals were euthanized with rising
concentrations of carbon dioxide.

Alveolar and Peritoneal Macrophage
Isolation
Alveolar (AM) and peritoneal macrophages (PM) were isolated
as previously described for mice (30) and cultured in DMEM
containing 104 U/mL (100 ng/mL) recombinant human CSF1
(rhCSF1, a gift from Chiron, Emeryville, CA) as per (31).
Following isolation, PM were allowed to adhere to non-tissue
culture treated plastic (Sterilin) for 2 h before removal of non-
adherent cells. Both AM and PM were then cultured overnight
(37°C, 5% CO2) in rhCSF1 for further removal of non-adherent
cells prior to flow cytometry analysis, RNA isolation and
phagocytosis assays.

Bone Marrow and Monocyte Derived
Macrophages
Bone marrow cells were isolated from femurs as described (30)
and cultured in DMEM containing rhCSF1 at a density of 2 × 105

cells/cm2 on Sterilin plates. For isolation of peripheral blood
mononuclear cells (PBMC), blood was collected into EDTA
vacutainers (3S Health Care) via cardiac puncture. Blood was
diluted 1:2 with PBS, layered on an equal volume of lymphoprep
(Axis Shield) and centrifuged for 15 min, 1200 × g at RT with no
brake. The PBMC layer was removed and topped up to 50 mL
with media. After centrifugation at 400 X g for 5 min the pellet
was resuspended in RBC Lysis buffer (BioLegend) according to
instructions. After another wash step cells were resuspended in
media containing rhCSF1 and seeded at a density of 1 × 105 cells/
cm2 on Sterilin plates. Fresh media was added on day 4 and cells
used for flow cytometry analysis, RNA isolation and
phagocytosis assays on day 7.

Embryonic Stem Cell Culture
Embryonic stem cells (ESC) from Dark Agouti rats were derived
as described in (32) and were obtained from Tom Burdon, The
Roslin Institute, University of Edinburgh, UK. ESC were cultured
on gamma-irradiated (5Gy) DR4 mouse embryonic feeder cells
(Cambridge Stem Cell Institute, UK) in 2i media containing 103

U/mL ESGRO Leukemia Inhibitory Factor (Millipore) as
described in (32). DR4 cells were cultured on tissue culture
plastic coated with 0.1% gelatin and inhibitors were custom-
synthesized by the Division of Signal Transduction Therapy,
University of Dundee, UK. Colonies were passaged every 2 days
using TVP (0.025% trypsin, 1% chicken serum and 1 mM
EDTA) and plated at a density of 5.5 x 104 cells/cm2.

Differentiation of Embryonic Stem Cells
One confluent well of a 6-well plate was used for differentiation
of ESC into macrophages. On day 0 cells were passaged with
TVP and placed in 5 wells of a 25-well plate (Sterilin) in 2i media.
On day 2 the media was replaced with feeder media for embryoid
body (EB) formation; GMEM containing 10% FCS (GE
Healthcare), 2 mM GlutaMAX, 1 mM sodium pyruvate, 1X
February 2021 | Volume 11 | Article 594594
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MEM-NEAA, and 0.1 mM 2-ME (Invitrogen). Media was
replaced by transferring the cells to a 15 mL tube and allowing
them to settle for 15 min at RT before aspirating spent media. EB
were transferred to 9 cm petri dishes (Sterlin) on Day 7 in feeder
media containing 5x103 U/mL rhCSF1 and 10 ng/mL rat IL3b
(Peprotech). Media was replaced or topped up every other day
until day 18 (or when the first macrophages were observed to
adhere to the petri dish). At this point the media was replaced
and contained only rhCSF1 (104 U/mL). The media was replaced
regularly to remove debris. Macrophages were cultured for a
further 7 days in rhCSF1 prior to flow cytometry analysis, RNA
isolation and phagocytosis assays.

RNA Isolation and Microarray
RNA was isolated using TRIzol (Life Technologies) according to
instructions except 10% more chloroform was used during phase
separation. Genomic DNA was removed with RNase-Free DNase
followed by purification using RNeasy MinElute Cleanup Kit
(QIAGEN, both according to instructions). RNA integrity and
quality were assessed using the RNA ScreenTape Kit on the
Agilent 2200 TapeStation. Samples with a RNA integrity
number greater than 7 were used for microarray. Microarray
was performed by Edinburgh Genomics (Edinburgh, UK) using
Affymetrix Rat Gene 2.1 ST Array plates, and Expression Console
1.4.1.46 was used for quality control following amplification.

Flow Cytometry Analysis of CD68
Expression
CD68 expression was used to assess the purity of cell populations
prior to array analysis. Cells were harvested using a cell scraper
and washed with PBS containing 1% bovine serum albumin
(BSA). Cells were permeabilised using Leucoperm (AbD Serotec)
according to instructions and incubated with mouse anti-rat
CD68 (AbD Serotec, clone ED1, 1:200) followed by goat anti-
mouse IgG APC (BioLegend, 1:400) and analysed on a
FACSCalibur (BD). Data was analysed using FlowJo (Tree
Star). Quadrants were set using the mouse IgG1 isotype
control (AbD Serotec, clone F8-11-13).

Phagocytosis Assays
Phagocytosis assays were performed as described (14) using
Zymosan A BioParticles labelled with fluorescein (Invitrogen).
Following fixation, cells were mounted with coverslips using
ProLong Gold antifade reagent containing DAPI (Invitrogen).

Microscopy
Cells were imaged using a LSM710 confocal microscope (Zeiss)
or an Axiovert inverted microscope (Zeiss).

