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In vitro tumour spheroids have been used to study avascular tumour growth
and drug design for over 50 years. Tumour spheroids exhibit heterogeneity
within the growing population that is thought to be related to spatial and tem-
poral differences in nutrient availability. The recent development of real-time
fluorescent cell cycle imaging allows us to identify the position and cell cycle
status of individual cells within the growing spheroid, giving rise to the
notion of a four-dimensional (4D) tumour spheroid. We develop the first sto-
chastic individual-based model IBM) of a 4D tumour spheroid and show that
IBM simulation data compares well with experimental data using a primary
human melanoma cell line. The IBM provides quantitative information
about nutrient availability within the spheroid, which is important because
it is difficult to measure these data experimentally.

1. Introduction

In vitro tumour spheroids are widely adopted to study avascular tumour
growth and drug design [1-3]. Unlike simpler two-dimensional assays,
tumour spheroid experiments exhibit heterogeneity within the growing popu-
lation which is thought to be partly driven by spatial and temporal
differences in the availability of diffusible nutrients, such as oxygen [3,4]. His-
torically, tumour spheroid experiments are analysed using bright-field imaging
to measure the spheroid size [5,6], however, this does not reveal information
about the internal structure of the spheroid. Since 2008, fluorescent ubiquitina-
tion-based cell cycle indicator (FUCCI) has enabled real-time identification of
the cell cycle for individual cells within growing populations [4,7,8]. Using
FUCCI, nuclei of cells in G1 phase fluoresce red, nuclei of cells in S/G2/M
phase fluoresce green, and nuclei of cells in early S (eS) phase appear yellow
as a result of both red and green fluorescence being active [7] (figure 1a).
FUCCI provides information about spheroid size and heterogeneity of the
cell cycle status (figure 1c—¢). At early times the entire spheroid is composed
of freely cycling cells, with a relatively even distribution of FUCCI colours,
whereas at intermediate times cells in the central region becomes predomi-
nantly red, indicating Gl-arrest [4]. Late time growth is characterized by the
formation of a central necrotic region, indicated by the absence of fluorescence.
FUCCI allows us to identify both the position of individual cells in three spatial
dimensions, as well as identifying cell cycle status, leading to the notion of a
four-dimensional (4D) tumour spheroid [9]. Assuming spherical symmetry, the

© 2022 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.


http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2021.0903&domain=pdf&date_stamp=2022-04-06
mailto:matthew.simpson@qut.edu.au
https://doi.org/10.6084/m9.figshare.c.5898447
https://doi.org/10.6084/m9.figshare.c.5898447
http://orcid.org/
http://orcid.org/0000-0002-9844-6734
http://orcid.org/0000-0001-9972-927X
http://orcid.org/0000-0002-7539-3465
http://orcid.org/0000-0001-6254-313X
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

o
A ~
90,

t =0 days
r,(0) =212 um

t =3 days

(©)

(C)

(e)

r(3)=248um  r,(6)=269 um

upper cross section
equator
lower cross section

t =6 days t =10 days

r,(10) = 269 um

Figure 1. Motivation. (a) A schematic of the cell cycle, indicating the transition between different cell cycle phases, and their associated FUCCI fluorescence. Red,
yellow and green colouring indicates cells in G1, eS and S/G2/M phase, respectively. (b) Locations of the upper cross section, equator and lower cross section. (c—e)
Experimental images of a tumour spheroid using the human melanoma cell line WM793B at days 0, 3, 6 and 10 (after formation) showing. (c) Full spheroids,
viewed from above, (d) spheroid hemispheres and (e) spheroid slices, where the cross section is taken at the equator. White dashed lines in (e) denote the bound-
aries of different regions, where the outermost region is the proliferative zone, the next region inward is the G1-arrested region, and the innermost region at days 6
and 10 is the necrotic core. In (a) and (d), we use cyan colouring for dead cells, which assist in identifying the necrotic core in (d). Spheroid outer radii are labelled

alongside their corresponding time points, and scale bars represent 200 pm.

geometry of 4D spheroids can be characterized by three radii:
(@) 7o(f) > 0 is the outer radius; (ii) 7,(t) > 0 is the arrested
radius; and, (iii) r,(t) >0 is the necrotic radius, with
To(t) > ra(t) > ra(t). In figure le, we see that r,(t) =0 for
t <3, with the necrotic core forming sometime between t =3
and t = 6 days.

