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Abstract: The world production of chestnuts has significantly grown in recent decades. Consumer
attitudes, increasingly turned towards healthy foods, show a greater interest in chestnuts due to
their health benefits. Consequently, it is important to develop reliable methods for the selection of
high-quality products, both from a qualitative and sensory point of view. In this study, Castanea
spp. fruits from Italy, namely Sweet chestnut cultivar and the Marrone cultivar, were evaluated by
an official panel, and the responses for sensory attributes were used to verify the correlation to the
near-infrared spectra. Data fusion strategies have been applied to take advantage of the synergistic
effect of the information obtained from NIR and sensory analysis. Large nuts, easy pellicle removal,
chestnut aroma, and aromatic intensity render Marrone cv fruits suitable for both the fresh market
and candying, i.e., marron glacé. Whereas, sweet chestnut samples, due to their characteristics, have
the potential to be used for secondary food products, such as jam, mash chestnut, and flour. The
research lays the foundations for a superior data fusion approach for chestnut identification in terms
of classification sensitivity and specificity, in which sensory and spectral approaches compensate
each other’s drawbacks, synergistically contributing to an excellent result.

Keywords: food quality assessment; non-destructive analysis; near-infrared spectrum; visible
spectrum; sensory panel; Italy

1. Introduction

The genus Castanea belongs to the Fagaceae family and is found in southern Europe,
eastern North America, northern Africa, Asia Minor, and eastern Asia. Castanea species
show high levels of genetic diversity, and this has favored their adaptation to different
environmental conditions [1]. The most important species are Castanea sativa (Mill.) in
Europe, Castanea dentata (Borkh) in America, Castanea crenata (Sieb et Zucc.) in Japan, and
Castanea mollissima (Blume) in China and Korea [2]. Castanea sativa, commonly known as
European sweet chestnut, is distributed across several European countries, mainly in Italy,
Spain, France, Greece, Portugal, and Turkey, with Italy having the largest area [3]. Accord-
ing to the Food and Agriculture Organization Statistical Database, the worldwide chestnut
production is ~2.350 Tg. Chestnuts are mainly cultivated in China (1.965 Tg), Bolivia
(84.00 Gg), Turkey (63.60 Gg), the Republic of Korea (53.385 Gg), and Italy (53.30 Gg) [4].

Various studies carried out about the chemical composition and nutritional character-
istics of chestnut fruits confirmed that they are relatively low in calories and fat, while are
rich sources of starch, trace elements, vitamins, and phytonutrients, which makes them an
interesting healthy food [5–14]. Moreover, chestnut fruits do not contain gluten, so they
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prove to be suitable for persons suffering from celiac disease. Various compositional and
health studies concluded that chestnut fruits have considerable potential as functional
foods [15]. In summary, chestnuts may provide beneficial effects on health and represent a
great economic resource, owing to their availability and low cost [16].

Consumer attitudes are slowly changing as demand for healthy foods is growing,
resulting in an even greater interest in chestnuts due to their benefits. On the other hand,
consumer awareness requires the development of reliable methods for selecting high quality
products, both from qualitative and sensory points of view. The assessment of chestnut
characteristics represents a crucial aspect to this end: the non-destructive measurement of
quality attributes is needed so that resulting information can be exploited for improving
both production and marketing systems. Indeed, increased economic interest for chestnut
nuts in the food industry has fostered the demand for selected cultivars with high-quality
characteristics, such as good sensorial and qualitative properties.

Recent publications prove the potential of near-infrared spectroscopy (NIR) as a
rapid non-destructive method for the analysis of agro-food [17–19]. Additionally, NIR
spectroscopy has been adopted for quality assessment of chestnuts. For instance [20], used
NIR spectroscopy as a non-destructive and rapid method for determining the sugar content
of chestnuts. Li Xiaoyu et al. [21] measured protein content in chestnuts by near-infrared
spectroscopy, stressing the rapidity of the method when compared to the conventional
methods. Hu et al. [22] tested a rapid evaluation of the quality of chestnuts by NIR diffuse
reflectance spectroscopy, measuring internal mildew to classify normal and mildewed
chestnuts. Other authors investigated the use of NIR spectroscopy as a rapid method to
detect insect damage in chestnuts [23,24]. An analytical method for the authentication of
the geographical origin of the “Vallerano” PDO chestnut by near-infrared spectroscopy
was developed by Nardecchia et al. [25]. Bedini et al. [26] demonstrated the feasibility
of using both conventional and imaging NIR spectroscopy for the detection of unsound
chestnuts in comparison with the traditional sorting technique.