Microarray Analysis – Rat Macrophage
Gene Expression
The Affymetrix Transcriptome Analysis Console was used for
hierarchical clustering and pairwise comparisons (Figures 3A,
B). The arrays were then Robust Multi-array Average (RMA)
normalised in R version 3.6.1. Graphia was used to generate
gene-centred networks with a Pearson correlation of R = 0.85.
Nodes where the maximum expression was <20 were removed.
Frontiers in Immunology | www.frontiersin.org 3
MCL clustering was used with an inflation value of 1.8 (Figure
4). Data was obtained from three adult wild-type rats on a DA
background (AM, PM, MDM, and BMDM) and included two
technical replicates per rat for BMDM. For ESDM, three
technical replicates from the same ESC clone were used. Four
array replicates were also included (BMDM, ESDM, PM,
and MDM).

Gene Set Enrichment Analysis
The enrichment of Molecular Signature (MSIG) database Gene
Ontology sets, including BP, CC and MF (MSIG collection 5) in
each macrophage population compared to the other 4
populations combined was analysed using Gene Set
Enrichment Analysis (GSEA, Broad Institute) with phenotype
permutation and default settings. For comparative analysis of rat
and mouse macrophage signatures, we used GSEA to analyse the
enrichment of 12 mouse macrophage signatures identified from
cluster analysis of 466 RNA Sequencing datasets (cluster 7-
microglia, 10-lung, 12-Kupffer cells, 13-CCR7+ DC, 15-
monocytes, 21-peritoneum, 22-Lyve1+, 28-DC, 38-Intestinal
macrophages, 43-Langerhans cells, 49-cDC1s, 3-mononuclear
phagocytes) (5)in each rat macrophage population compared
to all others.

Microarray Analysis – Rat Kupffer Cell
Gene Expression
The arrays were RMA normalised in R version 3.6.1. Using a
Pearson correlation threshold cut-off of R = 0.85, nodes where
the maximum expression was <10 and covariate of expression
was <0.2 were removed. MCL clustering was used with an
inflation value of 1.4. Data was obtained from wild-type,
Csf1r+/- and Csf1r-/- rats (n = 4 per genotype).

Microarray Analysis – LPS Time Course
The arrays were RMA normalised in R version 3.6.1. Using a
Pearson correlation threshold cut-off of R = 0.85, nodes where
the maximum expression was <100 were removed. MCL
clustering was used with an inflation value of 1.8. Data was
obtained from 3 adult wild-type rats on a DA background and
included 2 technical replicates per rat. One array replicate was
also included for 0 h LPS.

Data Availability Statement
The full dataset has been uploaded to NCBI GEO (Accession
Number GSE156188).
RESULTS

Isolation, Generation and Characterisation
of Rat Macrophage Populations In Vitro
The protocol for differentiating mouse ESC into macrophages has
been well established (21, 33–35) but has not previously been
applied to the rat. In brief, mouse embryoid bodies (EB) are
plated on tissue culture (TC) grade plastic in the presence of both
IL3 and CSF1. Macrophage progenitors are collected from the
February 2021 | Volume 11 | Article 594594
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supernatant and plated on non-TC plastic in CSF1 alone.
Embryonic stem cell-derived macrophages (ESDM) are then
collected a week later (33). When this method was used for rat
ESC no macrophages were produced (not shown). We therefore
modified the protocol as follows. Rat ESC were grown on feeder
layers in 2i media. When confluent (Figure 1A, day 0), cells were
passaged and cultured in 2i media on non-TC plastic for the
formation of EB and media was replaced on day 2 to remove LIF
and the two inhibitors. Once EBs had formed (Figure 1A, day 7),
IL3 and CSF1 were added to the culture media. When the first
macrophages were observed to adhere to the non-TC culture dish
(approximately day 18), the medium was replaced to contain CSF1
alone. Rat ESDM were then collected for analysis 7 days later
(Figure 1A, day 25). The EB were cultured continuously in CSF1
and ESDM harvested as required, with cultures producing cells for
at least 3 weeks. Rat ESDM were identified by their adherence to
non-TC plastic, their characteristic morphology and their ability to
phagocytose fluorescently-labelled Zymosan particles (Figure 1B).
The monoclonal antibody ED1 recognises CD68 and is commonly
used to identify rat macrophages (27, 36). We used flow cytometry
to assess the purity of the ESDM prior to microarray analysis. Cells
were routinely >95% CD68+ (Figure 1C).
Frontiers in Immunology | www.frontiersin.org 4
To compare ESDM to more widely-studied populations and to
assess tissue-specific adaptation, rat alveolar (AM), peritoneal (PM),
BM-derived (BMDM) and monocyte-derived (MDM)
macrophages were isolated and cultured as outlined in the
Materials and Methods (Figure 2A). Because of the low yield of
monocytes from mouse blood, the generation of MDM in mouse is
not straightforward. By contrast, an average of 1.7 x 106 peripheral
blood mononuclear cells (PBMC) were isolated per mL of rat blood.
To increase the purity of AM and PM ex vivo, cells were cultured
overnight on non-tissue culture plastic to remove non-adherent (i.e.
non-macrophage) cells. AM and PM were cultured in CSF1 to
mitigate potential loss of viability as mouse macrophages require
CSF1 for survival (37). The purity of populations was confirmed by
flow cytometry staining for CD68 (Figure 2B). Phagocytic activity
was confirmed by assaying the uptake of fluorescently labelled
Zymosan particles (Figures 2C, D).