Continuum mathematical models of tumour spheroids
have been developed, analysed, and deployed for over 50
years [10-15], and these developments have included very
recent adaptations of classical models to study tumour spher-
oids with FUCCI [9,16,17]. Continuum modelling approaches
lack the ability to track individual cells within the growing
population, and typically neglect heterogeneity and stochas-
ticity. In comparison, individual-based models (IBMs) allow
us to study population dynamics in more detail, by keeping
track of all individuals and explicitly capturing heterogeneity
and stochasticity [18,19]. Over the last 20 years, as computing
power has increased at the same time that experimental ima-
ging resolution has improved, there has been an increasing
interest in interpreting tumour spheroid experiments using
IBMs [20-25], with some studies using these models to
focus explicitly on how the balance of cell migration and
cell proliferation impacts phenotype selection [26]. Flegg &

Nataraj [27] succinctly review mathematical modelling meth-
odologies used to interpret tumour spheroid experiments.
While several previous IBMs have the ability to track the
cell cycle within individuals [20-25], our aim is to track the
cell cycle in a relatively minimal IBM and to quantitatively
interpret this information in terms of a new set of 4D
tumour spheroid experiments.

In this work, we develop an IBM of 4D tumour spheroid
growth with FUCCI. The IBM describes how individual cells
migrate, die and progress through the cell cycle to mimic
FUCCI. Certain mechanisms in the IBM are coupled to the
local availability of a diffusible nutrient. The biological fide-
lity of the IBM is demonstrated by qualitatively comparing
simulation results with detailed experimental images at sev-
eral cross sections (figure 1b). Quantitative data from the
model are used to assess the spheroid population distri-
bution, nutrient concentration, and the role of variability in
spheroid growth. We extract and quantitatively compare
simulation radius estimates with measurements from a
series of 4D tumour spheroid experiments using a human pri-
mary melanoma cell line (figure 1). Using a careful choice of
parameter values, we show that the IBM quantitatively
replicates key features of 4D tumour spheroids.
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Figure 2. IBM schematic. (a) Nutrient-dependent rates (equations (2.1)—(2.5)). (b) Random directions for migration and mitosis are obtained by sampling the polar
angle 6, and the azimuthal angle ¢ separately. (c—e) Schematics showing agent-level events; death, mitosis and migration, across a time interval of duration 7.
(c) Any living agent may die, removing it from the simulation. (d) An agent located at x, undergoes mitosis to produce two daughter agents in G1 phase and
dispersed a distance of o/2 from x, in opposite, randomly chosen directions. (e) Any living agent can migrate in a random direction with step length L.

2. Methods

Experimental methods are described in electronic supplementary
material, §51.

2.1. Individual-based mathematical model

We simulate 4D spheroid growth inside a cubic domain, (2, of
side length L, where L is chosen to be large enough so that
agents do not reach the boundary of the domain during the
simulation, but not so large as to incur significant computational
overhead (electronic supplementary material, S4.3). Biological
cells are represented as discrete agents located at x,(f) = (x,(t),
Yut), z,(t)) for n=1, 2, 3,..., N(t), where N(t) is the total
number of agents at time t.

2.1.1. Gillespie algorithm

The IBM describes key cellular-level behaviours; namely cell
cycle progression and mitosis, cell motility, and cell death, as dis-
crete events simulated using the Gillespie algorithm [28]. Each
agent has an allocated rate of cell cycle progression, dependent
on its cell cycle status and the local nutrient concentration
(figure 2a). Agents in each phase of the cell cycle are coloured
according to FUCCI, with G1 agents coloured red, eS agents
coloured yellow, and S/G2/M agents coloured green.

We make the natural assumption that biological cells require
access to sufficient nutrients to commit to entering the cell cycle.
Therefore, the red-to-yellow transition rate, R,(c), depends on the
local nutrient concentration, c(x, ¢) (figure 2a). Once an agent has
committed to entering the cell cycle, we assume the yellow-to-
green transition takes place at a constant rate R, and the green-
to-red transition, which involves mitosis, occurs at a constant
rate R, (figure 24).