NIR spectroscopy has been successfully used to correlate different quality indices,
such as acidity, ascorbic acid, soluble sugar content, dry matter, sensory characteristics for
various vegetables, and fruits [27–29]. Several studies consider the sensory and chemical
analysis of different chestnut cultivars [30–38] or other foods [39–42]. Nevertheless, no
literature is available on the data fusion of sensory attributes or Fourier-transform Near-
Infrared (FT-NIR) spectral data.

In the present study, we have applied a combination of two approaches, FT/NIR
spectroscopy and sensory analysis, to describe and characterize two different chestnut
cultivars in order to comprehensively assess their qualitative and sensory characteristics.
We have adopted data fusion strategies for the cultivar recognition of chestnut fruits. The
data fusion system is increasingly used in the fields of food quality evaluation since allows
obtaining more accurate results rather than using several techniques separately [43–48].

2. Materials and Methods
2.1. Sample Preparation

Samples of Castanea sativa fruits (5 kg for each considered cultivar) were collected in
November 2020: Sweet chestnut cv (C) from the collection field of the Calabria (southern
Italy) and the Marrone cv (M) from the “Mastrogregori Company”, located in the Cimini
Mountains (Central Italy). Since chestnuts can be consumed in different ways (raw, boiled,
roasted, etc.) after preliminary tests, the quality of each batch was evaluated as:

− raw chestnuts (r), as in the assessment system currently adopted by traders to evaluate
chestnuts; it is a quick method, used even by official inspectors for the assignment
under the Protected Designation of Origin;

− boiled chestnuts (b), which represent the most widespread way of consumption;
chestnuts, previously crosscut on the top, are boiled at 100 ◦C for 45 min [49].



Foods 2021, 10, 2575 3 of 15

The analyses were carried out on fruits from both cultivars, raw and boiled
(Cr: raw Sweet chestnut; Mr: raw Marrone chestnut; Cb: boiled Sweet chestnut; Mb:
boiled Marrone chestnut).

2.2. Fruit Weight and Morphological Attributes

Fruit weight and morphological attributes, such as length, width, thickness, geometric
mean diameter, sphericity, volume, and surface area of raw chestnuts were determined [50].
In total, 15 randomly selected fruits from each cultivar (C, M) were subjected to physical
assessments. Three chestnut dimensions (length, L; width, W; thickness, T) were measured
by a digital vernier caliper with a resolution of 0.01 mm. Geometric mean diameter (Dg),
sphericity (Ø), arithmetic mean diameter (Da), surface area (S), and volume (V) were
calculated by the following equations [51]:

Dg = (LWT)1/3 (1)

Ø = (LWT)1/3 L−1 (2)

Da = (L + W + T) 3−1 (3)

S = π Dg
2 (4)

V = π 6−1 LWT (5)

2.3. FT/NIR Spectral Acquisition

Chestnut spectra were acquired from peeled fruits of both cultivars, raw and boiled
(Figure 1). The Antaris II spectrophotometer (Thermo Scientific, Madison, WI, USA) was
used for the acquisition of Fourier’s transformed spectra in the 10,000–4000 cm−1 spectral
region with a resolution of 4 cm−1. The instrument was allowed to warm up for at least 1 h
to reach a stable state.
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Figure 1. Vis-NIR spectral measurement of boiled Marrone chestnut (Mb) and boiled Sweet chestnut (Cb).