Pairwise Comparison of Rat Macrophages
To identify the similarities and differences among the primary
and culture-derived macrophage populations we performed
microarray analysis. A pairwise comparison was performed in
the Affymetrix Transcriptome Analysis Console and Figure 3A
A B

C

FIGURE 1 | Generation and characterisation of rat embryonic stem cell derived macrophages. (A) Schematic diagram of rat embryonic stem cell (ESC)-derived macrophage
differentiation. Confluent rat ESC are shown at day 0 (Clone DA5.2), embryoid bodies at day 7, and ESC-derived macrophages (ESDM) at day 25. Bars = 50, 100, and 50
µm, respectively. Images are representative of three repeat experiments, two replicates. (B) ESDM were cultured with or without (control) fluorescein labelled Zymosan A
BioParticles. Images are representative of three repeat experiments, two replicates. Blue = nuclear DAPI staining. Bars = 10 µm. (C) Flow cytometry of permeabilized cells was
used to assess purity of ESDM via CD68 expression. Quadrants were set using an isotype control. Dot plot is representative of three repeat experiments, two replicates.
February 2021 | Volume 11 | Article 594594
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shows hierarchical clustering of the top 5000 differentially
expressed genes (DEGs). In our previous study, pig BMDM
and MDM were largely indistinguishable (17). Consistent with
this, rat BMDM and MDM were more similar to each other than
to any of the other populations. Comparing their expression
profiles using the Affymetrix Expression Console identified there
were only 920 differentially expressed genes (Figure 3B). The
complete gene lists and principle component analysis (PCA) plot
are located in Table S1 and Figure S1a, respectively. Alveolar
macrophages are quite phenotypically different from other
mouse tissue macrophage populations as they are dependent
on GM-CSF, rather than CSF1 for survival (38). Indeed, rat AM
clustered on their own compared to the other macrophage
populations (Figure 3A).

We next identified gene ontologies that were enriched in each
macrophage population compared to all the others using gene set
enrichment analysis (GSEA) (Figure 3C). AM were significantly
enriched for genes involved in fatty acid metabolism, consistent
with their role in lung surfactant protein metabolism (39).
Frontiers in Immunology | www.frontiersin.org 5
PM DEG were enriched for cytokine, chemokine and immune
receptor activity, perhaps reflecting their critical roles in
peritoneal defence. BMDM were significantly enriched for cell
cycle-related genes, indicating a higher level of ongoing
proliferation compared to MDM and ESDM. The ESDM
showed enrichment for developmental pathways such as
anterior-posterior axis specification but we cannot eliminate
some contamination with embryoid body derived material.

Proliferation and CSF1 Signalling in
Isolated Macrophages
All of the isolated macrophages expressed abundant Csf1r
mRNA. Proliferating mammalian cells induce a suite of genes
required to transit of S phase and mitosis (40). Although the
levels were highest in BMDM, each of the macrophage
populations expressed detectable Mki67 and Pcna (which
encode widely-used proliferation-associated nuclear proteins),
cell cycle transcription regulators (Foxm1, E2f), cyclins and many
other annotated cell cycle genes, indicating active proliferation in
A B

C

D

FIGURE 2 | Adult rat macrophage populations. (A) Macrophages were isolated from adult male Dark Agouti rats. Images are representative of cells isolated from 10
rats. Bars = 20 µm (AM) or 50 µm (BMDM, MDM, and PM). (B) Permeabilized macrophages were analysed by flow cytometry to assess purity via CD68 expression.
Quadrants were set with isotype controls. Dot plots are representative of cells isolated from three rats. (C) Alveolar macrophages were cultured with or without
(control) fluorescein labelled Zymosan A BioParticles and imaged with a Zeiss AxioVert. Images are representative of cells isolated from three rats. Bar = 50 µm.
(D) Macrophages were cultured with or without (control) fluorescein labelled Zymosan A BioParticles and imaged with a Zeiss LSM 710 confocal. Images are
representative of cells isolated from three rats. Bar = 10 µm. AM = alveolar macrophages, BMDM = bone marrow derived macrophages, MDM = monocyte derived
macrophages, PM, peritoneal macrophages.
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the presence of exogenous CSF1. Each population expressed
similar levels of direct CSF1 target genes, the transcription factor
Ets2, members of the Jun family and urokinase plasminogen
activator (Plau) (41–43). Unlike mouse BMDM, which undergo
apoptosis when exogenous CSF1 is removed (37); rat BMDM
once differentiated do not require exogenous CSF1 for survival
(not shown). Consistent with the existence of a basal autocrine
loop, each of the macrophage populations (with the exception of
AM) expressed abundant Csf1 mRNA (Figure 4A).