The rates of agent migration and death, m(c) and d(c), respect-
ively, are assumed to depend on the local nutrient concentration.
When an agent dies, it is removed from the simulation and we
record the location at which the death event occurs (figure 2c).
When an agent moves or undergoes mitosis (figure 2d,e), a random

direction in which the agent will migrate, or its daughter agents
will disperse, is chosen (figure 2b). For an agent undergoing mitosis,
the first daughter agent is placed a distance ¢/2 along the randomly
chosen direction, and the second daughter agent is placed at a dis-
tance o/2 in the opposite direction, leaving the two daughter
agents dispersed a distance of o apart, where we set ¢ to be equal
to a typical cell diameter [29] (figure 2d and table 1). When migrating,
agents are displaced a distance j along the randomly chosen direction
(figure 2e). Similar to the dispersal, we simulate migration by taking
the step length 1 to be a typical cell diameter.
We specify the agent cycle progression rates,

R R 21

r(c) = T em (2.1)

Ry(c) =Ry, (2.2)

Rq(c) = Rg (2.3)

C"?Z

m(c) = (mmax mmm) s 4 m ~+ Mmin (2 4)
d A — cn d 2

(C) = ( max — min)( - W) + dmin, ( 5)

where c(x,, t) € [0, 1] is the non-dimensional nutrient concentration at
the location of the nth agent; R, >0 is the maximum red-to-yellow
transition rate; Myay > Mmin >0 are the maximum and minimum
migration rates, respectively; dmax > @min > 0 are the maximum and
minimum death rates, respectively; 77 >0, 1, >0 and 73> 0 are Hill
function indices; and ¢, >0, ¢,,>0 and cq4>0 are the inflection
points of R,(c), m(c) and d(c), respectively (figure 2a).

2.1.2. Nutrient dynamics
We make the simplifying assumption that cell migration, death
and progression through the cell cycle are regulated by a single
diffusible nutrient, such as oxygen [4,10,12]. The spatial and tem-
poral distribution of nutrient concentration, C(x, t), is assumed to
be governed by a reaction—diffusion equation

ocC

—— = DV?C — kCu,

o in 0, (2.6)
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Table 1. IBM parameter values.

parameter name symbol value
numerrcal parameters
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“mrnrmum death e dmm
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HSteady e oo e
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SR ca R
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“cntrcal death ncnttn S cd SR 01

with  diffusivity D>0[um?’h™'], and consumption rate
k>0 [um3 (h cells)™], and where v(x, t)> 0 [cells um’3] is the
density of agents at position x and time t. The source term in
equation (2.6) describes the consumption of nutrient at a rate of
K [ums (h cells)™']. To solve this reaction—diffusion equation, we
set v(%jxt) =Nj;x/ 1%, where Nijx is the number of agents
within the control volume surrounding the node located at
(x;, Yir z;) and 1 is the volume of the control volume. On the
boundary, 0(2, we impose C =Cp, where C,, is some maximum
far-field concentration.

Our experiments lead to spheroids of diameter 500-600 um
over a period of 10 days after spheroid formation (figure 1) (14
days after seeding). Since these length and timescales are clear,
we leave the independent variables x and ¢ in equation (2.6) as
dimensional quantities. By contrast, spatial and temporal vari-
ations of C(x, t) are very difficult to measure during spheroid
growth, so we non-dimensionalize the independent variable
cx, 1) = C(x, t)/Cy, giving

@ = DV2c — kv,

o in (.

(2.7)

with ¢=1 on 9{2, and c(x, t) € [0, 1].

2091

4000 ru’m B
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015 um el

source

‘experimental measurement (electronic supplementary material, §7)
 assumption (electronic supplementary material, 8
assumption (electronic supplementary material, S8)
assumption (electronlc supplementary materral 58)
numerical e expenments (electronrc supplementary matenal 4. 3)
expenmental measurement

.assumptron (electromc supplementary materral SS)
' assumption (electronic supplementary materral, S5) '
expenmental T

experimental measurement (electronic supplementary materal, S6)
experimental measurement (electronic supplementary material, 56)
experimental measurement (electronic supplementary material, S6)
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assumption (electronic supplementary material, $44)

assumption ' ' ' ' '

assumptron OO
assumption

assumptron OO

Typically, the timescale of nutrient diffusion is much faster
than the timescale of spheroid growth [10]. Consequently, we
approximate equation (2.7) by

0=V%*—acv, in{, (2.8)
where a=x/D >0 [um cell']. Therefore, we describe the spatial
and temporal distribution of nutrients by solving equation (2.8)
repeatedly during the simulation. This quasi-steady approxi-
mation is computationally convenient, as we describe later. We
solve equation (2.8) with a finite volume method on a uniform
structured mesh (electronic supplementary material, 54) with
node spacing h.

