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Abstract: Titanium and its alloys are used as biomaterials for medical and dental applications, due to
their mechanical and physical properties. Surface modifications of titanium with bioactive molecules
can increase the osseointegration by improving the interface between the bone and implant. In this
work, titanium dioxide nanotubes (TiO2NTs) were functionalized with a lectin from the plasma
of the fish Oreochromis niloticus aiming to favor the adhesion and proliferation of osteoblast-like
cells, improving its biocompatibility. The TiO2NTs were obtained by anodization of titanium and
annealed at 400 ◦C for 3 h. The resulting TiO2NTs were characterized by high-resolution scanning
electron microscopy. The successful incorporation of OniL on the surface of TiO2NTs, by spin coating,
was demonstrated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIE), and
attenuated total reflection-Fourier transform infrared spectrum (ATR-FTIR). Our results showed that
TiO2NTs were successfully synthesized in a regular and well-distributed way. The modification of
TiO2NTs with OniL favored adhesion, proliferation, and the osteogenic activity of osteoblast-like
cells, suggesting its use to improve the quality and biocompatibility of titanium-based biomaterials.

Keywords: mannose-binding lectin; Oreochromis niloticus lectin; TiO2 nanotubes; biocompatibility;
osseointegration

1. Introduction

Titanium (Ti) and its alloys have been extensively applied in the fabrication of implants
and prosthesis to repair and/or replace hard tissues, due to their physical characteristics
such as: high mechanical strength, corrosion resistance, and good biocompatibility [1,2].
Although, TiO2 presents several advantages, as low cost and improved biocompatibility
over other biomaterials, therapeutic failure of TiO2-based implants and other medical
devices may occur due to the ineffective bone formation and fixation, leading to bacterial
infection and the implant loss. In this regard, the long-term success of titanium alloy
implants is reliant on its stable fixation to the surrounding bone which, in turn, depends
on the osseointegration—i.e., the formation of a direct interface between an implant and
bone—without intervening soft tissue [3]. However, titanium per se lacks biological activity
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and cannot significantly promote cell adhesion and tissue healing. There is a consensus
that the surface topography, morphology, chemical composition, and surface energy of
titanium play a critical role on the cell adhesion, proliferation, production, and mainte-
nance of extracellular matrix during the osseointegration process [4]. Therefore, physical
and chemical modifications of the titanium surfaces have been developed to create more
suitable interfacial microenvironment, promoting cell–material interactions and osseointe-
gration [5,6]. Another way to improve the osseointegration can be achieved throughout
the functionalization of implant material surfaces with biomolecules [7].

Lectins are non-immune proteins which bind reversibly and in a highly specific man-
ner to simple or complex carbohydrates. These proteins have been widely investigated due
to their prominent roles in several physiological and pathological processes, including im-
mune response, inflammation, cell–cell communication, recognition, and differentiation [8].
It has been demonstrated that lectins from plants and animals have mitogenic [9,10],
antibacterial [11,12], immunomodulatory [13,14], antithrombotic [15], and healing [16]
activities. Some of these activities are remarkably interesting from the point of view of
osseointegration and tissue repair.

The lectin OniL, from the plasma of Nile tilapia Oreochromis niloticus, is a mannose
recognition lectin with mitogenic and immunomodulatory activities already proven in
the literature [17]. These features make OniL a promising functionalizer of TiO2 surfaces.
OniL is a C-type lectin that depends on Ca2+ for carbohydrate recognition. This class of
lectins has demonstrated important roles in bone biology and pathogenesis. A C-type
lectin domain family 11 member A precursor (Clec11a), also known as the stem cell growth
factor (SCGF) or osteolectin 1, for example, has been identified as a growth factor able to
promote the proliferation and differentiation of hematopoietic stem/progenitor cells [18].
The messenger RNA for this protein is abundantly expressed in proliferating chondrocytes,
the primary ossification center, perichondrium, and periosteum [18]. Furthermore, it has
been shown that secreted blood mannose-binding lectins (MBLs) of fishes, as well as other
organisms, are important components of innate immunity, playing a crucial role in the
body defense [17–19]. MBL is a constituent of the lectin pathway of complement system
activation, one of the main components of innate immunity. This lectin plays an essential
role in the defense against infectious microorganisms, maintenance of bone homeostasis,
participating in different stages of bone healing [20].