The spectra were acquired in diffuse reflectance mode and directly converted to ab-
sorbance by the means of the software RESULT 3 (Thermo Fisher Scientific, WI, USA).
Measurements were performed at room temperature (20 ± 1 ◦C). Each spectrum had an av-
erage of 30 interferometer sub-scans, with the internal instrument standard as reference. A
dataset of 96 samples was acquired (24 per class). Immediately after the spectra acquisition,
fruits were subjected to sensory evaluation.
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2.4. Sensory Analysis

Sensory evaluation, a technique largely applied to a wide range of food [52], was
adopted to identify and quantify the raw then boiled chestnut organoleptic characteristics.
Sensory analysis was conducted in a laboratory equipped for sensory analysis according
to the ISO 8589 (2007) [53] standards, by eight official panelists, led by a panel leader,
according to the UNI EN ISO13299 (2016) [54]. The chestnuts were washed three times in
tap water. Half of them were left raw, while the other half were boiled in water at 100 ◦C
for 45 min. Boiled chestnuts were cooled to room temperature (18 ± 2 ◦C) before sensory
evaluation. In total, 96 samples (24 per cultivar, with two replicates) were used for the
sensory analysis, randomly collected from each of the two cultivars, both raw rather than
boiled. Three chestnuts of Marrone cv (M) and three of Sweet chestnut cv (C), both raw
rather than boiled, were tested by each panelist during every session. Chestnuts were then
placed in Styrofoam bowls and covered with a lid for 10 min before serving. Panelists
were instructed to use all three samples during evaluations. Distilled, deionized water and
unsalted crackers were served as palate cleansers. A minimum break of 5 min was taken
between each sample. Three training sessions were carried out with the judges to ensure
a common lexicon. After each panel training session, a focus group was done to decide
the appropriate descriptors to use [55–57], and Quantitative Descriptive Analysis (QDA)
was conducted as an analytical-descriptive method [49]. For raw chestnuts, ease of peeling,
seed color, degree of pellicle penetration into the kernel, crunchiness, sweetness, bitterness,
astringent, chestnut aroma, and aromatic persistence were the selected descriptors. For
boiled chestnuts, the selected descriptors were ease of peeling, seed color, flouriness,
sweetness, bitterness, saltiness, chestnut aroma, and aromatic intensity. Descriptive terms,
definitions, and associated reference standards used in the sensory analysis are reported
in Table 1. Each descriptor, based on bibliographical references [31,32,49], was evaluated
on a continuous astructured scale with intervals from 0 (absence of the character) to
10 (maximum intensity). The same scale was used to evaluate the descriptor of personal
judgement of each panelist, based on a subjective approval rating.

Table 1. Descriptive terms of sensory attributes and their associated reference standards.

Descriptors Sensory Attribute Definitions Standards and Reference Materials

ease of peeling ease of peeling the shell and pellicle
away from the nut

different level of adherence of shell/pellicle to the nut (value
0 corresponds to hard, while value 10 corresponds to easy)

seed color external color of the seed, after
removing the pellicle

seed color with a degree of darkness (value 0 corresponds to a light
color seed, while value 10 corresponds to dark)

degree of pellicle penetration into
the kernel

degree of penetration of seed coat into
the embryo

value 0 corresponds to a no penetration, while value 10 corresponds
to strong penetration (visible > 2.0 mm)

crunchiness
amount of noise generated when the
sample is chewed at a fast rate with

the back teeth

value 0 corresponds to a dried apple piece, while 10 corresponds to
a fresh celery piece

astringent
sensation of drying, drawing-up or

puckering of any of the mouth
surfaces

diluted tannic acid solution (0.06–2 mg/mL)

flouriness amount of dry, fine, powdery particles
that coat the mouth during chewing. different level of graininess of chestnut flour (from coarse to fine)

sweetness basic taste associated with sugar
(sucrose) diluted sucrose solution (0.5–6 g/L)

bitterness basic taste associated with caffeine diluted caffeine solution (0.03–0.2 g/L)

saltness basic taste associated with salt diluted salt solution (0.3–3 g/L)

chestnut aroma intensity of aroma of chestnut
products taste of chestnut

aromatic intensity characteristic flavor of chestnut at the
seed break aromatics commonly associated with chestnut
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2.5. Chemometrics
2.5.1. Spectral Pretreatments