Macrophage-Specific Genes in the Rat
Antibodies against SIRPa (CD172a), CD11b/c, CD4, SPN
(CD43), and intracellular CD68 are used to identify rat
monocytes and macrophages via flow cytometry (27, 45). An
AF647 conjugated CSF1-Fc fusion protein can also be used to
identify CSF1R expressing cells in rats (27). We first analysed the
expression of these markers in our macrophage populations.
Table S2 includes the RMA-normalised data. Cd68 and Sirpa
were highly expressed in all rat macrophages (Figure 4B). In
mice, CD4 is commonly used to identify a subset of T cells. With
the exception of subsets of macrophages in the wall of the gut
(46), CD4 is not detected in mouse macrophages. In rats, the
Frontiers in Immunology | www.frontiersin.org 6
anti-CD4 antibody (W3/25 antigen) also detects peritoneal
macrophages (47) and we have previously shown that CD4 is
expressed by rat monocytes (27). In the isolated rat macrophages,
Cd4 was highly-expressed by BMDM, MDM and PM but just
detectable in AM and ESDM. As in mice (5), Itgam (Cd11b)
expression was highest in PM. Itgax (Cd11c) is still widely
considered a dendritic cell (DC) marker in mice, despite clear
expression by many tissue macrophage populations [reviewed in
(48)]. Itgax is not expressed by mouse BMDM (Biogps.org),
whereas in rats it was abundant in all the macrophage
populations, and highest in AM, BMDM and MDM. The E-
selectin ligand sialophorin (SPN) (CD43) is highly expressed on
the non-classical monocyte population in blood and BM
(equivalent to Ly6Clo in mice) (45). The differentiation of these
cells is dependent upon CSF1R signalling (28). Spn mRNA was
highly-expressed in MDM and BMDM but much lower in PM
and almost absent in AM (Figure 4B).

We also looked at expression of genes which encode surface
markers commonly used to define and separate (sub)populations
of mouse macrophages (5, 49) (as above). We recently
characterised a monoclonal antibody against pig ADGRE1 (F4/80)
and found that the antigen was highly-expressed by pig AM (50).
A C

B

FIGURE 3 | Comparison of rat macrophage gene expression in vitro. Microarray analysis was performed on in vitro cultured rat macrophages. (A) Hierarchical
clustering of the top 5,000 differentially expressed genes sorted by false discovery rate (FDR; <0.009418). Three biological replicates were used for alveolar (AM),
bone marrow-derived (BMDM), monocyte-derived (MDM) and peritoneal macrophages (PM), including technical replicates. Technical replicates were used ESC-
derived macrophages (ESDM) obtained from a single ESC clone (DA5.2). (B) Graph shows the numbers of differential expressed genes for each of the rat
macrophages. (C) Gene ontology-based gene sets that were enriched in each macrophage population compared to all the others were identified using Gene Set
Enrichment Analysis.
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FIGURE 4 | Continued
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FIGURE 4 | Expression of rat macrophage genes. Microarray analysis was performed on in vitro cultured rat macrophages. Data were RMA-normalised and
expression levels (antilog2) examined. (A) Expression of Csf1 in rat macrophages. (B) Expression of macrophage-specific genes encoding commonly-used surface
markers including those for which there are no anti-rat antibodies. Graphs (A, B) show average + SEM. (C) The network graph generated by Graphia analysis in
which genes are coloured by clusters of co-expression. Histograms show expression profiles of clusters that contained genes specific to each macrophage
population. The genes listed encode cell surface proteins. AM = alveolar macrophages, BMDM = bone marrow derived macrophages, MDM = monocyte derived
macrophages, PM = peritoneal macrophages, ESDM = embryonic stem cell derived macrophages. (D) Global enrichment of mouse macrophage AM and PM
signature gene sets (5) in rat AM and PM identified by Gene Set Enrichment Analysis. Rat expression data are ranked according to differential expression in AM or
PM compared to all other macrophage populations (indicated by red-blue bars), and the murine AM or PM genesets are mapped onto this profile (black bars) to
determine enrichment score (green lines). NES = Normalised Enrichment Score. (E, F) The differentially expressed genes identified by Lavin and colleagues (44) were
clustered using Graphia. The graphs show expression of genes identified in the mouse alveolar (AM) and peritoneal (PM) macrophage clusters. The genes
represented by open bars were common to both mouse and rat AM clusters. Rat genes denoted with an asterisk (*) have provisional or model RefSeq status on the
Rat Genome Database (rgd.mcw.edu). Graphs show mean + SEM.
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Adgre1 is part of a family of five related genes, encoding
adhesion G protein coupled receptors, which are divergent
across species in sequence and copy number (50). Like mice,
rats have only 3 members of the family (Adgre1, 4, and 5),
whereas humans and other large animals have an additional
2 members (ADGRE2 and 3) which are also expressed in
myeloid cells. Adgre1 mRNA was most abundant in rat BMDM
and ESDM, (Figure 4B). As in mice (6) there was almost
no expression in AM. CD64 (encoded by Fcgr1) and the
apoptotic cell receptor MERTK were proposed as markers to
distinguish macrophages from DC in various mouse tissues
(51, 52). Fcgr1a was highly-expressed by all the isolated rat
macrophages, but somewhat lower in AM (Figure 4B).

To identify genes specific to individual macrophage
populations, we clustered the array data using the network
analysis tool Graphia (53). The gene-centred network
generated by Graphia is based upon the Pearson correlation
co-efficient between individual genes and requires no supervision
other than the setting of a threshold R value. This is chosen at the
inflexion point to maximise the number of nodes (genes)
included in the network graph whilst minimising the number
of edges (correlations). There were five clusters of genes in which
the expression was clearly higher in one macrophage population
compared to the others (Figure 4C). The list of genes associated
with each cluster is within Table S2 and Figure 4C shows the
mean expression histograms for each cluster. We have listed a
few genes encoding cell surface molecules that are specific for
each macrophage population that may be useful for monoclonal
antibody production in the future (Figure 4C).