Previous studies have demonstrated that a lectin from the seed of a leguminous plant,
Cratylia mollis, was efficiently immobilized on the nanotubular surface of TiO2 nanotubes
enhancing the adhesion of osteoblast-like cells [21]. In the present study, we explored—for
the first time—the potential of an animal-derived lectin with mannose-binding specificity,
as a coating agent of TiO2NT surfaces. For this the TiO2NTs are produced by anodic
oxidation followed by thermal treatment [22]. The TiO2NTs were then negatively charged
to improve the binding of OniL. The deposition of OniL on the surface of TiO2NTs was
performed by spin coating. This technique is a solution-based process developed for
low-cost deposition of thin films of molecules over a substrate surface [23]. The OniL-
treated TiO2NTs were characterized and investigated for adhesion and osteogenic activity
in osteoblast-like cells.

2. Materials and Methods
2.1. Materials and Reagents

Pure titanium was purchased from Realum Ltd. (São Paulo, SP, Brazil). For all the
experiments, the Eagle’s minimum essential medium (EMEM), antibiotics, fetal bovine
serum (FBS), were bought from Sigma-Aldrich Co. (St Louis, MO, USA). Rhodamine
Phalloidin and 4′,6-Diamidine-2′-phenylindole dihydrochloride (DAPI) were bought from
Thermo Fisher Scientific Co. (Walthan, MA, USA); isopropyl alcohol, ethylene glycol,
ammonium fluoride, sodium hydroxide and ethanol were purchased from Merck Co.
(Darmstadt, Germany). The human osteosarcoma cell lineage (HOS, ATCC® CRL1543™)
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was purchased from ATCC Co. (Manassas, VA, USA). The kits for detection of alkaline
phosphatase activity and calcium were purchased from LabTest Ltd. (São Paulo, Brazil).

2.2. Sample Preparation

Titanium samples (99.6% purity) with 0.5 mm thickness were prepared as square
sheets sized 1cm2. The metal surface was polished utilizing a 400-grit emery paper down
to 1200-grit emery paper, followed by wet polishing in a 15 µm alumina slurry. Next, the
titanium samples were washed with distilled water, cleaned up with neutral detergent and
sonicated for 10 min in isopropyl alcohol. Then, the samples were rinsed with deionized
water and dried in a nitrogen stream. TiO2NTs were obtained by anodization of titanium
samples by using a solution containing 89.3% ethylene glycol/0.7% ammonium fluoride
in distilled water, as the electrolyte. The anodization was performed at a potential of
30V for 30 min at 2A. The time-dependent anodization current was recorded with a
computer controlled Minipa ET-2076A multimeter (Minipa Co., Joinville, Brazil). After
the electrochemical treatment, the samples were rinsed with deionized water for acid
replacement and dried in a nitrogen flux. To crystallize the amorphous anodized TiO2NTs
arrays into crystalline anatase phase, the samples were annealed in a furnace at 400 ◦C for
3 h under air atmosphere.

2.3. Coating of TiO2 with OniL

OniL was purified from the plasma of Nile tilapia Oreochromis niloticus and character-
ized as previously described [14]. For the lectin adsorption, the TiO2NTs were preincubated
for 10 min in a 10% NaOH ethanolic solution to confer a negative charge to NTs surface
(Neg-TiO2NTs). The OniL lectin, was then diluted at 100 and 200 µg/mL in PBS. Neg-
TiO2NTs were coated with the lectin by spin coating, using a WS-650 Mz-23 NPPPB Spin
Coater (Laurell Technology Co.,North Wales, PA, USA), operating at initial spin and final
speed of 500 rpm and 2000 rpm, respectively, for 6 min.

2.4. Morphological Characterization of TiO2NTs

The morphological characterization of TiO2NTs was performed by high-resolution
scanning electron microscopy, (Philips FEG/EDS QUANTA 200F) (FEI Co., Hillsboro, OR,
USA) The binding of OniL on the surface of TiO2NTs was evaluated by cyclic voltam-
metry (CV), electrochemical 115 impedance spectroscopy (EIE), and attenuated total
reflection-Fourier transform infrared spectrum (ATR-FTIR). The CV and EIE assays were
performed using an Autolab potentiostat/galvanostat (Metrohm PGSTAT 128) (Metrhohm
Co., Perdizes, Brazil). The Fourier transform infrared spectrum (FTIR) was recorded using
a Bruker FT-IV spectrometer (Bruker, Billerica, MA, USA).