The IBM treats cells as point particles, which we call agents.
Interactions between agents are modelled implicitly by specify-
ing rates of migration and cell cycle progression that depend
upon the local nutrient concentration. As we will show later,
this very simple framework replicates our experimental obser-
vations reasonably well, however, we acknowledge there are
other ways to treat agent—agent interactions, including lattice-
based hard-core exclusion [29] and lattice-free methods for mini-
mizing [30] or avoiding agent overlap [23,24]. Other options for
modelling agent-agent interactions include direct simulation of
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agent adhesion or repulsion [31]. Here, our modelling philos-
ophy is to work with the simplest possible biologically
plausible model that can describe the key features of interest.
Therefore, we deliberately avoid these additional mechanisms
in our IBM framework.

2.2. Simulation algorithm

We simulate spheroid growth by supposing the spheroid initially
contains N(0) agents distributed uniformly within a sphere of
radius 7,(0) > 0 [wm]. While it is experimentally relevant to
assume the population is spherically symmetric at t=0, this
assumption is not necessary, and we will discuss this point
later. The proportion of agents chosen to be red, yellow, or
green at t =0 can be selected arbitrarily, but we choose these pro-
portions so that the internal structure and composition of the in
silico spheroids are consistent with our in vitro measurements. We
achieve this by choosing the initial numbers of red, yellow, and
green agents, N(0), Ny(0) and Ng(0), respectively, noting that
N() = N(0) + Ny(O) + Ng(O) (electronic supplementary material,
S8). The most appropriate timescale for individual cell-level be-
haviour is hours, however, spheroid development takes place
over 10 days, so we will use a mixture of timescales to describe
different features of the experiments and simulations as appro-
priate. We simulate spheroid growth from t=0 to t=T h,
updating the nutrient concentration at M equally spaced points
in time. This means that the nutrient concentration is updated
at intervals of duration #*=T/M [h]. The accuracy of our algor-
ithm increases by choosing larger M (smaller t*), but larger M
decreases the computational efficiency. We explore this trade-
off and find that setting +*=1 h is appropriate (electronic sup-
plementary material, 54.4). When equation (2.8) is solved for
c(x, t), the value of c(x,, t) at each agent is calculated using
linear interpolation. These local nutrient concentrations are
held constant for each agent while resolving all the various
agent-level events (cycling and proliferation, migration and
death) from time ¢ to time ¢ + #*. After resolving the appropriate
agent-level events, we update the agent density before updating
the nutrient profile again. Pseudo-algorithms for the IBM are
provided (electronic supplementary material, S9), and code to
reproduce key results is available on GitHub https://github.
com/ProfM]Simpson/4DFUCCL

2.3. IBM image processing

To estimate 7,(f), 7a(t) and ry(f), we apply methods described in
[16,32,33] to the IBM output. Briefly, we import the agent
locations from a particular cross section, and map these locations
to an (L +1) x (L + 1) pixel image, increase the size of the agents
to 12 pixels in diameter, and use edge detection to identify and
estimate 7,(t), ra(t) and r4(t) (electronic supplementary material,
52). This procedure adapts the image processing approach for the
experimental images so that it is applicable to the synthetic
results from the IBM.

3. Results and discussion

We now compare and analyse images and measurements from
a range of in vitro experiments and in silico simulations. All
experiments use the WM793B melanoma cell line, which
takes approximately 4 days to form spheroids after the initial
seeding in the experiments [17]. This means thatt = 0 days cor-
responds to 4 days after seeding to give the experimental
spheroids sufficient time to form. Snapshots from the IBM cor-
respond to a single realization, however, time-series data from
the IBM are reported by simulating 10 realizations of the IBM
and then averaging appropriate measurements across the 10

simulations. While we take great care to analyse the simulation
images and the experimental images using the same image-
processing algorithm, the format of the experimental images
is different to the format of the images produced by the IBM,
and we do not explicitly account for these differences.

3.1. Parameter values

Table 1 summarizes the parameter values. While some para-
meters are based on separate, independent two-dimensional
experimental (electronic  supplementary
material, S5, S6) or measurements directly from the spheroids
where possible (electronic supplementary material, S7), other
parameters are chosen based on a series of numerical screening
tests (electronic supplementary material, S4). We will return to
discuss other options for parameter choices later.

measurements

3.2. Qualitative comparison of experiments and
simulations

We now qualitatively compare images of in vitro (figure 3a,c,
e) and in silico (figure 3b,d,f) spheroids by imaging various
cross sections at different locations, including the equator
(figure 3a,b), the lower cross section (figure 3c,d), and the
upper cross section (figure 3e,f). We use definitions in elec-
tronic supplementary material, §51 (Confocal imaging) to
identify the lower and upper cross sections in both the exper-
imental and simulation images. While previous studies have
often compared model predictions with experimental obser-
vations at a single cross section [17,22], we aim to provide
more comprehensive information about the internal structure
of the spheroid by making comparisons at multiple locations.