Spectral data are generally subjected to mathematical transformation to remove
and/or mitigate problems related to highly correlated features, noise, unwanted spec-
tral variations, and baseline shifts, which can be detrimental to quantitative/qualitative
analysis and lead to inaccurate or misleading results. In a solid matrix, such as that of raw
and boiled chestnuts, the spectral unwanted variance can be related to the variability in the
refractive index, morphology (e.g., surface roughness), and density of the samples. In the
present study, the most common spectral pre-treatments were tested prior to chemometric
analysis, i.e., Standard Normal Variate (SNV), Multiplicative Scatter Correction (MSC), and
Savitzky-Golay first, second, and third derivatives (D1f, D2f, and D3f, respectively), with
a second or third order polynomial fitted over a window of 11, 13, or 15 features. Every
possible combination of spectral preprocessing was tested by further chemometrics steps,
and only the best results, in terms of classification model performance, were retained.

2.5.2. Data Fusion

The Data fusion model is the process of integrating data blocks from different sources
into a single global model, which can lead to an improvement in a better interpretation of
the results. In particular, data fusion can be performed at three levels: low, medium, and
high [58]. In the low-level, a single matrix is created that includes all the raw data of the
analyzed sources. In the mid-level, the data obtained are analyzed separately and relevant
characteristics are extracted from each information block. In the high-level, the information
is analyzed separately, a model is generated for each block of data, and then the responses
are combined for a final fused response. In the present study, preprocessed spectra were
fused at a low-level with sensory data, and the resulting matrix was autoscaled before
model development.

2.5.3. Classification Model Development

Spectral-based, sensory-based, and data-fusion-based classification models for raw
and boiled fruits were individually developed using Partial Least Squared Discriminant
Analysis (PLS-DA). PLS-DA is a supervised classification technique that applies the PLS
algorithm to calculate the probability of a sample belonging to a certain class [59]. As PLS
performs dimensional reduction, each model was cross-validated to select the optimal
number of latent variables (LVs) capable to circumvent under-/over-fitting issues. For the
intended purpose, the Root Mean Squared Error (RMSE) calculations were employed using
a venetian blinds cross-validation with 10 data splits (1 sample per split).

The classification performance of each PLS-DA model was evaluated in terms of
sensitivity, selectivity, and accuracy rates. The sensitivity rate represents the number of
correctly classified samples in the considered class over the total number of samples in that
class (Equation (6)). The selectivity rate corresponds to the number of correctly classified
samples in the other classes over the total number of samples in that class (Equation (7)).
The accuracy rate is the proportion of the true results in the batch (Equation (8)).

Sensitivity rate = True Positives (True Positives + False Negatives)−1 (6)

Selectivity rate = True Negatives (False Positives + True Negatives)−1 (7)

Accuracy rate = (True Positives + True Negatives) (Total Positives + Total Negatives)−1 (8)

Metrics were computed for calibration (CA) and cross-validation (CV) sets.

2.6. Data Handling and Statistical Analysis

One-way analysis of variance (ANOVA) was performed to evaluate statistical differ-
ences in the physical properties of the cultivars. The Tukey’s pairwise comparison method
was performed, as well as the Honestly Significant Difference (HSD) (p ≤ 0.05). Results
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were reported as the mean, standard deviation of the mean, and coefficient of variation. The
Kruskal-Wallis test was applied to sensorial data because it is non-normally distributed.

Data handling, as well as parametric and non-parametric statistical tests, were per-
formed using R software 4.0.3, while spectral pretreatments, data fusion, and chemomet-
rics were computed using Matlab 2017b (Mathworks, Natick, MA, USA) coupled with
PLS_Toolbox software 7.5.3 (Eigenvector Research Inc., Wenatchee, WA, USA).

3. Results and Discussion
3.1. Fruit Weight and Morphological Attributes

Fruit weight and morphological attributes of the two chestnut cultivars were found to
be statistically different (Table 2). The largest fruit on average and the highest values of
fruit weight, length, width, and thickness, as well as geometric mean diameter, sphericity,
arithmetic mean diameter, surface area, and volume, were observed in the M chestnuts.
The high sphericity value is indicative of the tendency of the shape towards a sphere. Taken
with the high value of sphericity in M samples, it may be deduced that these chestnuts
undergo a combination of rolling and sliding actions on their flat surfaces. Hence, data
concerning size and shape attributes are important in the design of the equipment for
processing, harvesting, transportation, and storage [60]. The size and shape attributes
of M chestnuts, such as large nut size, represent qualities suitable for fresh market and
candying, i.e., marron glacé. On the other hand, due to their morphological characteristics,
C fruits have the potential to be exploited for secondary food products, such as jam, mash
chestnuts, and flour.