For comparative analysis of rat and mouse macrophage
signatures, we first analysed the enrichment of 12 mouse
macrophage signatures identified from cluster analysis of 466
RNA Sequencing datasets, including microglia, lung, Kupffer
cells, CCR7+ DC, monocytes, peritoneum, Lyve1+ macrophages,
DC, intestinal macrophages, Langerhans cells, cDC1s, and a
cluster common to all mononuclear phagocytes (5), in each rat
macrophage population compared to all the others using Gene
Set Enrichment Analysis. The mouse AM and PM signatures
showed significant enrichment in the rat AM and PM
populations, respectively (Figure 4D), whereas no significant
enrichment was observed for rat ESDM, BMDM, or MDM. This
indicates similarity between rat and mouse AM and PM
populations at a global level. However, it was also apparent
from this analysis that many mouse macrophage signature genes
Frontiers in Immunology | www.frontiersin.org 8
were more highly expressed in other macrophage populations
than in the ‘signature population’ (Figure 4D).

We then examined individual genes by comparing expression
between mouse AM and PM signatures identified by Lavin and
colleagues (44) with our rat data. The differentially expressed
genes they identified between mouse monocytes, microglia, and
macrophages isolated from the liver, spleen, lung, peritoneal
cavity and intestine were clustered in Graphia to obtain unique
gene lists for each cell type (Figure S2 and Table S3). The
majority of genes identified as AM specific by Lavin et al. data
were not RefSeq validated in the rat (Figure S3). There were 10
genes common to both mouse and rat AM clusters (Abcg1,
Abhd5, Cd2, Iqsec1, Mcoln3, Net1, Ptpn12, Scga1a1, Sec14l2 and
Slc39a2) (open bars in Figure 4E). Of these genes, Ptpn12 had
the highest expression and was the only RefSeq validated gene in
this group. Figure 4E shows expression of the common and
validated genes. Only 5 of 22 genes identified in mouse AM
showed expression in rats. These differences could arise from the
isolation method. Lavin et al. digested the lungs to isolate AM,
whereas in the rats the lungs were lavaged. Siglecf is commonly
used as an AM marker in mice in flow cytometry analysis (54).
The ortholog is Siglec5 in rats which only has a provisional
RefSeq status. In our data, Siglec5 was most highly expressed in
ESDM (Table S2). A higher percentage of mouse PM genes were
expressed in the rat. Figure 4F shows the 11 genes that were
common to both mouse and rat PM clusters (F5, Flnb, Gata6,
Itga6, Ltbp1, Ntng2, Prg4, Ptgis, Selp, Serpinb2, and Tgfb2). It is
worth noting the inclusion of Gata6 in the rat PM cluster, as this
gene has been previously shown to be down-regulated in the
presence of CSF1 in mice (55). Ten of 12 RefSeq validated genes
identified in mouse PM showed expression in rats.

Inferred Gene Expression Profile of Rat
Kupffer Cells
The resident macrophages of the liver (Kupffer cells, KC) are
amongst the largest populations of macrophages in the body.
There are several published methods for the isolation of rat KC,
generally involving enzymatic perfusion of the liver (56–60). We
previously inferred the gene expression profile of neonatal rat KC
based upon the set of genes that was induced in the liver by
treatment with CSF1 (19). The recent development and
characterisation Csf1r-deficient rats permitted the analysis of brain
(microglia) and spleen-specific macrophage gene expression profiles
based upon the identification of transcripts that were selectively lost
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in the whole tissue gene expression profiles (27). To assess the gene
expression profiles of adult rat KC in situ we analysed whole liver
microarray data from Csf1r+/+, Csf1r+/-, and Csf1r-/- rats using
Graphia (53). Csf1r-/- rats exhibit a reduction in CD68+ KC by
immunohistochemical staining and are also monocyte deficient
(27). The complete gene lists and principle component analysis
(PCA) plot are located in Table S4 and Figure S1B, respectively.
Using a Pearson correlation threshold cut-off of R = 0.85 we
identified a cluster of genes which included Csf1r (cluster 4,
Figure 5). These genes were expressed in wild type and Csf1r+/-

rats, but substantially reduced inCsf1r-deficient rats (Table S4). The
set of CSF1R-dependent genes reduced in the homozygotes includes
Cd163 (commonly used in KC isolation in rats), Cd4, Cd68, Adgre1,
and Aif1 (encoding the marker IBA1) and the extent of the
reduction is consistent with the relative loss of KC observed in
Csf1r-/- rats by immunohistochemistry (27). This list also includes
KC-specific genes identified in mouse and/or human, notably Clec4f
and P2ry13 (44, 61). However, the large majority of putative KC-
specific transcripts identified by profiling isolated KC in mice (44)
and humans (61) were not Csf1r-dependent in rat liver. Some, such
asMarco and Timd4, were barely detected in total rat liver mRNA.
Others such asMertk andMrc1, were expressed but not significantly
reduced in the Csf1r-deficient rats (Table S4). Three of the rats in
each group were female. We also identified two clusters that
appeared sex-specific and affected by Csf1r mutation (Figure 5).
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cluster 3 includes genes encoding the transcription factors Cux2 and
Tsx and target genes (Ascl1, Lifr, Prlr) that were down-regulated in
the female Csf1r-/- livers. cluster 7 contained male-specific genes
such as Bcl6 and targets Cyp2c11, Sult1e1 and Hsd3b5 that were
highly up-regulated compared to the female samples. These
differences are likely related to impaired gonad development and
infertility in these rats (27).

For comparative analysis of rat and mouse KC signatures, we
compared genes in our rat cluster to data obtained from Lavin
and colleagues (44) as described above for AM and PM. There
were only 3 genes shared between the two datasets, Clec4f, Folr2,
and Vsig4 (open bars Figure 5B). Again, the vast majority of
genes identified as KC specific in Lavin’s data were not RefSeq
validated in the rat (Figure S5). Of the 45 KC genes in the mouse,
39 of these showed no difference in expression between wild-type
and Csf1r-/- rat livers, suggesting they are not rat KC markers
(Figure 5B and Figure S5). Six genes were statistically different
between the genotypes, however, their expression increased with
a loss of Csf1r-dependent macrophages in rat liver.