At the beginning of the experiment, in all cross sections
(in vitro and in silico), we see the population is relatively uni-
form, with an even distribution of colours, suggesting the
entire spheroid is composed of freely cycling cells. At t=2
and t = 4 days, however, we begin to see the development
of heterogeneity within the growing in vitro and in silico
populations, with those cells and agents at the centre of the
growing spheroid predominantly red, indicating G1l-arrest.
By t = 4 days, we see the value of comparing different cross
sections, since the Gl-arrest is clear in the centre of the equa-
torial cross section, but there is no obvious heterogeneity
present across either the upper or lower cross sections. Simi-
larly, by t = 6 days, we see the formation of a necrotic core
in the equatorial cross section, but this is not present
at either the upper or lower cross sections. By t=8 and ¢ =
10 days, the spheroid has developed into a relatively compli-
cated heterogeneous structure; the outer spherical shell
contains freely cycling cells, the intermediate spherical shell
contains living Gl-arrested cells, and the internal region
does not contain any fluorescent cells.

Overall, the qualitative match between the IBM and the
experiment confirms that the IBM captures both the macro-
scopic growth of the entire spheroid, as well as the emergent
spatial and temporal heterogeneity. We now build on this pre-
liminary qualitative information by comparing quantitative
measurements of growth of the spheroid.

3.3. Spheroid structure and nutrient profiles
Given the ability of the IBM to capture key spatial and tem-
poral patterns of spheroid growth, cell cycle arrest, and cell
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Figure 3. Comparison of in vitro and in silico 4D spheroids. Experimental results (a,c,e) are compared with simulation results (b,d,f) by examining 2D slices at the
equator, lower and upper cross section, respectively. Agent colour (red, yellow, green) corresponds to FUCCI labelling (G1, €S, S/G2/M). Schematics in the left-most
column indicate the location of the 2D cross section. The images are taken at (a—b) the equator, (c—d) the lower cross section, and (e—f) the upper cross section.
Experimental spheroid radii at the equator are labelled at each time point, and scale bars represent 200 pm.

death throughout the spheroid, we now demonstrate how to
take these preliminary simulations and extract detailed quan-
titative data that would be difficult to obtain experimentally.
Figure 4a shows a typical IBM simulation during the interval
where we observe the development of internal structure. For
clarity, we plot the locations of all living agents as in figure 3
together with the locations at which agents die, which is dif-
ficult to estimate experimentally, but is straightforward with
the IBM. Each spheroid in figure 4a is shown with an
octant removed to highlight the development of the internal
structure, and for further clarity we show equatorial cross
sections in figure 4b.

To quantify the internal spheroid structure we simulate 10
identically prepared realizations of the IBM and extract aver-
aged quantitative data that are summarized in figure 4c
(electronic supplementary material, S10). These data include
plotting the non-dimensional nutrient concentration, c(x, t),
and various normalized agent densities, o(p(t), t), as a func-
tion of distance from the spheroid periphery, p(t) = r,(t) — 7,
where r is the distance from the spheroid centre. Hence,
p(t)=0 corresponds to the spheroid periphery, and
p(t) =1o(t) corresponds to the spheroid centre. This

representation of internal spheroid structure is made by
assuming that the growing population remains spherically
symmetric, which is a reasonable assumption since our initial
condition and spheroid growth is spherically symmetric
(figure 4a). Each density profile is normalized relative to
the maximum value of all agent densities across all time
points, so that we can compare how the density of the various
subpopulations of agents and nutrient are distributed (elec-
tronic supplementary material, 510). Using the IBM we
are able to describe the spatial and temporal densities of
living agents in various phases of the cell cycle (G1, eS and
S/G2/M) as well as Gl-arrested agents. We plot each density
profile as a function of the distance from the periphery as
this allows us to compare various profiles as the size of the
spheroid increases [9,34].