Table 2. Fruit weight and morphological attributes of the two chestnut cultivars.

Attribute Cultivar Mean SD 3 CV 4 (%)

Weight (g) M 1 16.66 a 2.78 16.70
C 2 7.68 b 1.18 15.30

Length (mm) M 40.15 a 2.61 6.49
C 29.74 b 1.80 6.05

Width (mm)
M 30.89 a 1.41 4.55
C 14.81 b 1.77 11.95

Thickness (mm)
M 21.82 a 2.84 13.02
C 14.37 b 1.90 13.25

Geometric mean
diameter (mm)

M 29.87 a 1.76 5.89
C 18.42 b 1.79 9.74

Arithmetic mean
diameter (mm)

M 30.95 a 1.67 5.40
C 19.64 b 1.65 8.38

Surface area (mm2)
M 2809.91 a 335.54 11.94
C 1074.99 b 202.21 18.81

Sphericity (%) M 0.75 a 0.04 5.59
C 0.62 b 0.04 7.10

Volume (mm3)
M 14,214.35 a 2583.40 18.17
C 3384.49 b 920.04 27.18

1 M, Marrone cv from Cimini Mountains (Central Italy). 2 C, Sweet chestnut cv from Calabria (southern Italy).
3 SD, Standard deviation. 4 CV, Coefficient of variation. Different letters (a, b) indicate significant differences
among samples (p < 0.05).

Chestnut fruits are commonly sorted in the industry according to their size and shape
before processing. Thus, describing chestnut shape and size is fundamental for a range of
different industrial applications (e.g., marron glacé).
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3.2. Sensory Analysis

For raw chestnuts, Mr received a higher score by the subjective judgment of panel,
with respect to Cr (8.5 and 7 of median values, respectively). Significative difference
(p < 0.05) in subjective judgment was also found for boiled chestnuts (9 and 7 median
values for Mb and Cb, respectively) (data not shown). A sensory profile of raw and boiled
samples is reported in Figure 2. Both Marrone cv and Sweet chestnut cv showed significant
differences (p < 0.05) for all the sensory descriptors (Table 3).
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Table 3. Sensory attributes of boiled Marrone and Sweet chestnut cvs.

Attribute Cultivar Mean Median SD Range CV (%)

ease of peeling Mb 8.94 9.00 0.13 8.5–9.0 1.43
Cb 7.87 8.00 0.17 7.5–8.0 2.16

seed color
Mb 6.95 7.00 0.14 6.5–7.2 2.06
Cb 4.92 5.00 0.16 4.6–5.2 3.12

flouriness
Mb 4.94 5.00 0.19 4.5–5.3 3.82
Cb 2.94 3.00 0.17 2.5–3.3 5.55

sweetness
Mb 7.99 8.00 0.13 7.7–8.0 1.60
Cb 7.02 7.00 0.11 6.8–7.3 1.58

saltness
Mb 3.37 3.50 0.24 3–3.8.0 6.78
Cb 2.03 2.00 0.12 1.8–2.0 6.20

chestnut aroma
Mb 8.57 8.50 0.31 8.0–9.0 3.60
Cb 6.95 7.00 0.16 6.5–7.2 2.23

aromatic intensity Mb 9.03 9.00 0.25 8.7–10 2.79
Cb 7.95 8.00 0.11 7.6–8.0 1.43

subjective judgement Mb 8.96 9.00 0.18 8.5–9.5 2.01
Cb 6.95 7.00 0.10 6.7–7.0 1.40

Mb, Boiled Marrone chestnut. Cb, Boiled Sweet chestnut.