Transcriptional Response to LPS in
Rat BMDM
Lipopolysaccharide (LPS) molecules are endotoxins that are
found in the outer wall of gram-negative bacteria and have
been widely used in mouse models of inflammation, both
A

B

FIGURE 5 | Inferred gene expression profile of rat Kupffer cells. (A) Microarray analysis was performed on adult livers obtained from wild type, Csf1r+/- and Csf1r-/-

rats (n = 4 per genotype). Data were RMA-normalised and analysed using Graphia. (A) The network graph generated by the Graphia analysis. Genes are coloured
by clusters of co-expression. Expression profiles of clusters that contained genes specific to Kupffer cells (cluster 4), females (cluster 3) and males (cluster 7) are
shown. (B) The differentially expressed genes identified by Lavin and colleagues (44) were clustered using Graphia. The graphs show expression of genes identified
in the mouse Kupffer cell (KC) cluster. The genes represented by open bars or within the dotted line were common to both mouse and rat KC clusters. Rat genes
denoted with an asterisk (*) have provisional or model RefSeq status on the Rat Genome Database (rgd.mcw.edu). Graphs show mean + SEM. p = 0.0007
(*** Clec4f), 0.0414 (* Folr2), 0.0024 (** Vsig4), 0.0209 (* Apoa1), and 0.0091 (** Apoc1) via an unpaired t-test.
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in vitro and in vivo [reviewed in (62)]. Binding of endotoxins to
pattern recognition receptors such as toll-like receptor 4 (TLR4)
results in the induction of genes required by macrophages to
elicit an effective defence against pathogens. Several studies have
compared the transcriptomic response of BMDM or MDM to
LPS in humans, small and large ruminants, horses, pigs, rats and
mice (20, 63–65). The rat data in that study was based on a single
time point (7 h) but the response to LPS is a sequential cascade of
transient gene expression (20, 63). To more accurately capture
that profile, we cultured rat BMDM in LPS for 0, 2, 7, and 24 h.
Microarray data was obtained from 3 rats and included technical
replicates. Using Graphia (53) and a Pearson correlation
threshold cut-off of R = 0.85 we identified five main gene
clusters (Figure 6). Consistent with analysis in other species,
two of these clusters (3 and 4) had an average profile that
presented transient induction, peaking at 2 and 7 h,
respectively. The complete gene lists and principle component
analysis (PCA) plot are located in Table S5 and Figure S1C,
respectively and are discussed below.
DISCUSSION

The resident macrophages in every tissue adapt to the local
environment to perform specific functions (66). The large
majority of the current knowledge of macrophage differentiation
and homeostasis is derived from studies of mice. However, there is
increasing recognition that the insights derived from a single inbred
mouse strain may not be generalisable to other mammalian species
(67, 68).We have invested in the rat as an alternative model (19, 27,
45). Analysis of Csf1r-/- rats revealed major differences compared to
the equivalent mouse mutation, which may be related to the
Frontiers in Immunology | www.frontiersin.org 10
fundamental difference in macrophage expression of the growth
factor gene, Csf1, confirmed here. In this study we have expanded
the set of tools and macrophage expression data available for the
rat. We have generated and characterised MDM and ESDM, and
extended knowledge of tissue-specific macrophage adaptation from
previous inferred expression profiles of rat microglia and splenic
macrophages (27).

Characterisation of ESDM and MDM
The original studies that generated mouse ESDM (25) recognised
their potential for studying macrophage gene function, a
potential that has been fulfilled in subsequent studies (21, 33–
35, 49) and extended to human systems (69). The generation of
pure macrophage populations from rat ESC was relatively
straightforward and enabled repeated harvesting over several
weeks. With the increasing ease of genetic manipulation in ESC
using CRISPR-Cas9 this provides a convenient system for
analysis of rat macrophage differentiation. Comparative
analysis of the expression profiles of ESDM and BMDM
revealed around 1500 differentially-expressed genes. None of
the differences was absolute and few were obviously associated
with macrophage function. For example, there was no significant
difference in expression of toll-like receptors. The transcripts
over-expressed by ESDM included Sall1, Cx3cr1, and C1qa genes
enriched in microglia, whereas BMDM expressed higher Cd4,
Cd74, and Fcgr2b. Based upon the rapid turnover and CSF1-
dependence of intestinal macrophages, human MDM grown in
CSF1 have been proposed as an in vitro model of intestinal
macrophages. Compared to monocytes, they exhibit a damped
response to stimuli such as LPS (63), with relatively lower pro-
inflammatory (IL1) and higher anti-inflammatory cytokine
production. As previously shown in the pig (17) rat MDM are
very similar to BMDM; the differentially-expressed genes were
FIGURE 6 | Transcriptional response of rat BMDM to LPS. Adult male rat bone marrow (BM) was differentiated into macrophages for 7 days in CSF1. RNA was
isolated from BM-derived macrophages (BMDM) after culture with LPS (0, 2, 7, and 24 h) and microarray analysis was performed. Data were RMA-normalised and
analysed using Graphia. The network graph generated by the Graphia analysis is shown. Genes are coloured by clusters of co-expression. Expression profiles of
clusters that contained genes specific to each time point are shown. Data was obtained from three adult wild-type rats on a DA background and included two
technical replicates per rat. One array replicate was also included for 0 h LPS.
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not obviously enriched for any receptors, secretory products
or effectors.