Averaged relative agent density profiles from the IBM
provide quantitative information that cannot be easily
obtained from experimental observations. Initially, we see
the relatively evenly distributed G1, €5 and S/G2/M popu-
lations become rapidly dominated by agents in G1 phase,
which then form an obvious inner-most arrested region by
about t=2 days. During the interval 3<t<6 days, we
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Figure 4. Typical IBM simulation, showing: (a) visualizations of in silico spheroids including dead agents (cyan) and (b) cross sections through the spheroid equator
with dead agents. (c) Relative concentrations (p, t) of nutrient (black) and cycling red, yellow and green agents (coloured appropriately), based on distance from
the periphery p(t) = r,(t)— r, averaged over 10 identically prepared simulations. The dashed red line shows the relative density of arrested red agents, also
averaged over 10 simulations with identical initial conditions. For nutrient, o(p, t) = c. For agents, (p, ¢) is the relative agent density (electronic supplementary
material, $10). Shaded areas represent plus or minus one standard deviation about the mean, and are non-zero as a consequence of stochasticity in the model, even

though the 10 simulations start with identical populations and radii.

observe rapid growth in the arrested population. During the
later interval, 6 <t <10 days, we see the formation of a clear
necrotic core. These results indicate the spatial and temporal
role of stochasticity, with the variability most evident in the
G1 and arrested G1 populations at early and intermediate
times. Plotting the relative agent densities in this way pro-
vides a simple approach to interpret the spatial and
temporal organization of cell cycle status within the growing
spheroid and visualizing the agent densities together with
the non-dimensional nutrient concentration is particularly
useful when this kind of information cannot be easily
obtained experimentally. In particular, it is technically chal-
lenging to measure absolute concentrations of nutrient
profiles during these experiments [15,35,36] and so we now
focus on visualizing the nutrient concentration profile that
drives this heterogeneity.

Results in figure 5 show spatial and temporal patterns in
the nutrient profile, c(x, t), for a typical IBM simulation from
figure 4. Figure 5a shows the three-dimensional evolution of
c(x, t), with the colour bar highlighting the death and arrest
thresholds, ¢4 and c,, respectively. These three-dimensional
plots show the depletion of nutrient over time in the central
region of the spheroid, leading to strong spatial gradients
of nutrient concentration near the edge of the growing spher-
oid. Profiles in figure 5b show the nutrient profile at the
equatorial plane with the c(x, y, 0) =c, contour (red) and the
approximate size of the necrotic core (cyan) superimposed.
along
x=(x, 0, 0), are shown in figure 5c, where the diameter of
the growing spheroid (—7,(t) < x <r,(t)) is shaded in
yellow. Again, these simplified cross sections illustrate how

Simplified one-dimensional profiles of c(x, 1),

nutrient consumption leads to the formation of spatial nutri-
ent gradients near the outer radius of the growing spheroid.
Overall, a key strength of the IBM is the ability to extract
agent-level information (figure 4) as well as information
about the nutrient distribution (figure 5), whereas experimen-
tal studies typically report cell-level data without explicitly
showing nutrient-level information [4,6].

While it is very difficult to measure the spatial and tem-
poral distribution of diffusible nutrient experimentally in
the growing spheroid, it is possible to indirectly examine
our assumption that spatial and temporal differences in cell
cycle status are partly driven by the availability of oxygen.
Figure 6 shows a series of spheroids stained with pimonida-
zole and pimonidazole-detecting antibodies, which indicate
hypoxia [37]. In this series of images, we see evidence
of hypoxia staining in the central region of the spheroid at
t =0, with persistent hypoxia staining adjacent to the necrotic
core at later times. These results support our hypothesis that
spatial and temporal differences in nutrient availability corre-
spond with spatial and temporal differences in cell cycle
status, and in this case the pimonidazole staining suggests
that oxygen availability plays a role in the development of
heterogeneity within the growing population. While this
observation is consistent with our IBM, it does not rule out
the possibility of multiple diffusible signals acting in
unison, and we will discuss this possibility later.

3.4. Role of variability
Experimental images (figures 1, 3 and 6) suggest that spher-
oid development is variable, as we see spheroids of different
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Figure 5. Nutrient concentration profiles (a) in three spatial dimensions, (b) at the equator z= 0, with the arrest critical level ¢, shown in red, and the size of the
necrotic region in white. (c) Nutrient profiles along the midline y =z =0, where the shaded region represents the size of the spheroid, and the red and cyan lines
are the critical levels for arrest and death, ¢, and ¢4 respectively. The colour bar corresponds to the profiles in (a—b), and denotes the values c, (red) and ¢4 (cyan).

t =0 days
r,(0) =274 um

t =3 days
r,(3) =302 um

t =6 days
r(6) =333 um

t =10 days
r,(10) = 363 um

Figure 6. Spheroids stained for hypoxia at 0, 3, 6 and 10 days after spheroid formation, imaged at the spheroid equator. Hypoxia-positive staining fluoresces
magenta, and white dashed lines denote r,(t) and r,(t), detected with image processing, to contextualize the regions of hypoxia. For clear visualization, we
label the outer radii of the spheroid with the corresponding days. Image intensity was adjusted for visual purposes, and scale bar corresponds to 200 pm.

diameters at the same time points. One of the limitations of
relying on experimentation alone is that it can be difficult
to quantify the importance of different sources of variability,
whereas this can be assessed very simply with the IBM. For
example, we can simulate multiple spheroids that start from
precisely the same initial condition to quantify the variability
that arises due to the stochastic growth process, or we can
deliberately introduce variability into the initial composition
of the spheroid to explore how this variability evolves during
spheroid growth for a suite of simulated spheroids.