These results are in agreement with those by Yang et al. [38], who concluded that the
sensory characteristics are significantly influenced by the cultivar of chestnut. Regarding
the raw chestnuts, the ease of peeling, crunchiness, chestnut aroma, and aromatic intensity
of Mr received higher scores than Cr. On the contrary, astringent and degree of pellicle
penetration into the kernel of Mr was lower than that of Cr. Hwang et al. [61], who reported
that chestnut pellicle peelability was negatively related to the tannin content in the edible
part. In support of the above-referenced finding, our results showed high astringent values
in Cr (with a score at or near 5.0) compared to those of Mr (with a score at 0.5) was the
easiest to peel (pellicle removal). This aspect is particularly important since the interactions
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between high tannin content and a stronger astringent sensation [62] could be linked to
the difficultness of pellicle removal. On the other hand, easy peeling (for fresh market
and processing) and a low degree of penetration of the seed coat into the kernel (for
fresh market) are appreciated qualities of chestnuts [63]. Moreover, easy pellicle removal
and aromatic intensity are also all valuable traits that make this variety desirable for the
industrial production of candied marrons, i.e., marrons glacés [64]. According to Poljak
et al. [65], easy pellicle removal and aromatic intensity with tasty flavor render Marrone
cv nuts suitable for both the fresh market and confectionery for candying and also for the
production of cooked chestnuts. Although Sweet chestnut cv fruits are described as having
a poorer aromatic intensity, they are suitable for fresh consumption and flour production
due to achieved high values in terms of sweetness score (8 median value), according to
Beccaro et al. [49]. The crunchiness attribute has a large impact on the quality of raw fruits
since the release of energy during the rupture of the nut produces the characteristic sound
when it is bitten and chewed, which is positively considered from a sensory perspective [66].
Concerning this attribute, Mr was crunchier than Cr, while both had the same sweetness
(Figure 2).

After boiling, significant differences (p < 0.05) were observed between Marrone cv and
Sweet chestnut cv for all the sensory descriptors. Mb presented a higher value of ease of
peeling compared to Cb (9 and 8 median values, respectively), which was in agreement
with other studies [30,32]. Sensory analysis on boiled samples partially confirmed the
results published in previous studies [49]. Mr chestnuts showed the highest ratings for
aromatic intensity, chestnut aroma, saltiness, flouriness, and seed color. The intensity of
sweetness was also considerably high in Cb.

3.3. Overview of Spectra

Figure 3 illustrates the mean absorbance spectra of both raw and boiled kernels
from Marrone and Sweet chestnut cultivars in the full range of 10,000–4000 cm−1. The
spectra were mathematically transformed using the best pre-treatments identified dur-
ing chemometrics, which specifically consisted of SNV in combination with a Savitzky-
Golay smoothing filter of a first polynomial order over a window of 15 points, which
means that performances of models developed using raw spectra were negatively affected
by the additive and/or multiplicative effect of light scattering on the fruit surface, as
well as the spectral noise. In other words, the described spectral pre-treatments helped
circumvent that issues reducing the negative impact of the noninformative variance of
spectra on model performances. As expected, the visual overview of the spectra showed
differences in spectra profiles between raw and boiled chestnut kernels. The cooking
process was, in fact, responsible for molecular changes in fruit matrix affecting spec-
tral profile, regardless of the cultivar. On the other hand, a by-eye analysis of spectra
did not really help distinguish kernels from the two considered varieties when belong-
ing to the same type of matrix (i.e., raw or boiled chestnut). According to several re-
search studies [23,24,67], within the 1000–2500-nm NIR spectral region (corresponding to
10,000–4000 cm−1), the moisture content of chestnut and foods is related to peaks of [i] the
O-H stretching and bending combination at 1190 nm (~8403 cm−1), [ii] the O-H stretch first
overtone at 1450 nm (~6896 cm−1), and [iii] the O-H stretching and bending combination
at 1940 nm (~5155 cm−1). The last was the most affected by the boiling process, resulting
in lower absorbance in cooked chestnuts, regardless of the cultivar. In addition, other
spectral bands that evidenced changes due to cooking were identified at [iv] 1130–1160 nm
(8840–8655 cm−1), corresponding to the first overtone of C–H stretching of the starch [68]
and [v] 1700-nm and 2300-nm areas (5882 and 4348 cm−1), which are both related to N-H,
C-N, and C=O stretching vibration of proteins, starch, and fibers [22]. The observed spectral
variation in boiled chestnuts can be attributed to molecular modifications of fruit due to
the hydration process and changes in structural properties of chestnut proteins and starch,
which occurred during boiling [68,69]. Based on the obtained results, all classification mod-
els were individually developed on raw and boiled chestnuts, and the impact of cooking
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on the discriminant performances of PLS-DA models from sensory and FT-NIR data, alone
or data fused, was also evaluated.
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Figure 3. Mean absorbance spectra for raw Marrone chestnut (Mr), raw Sweet chestnut (Cr), boiled Marrone chestnut
(Mb), and boiled Sweet chestnut (Cb). Spectral pre-treatment consisted of the Standard Normal Variate scatter correction,
followed by the Savitzky-Golay noise filter of first polynomial order with 15 smoothing points.