The Response of Rat BMDM to LPS
The LPS time course for rat BMDM is directly comparable to
data produced previously with the same cell culture conditions as
mouse, pig and human (64, 65) and more recently RNA-seq data
from a wider range of species (20). The rat BMDM resemble
mouse, and differ from human, horse and pig, in that all of the
genes required for arginine metabolism and the generation of
nitric oxide (e.g., Arg1, Ass1, Gch1, Nos2, and Slc7a2), were
induced by LPS, whereas genes involved in tryptophan
metabolism (Ido1, Kynu, Kmo) were not. They differ from
mouse BMDM in that many of the immediate early genes
(Dusp1, Egr, Fos, Ier, Jun, and Nr4a1) that are rapidly induced
by LPS in mice were expressed constitutively in rat BMDM and
not further regulated. One such gene that has been the focus of
studies in mice is Acod1, which diverts citrate from the TCA
cycle to the production of itaconate, a proposed feedback
regulator of inflammation [reviewed in (70)]. By contrast to
mouse BMDM, in which Acod1 was barely detectable and rapidly
and massively induced by LPS (71), in the rat BMDM Acod1 was
abundant in unstimulated cells and induced only 3–5 fold. The
temporal cascade of gene expression in rat BMDMwas similar to
mouse and human, in that a peak of transient gene expression at
2 h included a massive peak of expression of Tnf and key
transcriptional regulators such as Irf1. This was followed by a
second transient peak at 7 h that included transcription factors
(e.g., Stat1, Irf7) numerous interferon response genes (e.g.,
Cxcl10, Ifit1, Isg15, Mx1, and Oas1b) and the feedback
regulator Il10. A second difference between rat and mouse
BMDM is that the LPS response in the rat was more sustained,
with pro-inflammatory cytokines Il1a, Il1b, and Il6 still
maximally induced after 24 h. One explanation for the
temporal difference between rat and mouse may relate to the
difference in CSF1 expression. In mouse BMDM, CSF1 enhances
the response to LPS whilst down-regulating the response to
TLR9 agonists (72). Conversely, LPS activates a subset of genes
in mouse BMDM by blocking CSF1 signalling (73). All of these
genes (including Tlr9, Ramp2, and Itm2b) were expressed in rat
BMDM but not induced by LPS.

Alveolar and Peritoneal Macrophages
There are some overlaps, but major differences in both the
macrophage-specific gene expression in mice and rats and the
underlying transcriptional regulation. A detailed comparison of
AM, PM, splenic and brain (microglia) macrophages was
published by the ImmGen Consortium (52) and the
comparison is extended in a recent meta-analysis of mouse
macrophage RNA-seq data (5).

Comparative functional analyses of rat peritoneal and
alveolar macrophages have a long history (74–76) and
references therein). Consistent with those earlier studies, genes
encoding proteins such as dipeptidyl aminopeptidase II (Dpp7),
cathepsin D (Ctsd), and CD206 (Mrc1) were elevated >2-fold in
AM compared to PM but were also highly-expressed in the
culture-derived macrophages. Conversely, we confirmed strong
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selective expression of genes associated with fatty acid
(arachidonate) metabolism in AM, including prostaglandin
synthetic enzymes [Ptgs1 and Ptgs2, previously shown at
protein level (77)] and protein kinase C (Prkca) (78, 79).
However, other genes associated with arachidonate metabolism
had relatively low expression (Alox5, Ptgis, and Pla2g16).

We also confirm selective and very high expression of pre-
protachykinin (Ppt1) (80) and identity N-acylethanolamine-
hydrolyzing acid amidase (Naaa) as a unique rat AM marker
(81). We confirm the early report (82) that rat AM have relatively
low levels of Cd11b (Itgam) and class II MHC [RT1-Ba/b, RT1-
Db1, and RT1-DOa)]. The set of AM-enriched genes contains
several other candidate surface markers (Table S2). One with
exceptionally high expression, that is almost absent from all the
other macrophage populations, is the chemokine receptor, Cxcr1,
the receptor for Cxcl8 (IL8). Although Cxcl8 is regarded as a
neutrophil chemoattractant, when it was originally cloned in
rats, Cxcr1 mRNA was detected in rat lung and isolated
macrophages (83). Neither rats nor mice have an annotated
Cxcl8 gene; binding studies identified Cxcl6 as the ligand of this
receptor in rodents (84). The function of this receptor in rat AM
is unclear.

In mice, resident peritoneal macrophages express Gata6 (85)
and so do rat PM. Rat PM express much higher levels of class II
MHC than mouse. MHCII-expressing peritoneal macrophages
in mice depend upon the transcription factor IRF4 (86), which
was, indeed, strongly expressed in rat peritoneal macrophages.
Gata6 was inferred to be a regulator of murine peritoneal
macrophage survival, in part by regulating metabolism and
expression of key enzymes such as aspartoacylase (Aspa) (87).
However, the level of mRNA encoding this enzyme was actually
>3-fold higher in rat AM than PM.