2.5. Cell Culture

Human osteosarcoma cell lineage (HOS, ATCC® CRL1543™) was used as a model
for adhesion, proliferation, and osteogenesis assays. For all the experiments, the cells
(105 cells/mL) were seeded on bare TiO2NTs or NegTiO2-NTs, coated or not with OniL
(100 or 200 µg/mL), in 24-well culture plates containing 500µL of EMEM (0.5 × 105 cells/mL)
supplemented with 10% of FBS/1% penicillin/streptomycin, at 37 ◦C in 5% CO2 atmo-
sphere for up 72 h.

2.6. Cell Adhesion, Proliferation, and Viability Assays

Cells cultured on the modified TiO2NTs, coated or not with OniL—for 24 to 72 h—
were assayed for adhesion and proliferation. For this, the samples were stained with
rhodamine-phalloidin fluorescent probe for F-actin and counterstained with 4′,6-Diamidine-
2′-phenylindole dihydrochloride (DAPI) following the manufacturer’s instructions with
minor modifications. Briefly, the cells were washed twice in prewarmed phosphate-buffer
saline, pH 7.4, fixed in 3.7% formaldehyde in PBS for 10 min and permeabilized with
0.1% Triton X-100 in PBS for 5 min, at room temperature. After permeabilization, the
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cells were washed in PBS and staining with 5 µL of rhodamine-phalloidin methanolic
stock solution diluted into 200 µL PBS/sample, for 20 min at room temperature. After the
incubation time, the cells were washed twice in PBS, and counterstained with 300 nM of
4′,6-Diamidine-2′-phenylindole dihydrochloride (DAPI) diluted in PBS, for 3 min at room
temperature. After incubation time, the samples were washed in PBS and visualized in a
ZEISS Observer Z.1.apoTome microscope (Zeiss Co., Oberkochen, German). The number
of adhered cells was estimated by counting the DAPI labeled nuclei in 10 randomly chosen
field/sample (10X objective), using ImageJ 1.4.v software.

2.7. Osteogenic Potential

Cells cultured on the TiO2NTs were evaluated for its osteogenic potential. For this,
after 24, 48, and 72 h of cultivation, the samples were washed three times in PBS and
transferred for a new 24-well culture plates. The cells were lysed in a 0.5% Triton X-100
solution in PBS by three freezing/thawing cycles. The samples were collected, centrifuged
at 10,000× g for 5 min and tested for ALP activity assay. ALP activity was quantified by the
colorimetric alkaline phosphatase kit according to manufacturer’s instructions using para-
nitrophenol phosphate as substrate. For calcium quantification the cells were cultured for
72 h, lysed as described above and submitted to calcium detection using calcium liquiform
kit according to the manufacturer’s instructions. The absorbance of the samples was read
at 590 nm for alkaline phosphatase and 570 nm for calcium detection, using a Multiskan
GO spectrophotometer (Thermo Co., Walthan, MA, USA).

2.8. Statistical Analysis

The data are expressed as mean ± SD of two independent experiments in triplicate
and analyzed by analysis of variance (ANOVA) test followed by Bonferroni post-test or
Student t-test. p < 0.05 was considered statistically significant. The statistical analyses were
performed using the GraphPad Prisma 5.0.

3. Results and Discussion

Nowadays, modifications on the surface of titanium implants and its further func-
tionalization with biomolecules have been investigated to improve the quality and bio-
compatibility of medical devices as prosthesis, and implants [6,7,21,22]. In this work,
the anodization followed by thermal treatment of titanium surface efficiently produced a
self-organized and homogeneous layer of TiO2NTs with a mean diameter 73.8 ± 8.2 nm, as
confirmed by the EDS-SEM analysis (Figure 1a). Several studies reported that the viabil-
ity, proliferation, migration, and differentiation of mesenchymal and hematopoietic stem
cells [22,24–27], as well as the behavior of osteoblasts and osteoclasts [28,29] are strongly
affected by the nanometric scale of TiO2NTs. The diameter of TiO2NTs obtained in our
study was able to promote cell adhesion and proliferation, even in the absence of any func-
tionalization of its surface. Our data corroborated previous studies that demonstrated an
increase in the biocompatibility of TiO2NTs in 60–80 nm size range [25,30]. The annealing
treatment after anodization changed the structure of TiO2NTs to the anatase, as observed
by XRD analysis, according to the JCPDS file no. 21-1272. This crystallographic form of
TiO2NTs has been reported as a highly organized structure that favors the nucleation of
hydroxyapatite, the inorganic component of bone tissue, supporting the osseointegration
process [7,31–35].