3.4. Classification Models

In Table 4, the performance metrics are summarized for the PLS-DA models, which
gave the best discriminant performance for sensory-based, spectral-based, and data-fusion-
based classifications. In general, the proposed methodology ranged from fair (>0.75) to
good (>0.90), very good (>0.95), and excellent (>0.99) classification performances, with
models on raw chestnuts always outperforming those on boiled product, regardless of the
type of data source. In almost all cases, models possessed both selectivity and sensitivity
ratios higher than 0.90, except for the spectral based model on boiled fruits, characterized
by a fair accuracy ratio (i.e., 0.78–0.85).

Table 4. Summary of performance metrics for classification models that gave the best results for each computational
approach (i.e., sensory-based, spectral-based, and data-fusion-based).

Type of Model Features Matrix Type Model Acronym LVs
Captured Variance (%) Sensitivity Specificity Accuracy

X-Block Y-Block CA 1 CV 2 CA CV CA CV

Sensory based 5
Raw Sr 3 87.34 84.37 0.96 0.96 0.98 0.98 0.97 0.97

Boiled Sb 3 89.93 76.84 0.95 0.94 0.95 0.96 0.95 0.95

Spectral based 3112
Raw Nr 3 99.39 89.90 0.99 0.98 0.97 0.98 0.98 0.98

Boiled Nb 3 99.53 34.91 0.90 0.82 0.80 0.74 0.85 0.78

Data fusion based 3117
Raw Fr 3 99.28 90.03 0.99 0.98 1.00 0.99 1.00 0.99

Boiled Fb 7 99.93 84.40 0.98 0.99 0.99 0.99 0.99 0.99

1 CA, Calibration. 2 CV, Cross-validation.

The sensory-based PLS-DA models (Sr and Sb) led to very good and good classification
results for raw and boiled products, respectively. The Sr and Sb models had accuracy
rates of 0.97 and 0.95, respectively, by using three latent variables. However, the X-block
cumulative variance accounted for by both models was below the ideal threshold of 90%.
This implies that several sensory data were not well correlated with the categorial variable
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(or class label, Y), probably due to the inherent characterizes of the sensory analysis. The
evaluation of the β-coefficients for the Sr model showed that 6 out of 8 attributes were the
most informative (Figure 4a).
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In detail, the Marrone cultivar was negatively related to ‘seed color’, ‘degree of
pellicle into the kernel’, and ‘astringency’ and positively linked to ‘crunchiness’, ‘chestnut
aroma’, and ‘aromatic intensity’ attributes. Both ‘ease pealing’ and ‘sweetness’ traits had
a negligible effect on cultivar recognition. Distinctively for the boiled chestnut, the most
important features for the Sb model were identified in 3 out of 7 descriptors (i.e., ‘seed
color’, ‘flouriness’, and ‘sweetness’), which were positively related to the Marrone cultivar
(Figure 5a). The performance of the spectral-based PLS-DA models varied significantly
according to the type of matrix (i.e., raw or boiled chestnut). Very good results were
obtained on the raw product (i.e., Nr model) with consistent sensitivity, selectivity, and
accuracy ratios of 0.98, demonstrating the feasibility of using NIR spectroscopy for the
authentication of raw peeled chestnuts, in agreement with findings obtained on in-shell
fruits by Nardecchia et al. [25]. On the other hand, the classification of cultivars in boiled
products did not seem an easy task for a spectral-based approach. The Nb model had
an accuracy of 0.85 and 0.78 in calibration and cross-validation, respectively, which, as
well as indicating a lower discrimination capability, highlights a lack of robustness. The
β-coefficients (Figures 4b and 5b, respectively) surprisingly showed evident similarities
between models (Nr and Nb) in identifying the most contributing wavebands to the
classification task. In both cases, the identified NIR bands were assigned to the combination
band of the second overtone of OH stretching with the fundamental band of CH stretching
(9386 cm−1), the second overtone of C-H stretching (8729 and 8285 cm−1), the CH stretching
and deformation combination (7552 and 7167 cm−1), the second overtone of NH stretching
(6791 cm−1), the spectral region of the CH stretching (5817 cm−1), the OH bending and
CO stretching combination (4737 cm−1), and the CH stretching and CH2 deformation