Simulation data in figure 7a show the temporal evolution
of various agent subpopulations, including the total number
of living agents, dead agents, G1, e5, S/G2/M and
G1l-arrested agents. Each profile shows the mean number of
agents obtained by simulating 10 identically initialized spher-
oids with 7,(0) =245um, which matches the average
spheroid diameter at t =0 days in the suite of in vitro exper-
iments. The variability in these profiles is quantified by
calculating the sample mean and sample standard deviation
and shading the region corresponding to the sample mean
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Figure 7. Modelling results for the population growth of different spheroid populations, averaged over 10 simulations with (a) identical initial conditions for each
realization and (b) introduced experimental variability in initial spheroid radius and population, with the agent density held constant and initial radius
1,(t) € [232.75, 235.47, 238.97, 242.19, 244.89, 247.76, 247.93, 251.23, 251.48, 260.13] fum. In each row, left: living (black) and dead (cyan dashed) popu-
lations, N(f) and Ny(t), respectively, centre: arrested red (dashed), cycling red (solid) and total red (dotted) populations, N,(t), N.(t) and Ni(t), respectively, and right:
yellow and green populations, N,(t) and Ny(f), respectively. Shaded areas represent plus or minus one standard deviation. Initial subpopulations in each simulation in
both (a) and (b) are variable, as initial cell cycle status is assigned randomly (electronic supplementary material, S8), and so the initial subpopulations in (b) also

naturally vary with the overall initial population, N(0).

plus or minus one sample standard deviation, and we see that,
at this scale, the variability is barely noticeable. By contrast,
results in figure 7b show equivalent data from a suite of simu-
lations where the initial density of agents in the spheroid is
held constant, but the initial radius of the 10 simulated spher-
oids is deliberately varied to mimic the observed variability in
our experiments. The initial radius in each simulation corre-
sponds to one of 10 particular experimental measurements
(figure 7). The mean of these 10 initial radii measurements is
7o(0) = 245 um, which is precisely the same as the initial radii
for the simulations in figure 7a. Comparing results in
figure 7a,b shows that the average population profiles are very
similar, but the variability is strikingly different. This exercise
shows that quantifying the variability in spheroid size at the
beginning of the experiment is the key to understanding and
predicting the variability in spheroid composition and size at
the end of the experiment. The clear differences we see in the
variability between results in figure 7a,b confirms that 10 simu-
lations is sufficient to explore the role of variability at the
beginning of the experiment. It is also interesting to note that
these simulation results are consistent with our previous obser-
vations. For example, the in vitro spheroids in figure 3 have
75(0) =232 um and we see that it takes until =6 days for a
clear necrotic core to form in the equatorial cross section. By con-
trast, the spheroid in figure 6 is larger with r,(0) = 274 wm and
we see a clear necrotic core at t = 3 days. This highlights the
importance of taking great care with measurements at the
beginning of the experiment [17].

3.5. Quantitatively matching experimental and
mathematical spheroids

Results in figure 8 compare the temporal evolution of r,(t),
ra(t) and ry(f), from our suite of experiments and simulations.
The data in figure 8 show the value in working with a

stochastic model since the experimental measurements are
quite variable, with estimates of 7,(t) and r,(f) more variable
than estimates of r,(t). This difference in variability is because
we measure 7,(t) automatically every 6 h, whereas measure-
ments of r,(f) and r,(t) require manual harvesting, fixing
and imaging, and so we obtain daily measurements only.

Similarly to §3.4, we compare experimental results of
average data in simulations with and without explicit varia-
bility at t =0. The experiment-IBM comparison in figure 8a
corresponds to the case where we simulate 10 identically pre-
pared realizations of the IBM, where each simulated spheroid
has the same initial radius r,(0) = 245 pm, and we see that
the average simulation results capture the average trends in
the experimental measurements well, but the IBM simu-
lations do not capture observed variability in the evolution
of 7,(t) or ry(t). By contrast, the experiment-IBM comparison
in figure 8b, where we deliberately mimic the experimental
variability at t=0, captures both the average experimental
trends and variability in the experimental data quite well.
Again, the difference between results in figure 8a,b suggests
that accurately incorporating the initial variability in the
experimental data is critical if we wish to capture the
observed variability during the experiments with the IBM.