Amongst the most strongly enriched genes in rat PM, relative to
all the other populations, were Serpine1, encoding plasminogen
activator inhibitor-1 (PAI-1) and Serpinb2, encoding PAI-2. The
selective and constitutive expression of SerpinB2 by mouse PM was
reported previously (88). Rat PM also over-express multiple other
serine protease inhibitors, Slpi, Serpinb6, Serpinb9, Serpinb10 and
Serping1, perhaps reflecting the large number of trypsin-binding
proteins observed in peritoneal macrophage lysates (74). In addition
to Gata6, the rat peritoneal macrophages selectively expressed
multiple transcription factors, at least 2-fold higher than in AM,
notably Ahr, Mitf, Tfec, Batf3, Batf2, Stat1, Creb5, Mef2c, Id1, Etv1,
and FoxP1.
The Impact of CSF1R Deletion in the
Rat Liver
The recent development and characterisation of Csf1r-/- rats
permitted the analysis of brain (microglia) and spleen-specific
macrophage gene expression profiles based upon the
identification of transcripts that were selectively lost in the whole
tissue gene expression profiles (27). In the case of microglia, the
inferred profiles closely resembled the transcriptomes of microglia
isolated from mice and humans. In the spleen, we identified a
cluster of spleen-specific transcripts associated with the complete
loss of the marginal zone macrophage populations in Csf1r-/- rats.
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Here we extended the comparative analysis to the liver, where we
previously noted a substantial loss CD68+ macrophages by
immunohistochemistry. The results are shown in Table S4.
Consistent with possible functions of local growth factors in KC
differentiation (89), genes encoding both CSF1R ligands (Csf1 and
Il34) were expressed in rat liver. Neither was affected by the Csf1r
mutation. As we observed in other tissues, the expression of Csf1r
mRNA in the heterozygous Csf1r rat livers was reduced by around
50% (i.e. there was no dosage compensation). There are substantial
sex-specific fluctuations in gene expression profiles in the livers of
rodents associated with periodic surges of growth hormone (90).
We noted a set of transcripts including genes encoding the female-
specific transcription factors Cux2 and Tsx1 and target genes (A1bg,
Ascl1, Lifr, Esr1, Prlr) that were down-regulated in the female
Csf1r-/- livers and a reciprocal set including male-specific Bcl6 and
targets Cyp2c11, Sult1e1, andHsd3b5 that were highly up-regulated.
These differences are likely related to the lack of ovarian
development and female infertility in these rats (27).

We previously inferred the gene expression of profile of neonatal
rat KC based upon the set of genes that was induced in the liver by
treatment with CSF1 but was expressed at lower levels in BMDM
(19). The coordinate loss of these transcripts is consistent with the
reduction in liver macrophages by immunohistochemistry (27). We
have subsequently demonstrated a complete lack of IBA1+

embryonic liver macrophages in Csf1r-/- rats (91), which suggests
the residual liver macrophages in these rats may be monocyte-
derived and thus differ from embryo-derived KC. There was no
apparent reduction in expression of either Msr1 (the macrophage
scavenger receptor) or Lgals3 (Galectin 3) in Csf1r-/- rat livers,
which were shown to be expressed by IBA1+ rat KC (92). Aside
from Msr1 and Lgals3, many other known macrophage-associated
transcripts were unaffected by Csf1r mutation, notably the lineage-
specific transcription factors Cebpb and Spi1, Mertk, Mrc1, Cd14,
the GM-CSF receptor (Csf2ra/Csf2rbI), Clec7a, Tlr4, Gpnmb,
and Ccr2.

By contrast, transcripts encoding Axl (related to Mertk) and its
major ligand, Gas6, were both highly-expressed in rat liver and
reduced in Csf1r deficient rats. In mice Axl is protective against
hepatoxic injury in response to LPS or CCl4 (93). Markers
expressed by other cell types, Pecam1 and Cdh5 for endothelial
cells (94), Pdgfrb (hepatic stellate cells), Alb (parenchymal cells), Gls
andCyp2e1 (centrilobular cells) were unaffected by the loss of Csf1r-
dependent macrophages. Transcription factors proposed as
regulators of KC adaptation in mice include Id3, Nr1h3, SpiC and
Nfe2 (6, 95). Of these, Id3 and Nr1h3 were expressed at high levels
but unaffected by Csf1r mutation and SpiC was barely detectable in
rat liver. The evidence favoring a role for Id3 in KC adaptation was
based in part upon conditional mutation using a Tnfrsf11a-cre
driver (6) but Tnfrsf11a (encoding receptor activator of NF-kappaB,
RANK) in mice is predominantly expressed in hepatocytes (96).
Like Id3, it was unaffected by the Csf1r mutation in rat liver.
Transcription factors that were apparently Csf1r-dependent in rats
include Nfe2, Hes6, Etv5, Creb3l1, and Tfec. The latter is
macrophage-specific in mice (97) and was also reduced in rat
Csf1r-/- spleens (27). However, the transcription factor that was
most highly-expressed and Csf1r-dependent was the estrogen
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receptor, Esr1. Estradiol administration acts directly to modulate
Kupffer cell function via Esr1 in both mice and rats (98, 99).

Overall, the data confirm that the rat shares elements of liver-
specific macrophage adaptation with mouse and human and
potentially reveal markers and transcriptional regulatory
mechanisms specific to embryo-derived macrophages. We
suggest that the residual CD68+ macrophages present in the
Csf1r-/- livers may be recently recruited monocyte-like cells that
do not acquire the adapted transcriptome of KC.
CONCLUSION

The availability of CRISPR-Cas9 technology and whole genome
sequencing is rapidly transforming the practicality of the rat as
an experimental animal that has many advantages over the
mouse. Here we have described and validated a method for the
generation of macrophages from rat ESC and provided a
macrophage transcriptomic resource to enable comparative
analyses of disease models in rats and mice.
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