combination (4292 cm−1) [70]. In general, as already mentioned, the wavebands, ranging
from about 10,000 to 5900 cm−1, are mainly related to carbohydrates and moisture content,
while at 5900–4000 cm−1, the functional groups of proteins, starch, and fibers are more
represented, as well as overlapped with the water peak located at 5200 cm−1.
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All fusion-based PLS-DA models (Fr and Fb) led to impressive classification results,
showing clear improvements, with respect to both sensory-based and spectral-based
approaches. Bearing in mind the explorative approach of the present study and, thus,
that further confirmatory experiments will be required (e.g., model validation with a
real external dataset), the obtained performance metrics prove to be excellent, consistent,
and robust. The added value of the data fusion approach is particularly evident on the
authentication of the boiled product, overwhelming both Sb and Nb models. The Fb model,
characterized by 7 LVs, also shows high X-block and Y-block captured variances (99.9 and
84.4%, respectively), which implies high correlation among predictors and predictand. In
addition, the results demonstrate that cultivar classification on the raw peeled product
does not require a data fusion approach: both Sr and Nr models are feasible; however, the
spectral approach appears interesting for its fast and inexpensive nature.

4. Conclusions

Food quality assessment is rapidly evolving as new consumer needs arise and new
techniques and tools become available. However, the exploitation of the latter, as well as
their implementation within operative processes, should be evidence-based [71].

From this study, the Sweet chestnut and Marrone cvs proved to be easily distinguished
by all the physical properties and sensory traits. Overall, results suggest that, due to the
aforementioned differences, these two chestnut cultivars could have different practical
applications. In this regard, we believe that our results will be helpful for the selection of
chestnut cultivars with different sensory characteristics for various industrial applications.
Large nuts, easy pellicle removal, chestnut aroma, and aromatic intensity make Marrone cv
fruits suitable for both the fresh market and candying, i.e., marron glacé. On the other hand,
due to their characteristics, Sweet chestnut fruits have the potential to be used for secondary
food products, such as jam, chestnut mash, and flour. Moreover, sensory characterization
as tool could also be helpful in the promotion of local chestnut cultivars and, thus, increase
interest within a gastronomic tourism framework.

This study has proven the effectiveness of the data fusion approach for the cultivar
authentication of boiled chestnut in terms of classification sensitivity and specificity, in
which sensory and spectral approaches compensate each other’s drawbacks, synergistically
contributing to an excellent result. The model obtained from the data fusion at a low-level
(i.e., Fb model) has the potential to compensate for the assessors’ fatigue in the sensory
method, overcoming the observed limits of FT-NIR spectroscopy in the cultivar authen-
tication of boiled chestnuts. This evidence should be subjected to further investigations:
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distinctively, a larger validation sample must be used to address the additional possible
variations expected from growing chestnuts in different agro-pedo-climatic conditions, in
addition to other cultivars.

The potential of data fusion to separate chestnuts according to their cultivar is a
relevant subject of future research, since we expect that this approach will be of great
importance to consumers and commercial chestnut growers for the best choice of chestnut
cultivars in a particular geographic region and, ultimately, to support the improvement
of the quality of the chestnuts produced. Moreover, linking sensory attributes with NIR
spectra would provide an improved or advanced strategy for manufacturers and processors
for chestnut cultivars authentication and quality evaluation for an evidence-based market
designation and positioning.
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