Although the electrochemical anodization is a useful approach to improve the bio-
compatibility and osteogenesis, as it provides an appropriate microenvironment for the
fixation of bone cells, previous studies have demonstrated the great advantages of TiO2
surface modification with biocompatible and bioactive molecules [7,36–39]. This procedure
has been shown to reduce the postoperative infection and improve the biocompatibility
and osseointegration of the implant [7]. In this work, we used the lectin OniL to coat
the surface of TiO2NTs. This lectin is a 17 kDa protein consisting of two subunits of 11
and 6.6 kDa. This protein presents a high affinity for methyl-α-D-mannopyranoside and
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D-mannose [14]. In mammals, mannose-binding lectins (MBLs) constitute a fundamental
link between the innate immune system and other functions, such as coagulation, home-
ostasis after injury and defense against microorganisms [40]. As the success of the implant
and prosthesis is intrinsically associated with the above-mentioned processes, we hypothe-
sized whether the functionalization of TiO2NTs with OniL could improve the cell adhesion
and proliferation, compared to the bare TiO2NTs. For this, we first incubated TiO2NTs with
NaOH solution (pH 13) to charge them negatively improving the adsorption of OniL on
its surface. According to Bavykin et al. [41] negatively charged nanotubes (Neg-TiO2NTs)
promote electrostatic interactions with cations, presenting an excellent matrix for protein
binding [42]. After being negatively charged, the samples were subjected to spin coating to
immobilize OniL on the surface of Neg-TiO2NTs. The spin coating is a useful technique to
fast and easily create a homogenous film with desired and well-controlled thickness [43].
As observed for the bare TiO2NTs the SEM analysis showed that the deposition of OniL on
the surface of these nanotubes did not alter its morphology (Figure 1b). The elucidation
of the chemical composition of these TiO2NTs by EDS showed the presence of Ti and
O, demonstrating the successful anodization process, as well as the absence of sample
contaminants (Figure 1c).
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Figure 1. Ultrastructural assay of TiO2 modified nanotubes by high resolution scanning microscopy (a) bare TiO2NT,
(b) OniL-TiO2NTs (200 µg/mL), and (c) EDS-spectrum of TiO2NTs.

The adsorption of OniL on the TiO2 surface was monitored by electrochemical
impedance spectroscopy (EIS) using K4 [Fe(CN)6]/K3[Fe(CN)6] (1:1) as redox pair. The
Figure 2 shows that each step of lectin immobilization generates a blockage in the transfer
of electrons, increasing the resistance value (Rct). This result demonstrates that the lectin
was efficiently immobilized on the surface of the samples. The bare TiO2NTs showed a Rct
value of 1.7 kΩ. For negatively charged nanotubes, this resistance increased to 3.2 kΩ. The
adsorption of OniL to TiO2NTs substantially increased the Rct value to 24.2 kΩ, whereas
causing a simultaneous decrease in Cd to 6.89 µF. The impedance parameters, adjusted to
the Randles equivalent circuit, are shown in Table 1.

The capacitive behavior observed in the Nyquist plots (Figure 2) was demonstrated
by the presence of a double electrochemical layer at the electrode–solution interface, and
the dielectric nature of TiO2 [44].

The ATR-FTIR analysis of TiO2 and Neg-TiO2NTs corroborated our electrochemical
data. Our results revealed the presence of one absorption band peak characteristic of
Ti-O vibration in the region of 400–800 cm−1. The presence of OniL lectin can be con-
firmed by the appearance of the two main stretches, corresponding to the lectin amide
groups in 1643 cm−1 [45]/1025 cm−1 and 1456 cm−1/1010 cm−1 [46] (Figure 3). The sec-
ondary protein structures are usually identified by analyzing the vibration of amide I
(1700–1600 cm−1), mainly due to the C=O elongation and amide II (1600–1500 cm−1), with
minor contributions from C-N elongation and N-H [45,46].
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Table 1. Impedance parameters for TiO2NTs-modified surfaces using the equivalent cetesolution.
The values were extracted from the parameters of the EIS equivalent circuit.