Data in figure 8 show that r,(t) increases approximately
linearly, whereas the development of the internal structure
is more complicated, with r,(t) initially decreasing for the
first day before growing at a similar rate as 7, (t). The necrotic
core does not form until approximately t =4 days. While our
IBM-experimental comparison in figure 8 suggests that the
IBM can quantitatively capture experimental trends, we
have obtained this match with a careful choice of parameters
without undertaking a more rigorous parameter estimation
exercise [38]. The sensitivity of the IBM predictions to the
parameter values is briefly explored in the electronic
supplementary material, S11.
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Figure 8. Comparison of computational estimates of r, (t) (black), r, (t) (red) and ry (¢) (cyan) with experimental data. The experimental data (dots) are compared with (a)
simulations with each run starting with an identical parameter set and (b) simulations with variations of the initial spheroid radius and population, with each initial radius
selected from experimentally measured radii at t = 0 days and agent density kept constant. Computational results are the average of 10 simulations, and error regions represent
plus or minus 1 s.d. The initial subpopulations vary in both (a) and (b), due to randomly assigning cell cycle status (electronic supplementary material, S8). In (b), we also
naturally see higher variations in each subpopulation initially, due to explicitly including initial population variability, which in tum induces variability in r,(0).

4. Conclusion and future work

We developed an IBM that simulates 4D tumour spheroids
with FUCCI. IBM simulations show we can successfully
reproduce qualitative and quantitative patterns of spatial
and temporal differences in cell cycle status observed exper-
imentally. This heterogeneity is driven by spatial and
temporal variations in nutrient availability, which we model
using a reaction—diffusion equation.

An important advantage of the IBM is our ability to extract
and describe measurements that are difficult to obtain in vitro.
In particular, we show how to visualize both the growing popu-
lation within the spheroid together with the associated spatial
patterns of nutrient concentration over time. Furthermore, the
IBM makes it very simple to explore how various features con-
tribute to the overall variability in spheroid development, and
we find that relatively small variations in the initial size of the
spheroid lead to relatively pronounced differences in spheroid
size and composition at later times [17]. We conclude our inves-
tigation by showing that we can quantitatively match the spatial
and temporal development of a series of in vitro 4D spheroids
using the WM793B human primary melanoma cell line with a
careful choice of parameters. We anticipate that tumour spher-
oids formed with different cell lines will be able to be simulated
with our IBM, but will require different parameter values.

Overall, our modelling philosophy is always to work with
the simplest possible mechanisms required to capture our
experimental observations. Naturally, this means that there
are many ways that the IBM can be extended. For example,
here we make the simple assumption that spheroid growth is
regulated by a single diffusible nutrient, which seems appropri-
ate for our data. If, however, experiments show that it is
important to consider multiple nutrients in unison, our IBM fra-
mework can be extended to deal with this. Similarly, we focus
on symmetric spheroid growth to be consistent with our exper-
iments, but it is straightforward to relax this assumption by
specifying a different initial arrangement of agents, or by allow-
ing asymmetric nutrient delivery by, for example, a blood vessel
as we explore in electronic supplementary material, S12.
Another point that could be revisited is that we implement
the simplest possible cell migration mechanism where the

direction of motion is random. While this assumption appears
reasonable for our data, it is possible to bias the migration in
response to either the nutrient concentration, the gradient of
the nutrient concentration, or the density of agents by explicitly
describing agent-to-agent interactions [30]. Each of these poten-
tial extensions could be incorporated into our IBM framework
with the aim of potentially increasing the biological fidelity of
the model. However, we caution against this simplistic
approach since these mechanisms also increase the number of
unknown model parameters required for simulation. To mini-
mize issues with parameter identifiability, we prefer to work
with a minimal model [38]. If, however, future experimental
measurements indicate that our minimal assumptions need
revising, our IBM framework is sufficiently flexible to incorpor-
ate such extensions. Another option for future refinement is to
conduct a more thorough parameter estimation exercise [38].
Here, we carefully chose parameters so that data from the
IBM matches our experimental data, but future analysis could
include a more rigorous assessment of parameter estimation,
and we leave this for future consideration.
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