TiO2NTs
Treatment

Cdl
(µF)

Rct
(kΩ)

TiO2NTs 38.89 1.71
Neg-TiO2NTs 35.33 3.30
OniL-TiO2NTs 6.89 24.20

Cdl, double layer capacitance; Rct, load transfer resistance.
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In a previous work, the lectin Cramoll from seeds of Cratylia mollis bean was efficiently
immobilized on the surface of anodized TiO2 nanotubes using layer-by-layer (LbL) tech-
nique [21]. This technique consists in the growth of alternated layers of poly (allylamine
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hydrochloride) (PAH) and poly(acrylic)acid (PAA). This self-assembling process occurs
by the adsorption of oppositely charged polyelectrolytes on the surface of TiO2NTs [21].
Although layer-by-layer was proved to be useful to adsorb Cramoll lectin on the surface of
TiO2NTs, this technique should be more expensive and time-consuming. In the present
work, the lectin OniL was directly bound onto Neg-TiO2NTs without the need of any
additional functionalization step, remaining strongly attached to the surface of negative
charged TiO2NTs.

The behavior of osteosarcoma cells in response to the OniL-decorated nanotubes was
investigated (Figure 4). This osteoblast-derived lineage is widely used as a cell model to
investigate the osseointegration on the surface of nanomaterials in vitro [47,48]. To evaluate
the human osteosarcoma cells’ attachment on the TiO2-modified nanotubes, the cells were
labeled with rhodamine-phalloidin, a fluorescent probe for actin, emitting fluorescence at
the red channel. The quantification of the adhered cells was performed by counting the cell
nuclei labeled with DAPI, which specifically binds to nucleic acids, emitting fluorescence at
the blue channel. Our results showed that the deposition of OniL on the surface of TiO2NTs
did not exhibited cytotoxicity and were able to significantly improve the cell percentage
of adhered cells on the NTs. The osteosarcoma cells cultured on both the bare TiO2NTs
and OniL-TiO2NTs (at 100 and 200 µg/mL) for 24 h showed a typical distribution of the
actin filaments with the formation of focal adhesion points, an essential characteristic to
maintain the shape, migration, and proliferation of the cells on the substrate [49]. At this
time, there is a predominance of cells with spindle morphology and cell–cell interactions
could be easily observed. However, the existence of empty spaces in the bare TiO2NT
samples indicates a low rates of cell proliferation. After 48 and 72 h a confluent monolayer
was observed in all TiO2NT preparations.

In the OniL-TiO2NTs samples, it was possible to observe that cells presented a more
flattened extended phenotype and an increased spreading on the TiO2 surface. Interestingly,
by 48 h of cultivation, the cells on the TiO2NTs decorated with 200 µg/mL of OniL begun
to orient themselves in a more organized concentric manner in comparison to the those
cultivated on the bare TiO2NTs (Figure 4a). Violin et al. [50], using the lectinhistochemistry
methodology, evaluated the differential expression of surface glycoconjugates in a rabbit’s
tibia implanted with microporous biphasic ceramic material. These authors showed that
the lectin binding pattern during bone formation changed, corroborating the role of dif-
ferential expression of glycoconjugates and its putative recognition by lectins during the
osseointegration process. After 72 h of cultivation, the cell morphology remained preserved
and strict cell–cell contacts could be observed in all modified TiO2NTs. The orientated
organization of osteosarcoma cells observed on the OniL-treated surfaces, compared to
bare TiO2NTs, may reflect what happens in vivo, showing the importance of carbohydrate
recognition during osteogenesis on the surface of implants and prothesis.

The quantification of DAPI-labeled nuclei demonstrated a significant increase in the
cell adhered to TiO2NTs in the samples treated with OniL for 24 and 48 h compared to the
bare TiO2NTs (Figure 4b). The deposition of OniL on the surface of TiO2NTs was able not
only to significantly increase the percentage of adhered cells by approximately 50%, but
also stimulate their proliferation and differentiation on the TiO2NTs, in both concentrations
tested, compared to the control group (TiO2NTs). After 72 h of cultivation, the percentage
of adhered cells decreases in all samples at levels compared to the TiO2NTs (Figure 4b).
This behavior is also observed in the human osteosarcoma cultures maintained in culture
plates under standard conditions for up 48 h (data not shown). The decrease of percentage
of adhered cells can be explained by the osteosarcoma cells commitment to osteogenesis
rather than to the proliferation process.
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To investigate whether the deposition of OniL on TiO2NTs was able to induce the
osteogenesis, we examined the activity of alkaline phosphatase (ALP) (Figure 5a). Herein,
we clearly demonstrated that the coating of NTs with OniL favored the rapid colonization
of the substrate, allowing cell proliferation and osteogenic activity. Osteosarcoma cells
cultured on OniL decorated nanotubes, showed a significant increase in the ALP activity as
compared with TiO2NTs, mainly at 200 µg/mL of OniL. The highest increase was observed
for OniL group after 48 h with values of ALP activity of 1.5 U/L (TiO2NTs), 3.2 U/L
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(OniL100 µg/mL), and 5.0 U/L (OniL200 µg/mL) (Figure 5a). A study by Ikeda et al. [51]
showed that HOS cells cultivated on plastic culture plates presented ALP activity only
after three weeks of cultivation. On the other hand, Min et al. [52] have demonstrated
that the coating of TiO2NTs with laminin-derived functional peptides promotes HOS
adhesion and ALP activity within the first 24 h of cultivation. Accordingly, we also showed
that the modification of TiO2NTs with OniL was able to early trigger the osteogenesis
processes in HOS cells. Taken together, these results showed that the adsorption of active
biomolecules on the surfaces of biomaterials plays an important role in the induction of
the osteogenesis process. Calcium, one of the main elements involved in the bone tissue
remodeling, was also quantified after 72 h (Figure 5b). All the samples from the OniL
groups presented a significant increase in the amount of calcium compared to the bare
TiO2NTs samples. No statically significant differences could be observed between the lectin
treatments (Figure 5b).
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The osteoblasts cells are responsible for the synthesis, deposition, and mineralization
of the bone extracellular matrix. In this process, the production of alkaline phosphatase
is one of the parameters used to assess the effects of a biomaterial on the bone tissue
activity [5]. The increased activity of this enzyme indicated the induction of the biomineral-
ization process. In addition, during the growth and remodeling of adult bone, osteoblasts
secrete calcium-rich vesicles to the calcifying osteoid [53,54]. As expected, the increase in
ALP activity (Figure 5a) was followed by the simultaneous enhancement in the calcium
deposition (Figure 5b) [54,55]. Both ALP activity and calcium deposition, observed in our
study, are indicative of metabolically active and viable cells. Previous studies showed that
mannose-binding lectins as Lens culinaris (lentil) lectin (LcL) and Narcissus pseudonarcissus
(daffodil) lectin (NpL), a α-d-mannose-binding protein, did not elicit potent cytotoxicity
against osteosarcoma cells [56]. Furthermore, a study by da Silva et al. [57] showed that
OniL was able to favor the proliferation of Balb/c splenocytes without causing significant
cytotoxicity to these cells. Furthermore, our fluorescence microscopy assay showed that
the cells remained adhered to the surface of TiO2NTs, presenting a preserved morphology
and nuclei integrity throughout the experiments. Although the improvement in the cell
proliferation and adhesion on TiO2NTs seems to be a natural consequence of the ability of
OniL to recognize carbohydrates on the surface of HOS, some issues—such as the speed of
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this process, the specificity of lectin, and mainly the fate of adhered cells after binding to
the lectin—should be taken in account. Marty-Detraves et al. [58], for example, showed that
the deposition of a lectin from the mushroom Xerocomus chrysenteron (XcL) inhibited the
cell–substrate adhesion and proliferation of the adherent cell lines NIH-3T3 and HeLa cells,
but not of the non-adherent SF9 cells. Interesting, XcL did not interfere in the cell cycle or
induced apoptosis to these cells. On the other hand, the lectin from Bauhinia forficata (BfL)
inhibited integrin-mediated adhesion of MCF7 human breast cancer cells inducing the cells
to death [59].

Besides its role in the adhesion and differentiation of osteosarcoma cells, the deposi-
tion of OniL on the surface of TiO2NTs may have other beneficial consequences. Due to its
immunomodulatory role, this protein can regulate the local inflammatory response, assist-
ing in the bone healing and regeneration. Lectins can bind to the cell surface carbohydrates
and trigger various cell events, such as stimulation of cell proliferation. In our study, we
used an inexpensive and faster methodology to absorb OniL on TiO2NTs without the need
for intermediate polymers.

4. Conclusions

In this study, we successfully functionalized TiO2NTs with the lectin OniL by using
the spin coating methodology. The osteosarcoma cells cultivated on the surface of OniL-
decorated TiO2NTs presented an improved adhesion and proliferation. The OniL also
promoted an increase in both the deposition of calcium and ALP activity, which is indicative
of enhanced osteogenic activity compared to bare TiO2NTs. The rapid colonization of HOS
on the surface of OniL-treated TiO2NTs can prevent bacteria from forming biofilm on
its surface, improving the chances of implant success. Although further studies are still
needed to better understand the nature of OniL-TiO2NTs/osteoblast interactions, our
results indicate that OniL could enhance the biocompatibility of TiO2NTs-based medical
devices, assisting in the osseointegration between the bone and TiO2NTs surfaces.
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