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Abstract: Cancer cachexia is a complex multifactorial syndrome marked by a continuous depletion
of skeletal muscle mass associated, in some cases, with a reduction in fat mass. It is irreversible
by nutritional support alone and affects up to 74% of patients with cancer—dependent on the
underlying type of cancer—and is associated with physical function impairment, reduced response
to cancer-related therapy, and higher mortality. Organs, like muscle, adipose tissue, and liver, play an
important role in the progression of cancer cachexia by exacerbating the pro- and anti-inflammatory
response initially activated by the tumor and the immune system of the host. Moreover, this
metabolic dysfunction is produced by alterations in glucose, lipids, and protein metabolism that,
when maintained chronically, may lead to the loss of skeletal muscle and adipose tissue. Although a
couple of drugs have yielded positive results in increasing lean body mass with limited impact on
physical function, a single therapy has not lead to effective treatment of this condition. Therefore,
a multimodal intervention, including pharmacological agents, nutritional support, and physical
exercise, may be a reasonable approach for future studies to better understand and prevent the
wasting of body compartments in patients with cancer cachexia.
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1. Introduction

Cancer cachexia is a complex multifactorial syndrome that leads to substantial and unintentional
body weight loss, marked by a continuous depletion of skeletal muscle mass associated in many, but not
all, cases with a reduction in fat mass [1]. This loss of body weight is irreversible by nutritional support
alone and leads to progressive functional impairment. Cancer cachexia is estimated to affect up to 74%
of patients with many types of cancer globally, with the highest incidence in head and neck, pancreatic,
gastric, and hepatic cancer [2]. Moreover, cancer cachexia is associated with impaired physical function,
increased risk of treatment-related complications, as well as higher rates in hospitalizations and
mortality [3–6].
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To date, there is no final agreement regarding the definition of cancer cachexia, however, commonly
used criteria to define cachexia are (1) patients who have lost more than 5% of body weight over the last
6 months or (2) presence of either body mass index (BMI) lower than 20 kg/m2 or sarcopenia associated
with ongoing weight loss of more than 2% [1]. Despite validation of BMI and weight loss as criteria to
distinguish cachectic and non-cachectic patients [7], a recent study in patients with pancreatic cancer
challenges the aforementioned criteria; with computed tomography analysis, a tissue loss of more than
5% was detected in 81% of patients while the traditional definition identified only 57% of patients as
being cachexic [8]. It seems that more precise assessment of body composition should be applied along
the tissue wasting trajectory in patients with cancer to detect cachexia as early as possible [9].

Although the molecular mechanisms involved in the development and progression of cancer
cachexia have not been elucidated in detail, it is suggested that the interaction between cancer cells
and other organs, especially muscle and fat tissue, promotes alterations in body composition seen
in these patients [10]. Skeletal muscle counted as a whole is the largest organ of the human body
and plays a critical role in controlling metabolism in patients with cancer cachexia. Additionally,
tumor cells can switch energy production from oxidative phosphorylation to cytosolic glycolysis,
forcing the organism to heavily depend on glucose as its main source of fuel [11]. Thus, this metabolic
derangement mobilizes glucose precursors from muscle and adipose tissue that may lead to loss of
body weight when sustained chronically. Moreover, this metabolic responses seem to be mediated
by secretion of pro-inflammatory cytokines from cancer cells and also from the immune system of
the host, including tumor necrosis factor (TNF), interferon-gamma (IFN-γ), and several interleukins
(IL-6, IL-1β) [12]. Activin and myostatin, other catabolic factors driven by the tumor, have also been
described as mediators of metabolic derangement [13].

The aim of this review is to outline the metabolic disturbances commonly reported in patients with
cancer cachexia and to elucidate factors that may contribute to cancer-related metabolic dysfunction
with tissue loss within body compartments.

2. Altered Energy Balance

Overall, patients with cancer present considerable changes in the homeostasis of energy production
and consumption, favoring a negative energy balance [14]. The total daily energy expenditure is
composed of three components: (1) resting energy expenditure, (2) energy expenditure during physical
activities, and (3) the thermogenic effect of food. In addition, the chronically increased energy imbalance,
often described in patients with cancer cachexia [15], is attributed to either a decrease in energy intake
or an elevated resting energy expenditure due to tumor metabolism, and the combination of both can
also occur [16,17].

The energy demand of a tumor may influence energy expenditure and initiate processes of
body wasting. Through proteolysis, the muscle is degraded into amino acids that serve as a fuel
through hepatic gluconeogenesis. In parallel with proteolysis, there is a breakdown of triacylglycerol
(lipolysis) into three molecules of free fatty acids and one of glycerol, the free fatty acid molecules
are later oxidized and glycerol is used as an energy source for gluconeogenesis as well. Additionally,
increased muscle glycolysis even in the presence of oxygen, the so-called Warburg effect, leads to higher
production of lactic acid, which is further converted into glucose via the Cori cycle in the liver [18].
In addition, mitochondrial dysfunction may also increase the production of lactic acid by reduced
efficiency in extracting energy via the Krebs cycle [19]. Therefore, tumors can increase the global
rate of glycolysis, glycogenolysis, lipolysis, and proteolysis with the purpose of recycling glucose via
gluconeogenesis [20].

These metabolic alterations, however, are distinguished from episodes of starvation/fasting or
caloric restriction, where fat storage replaces glucose as the primary source of fuel after glycogen
depletion, followed by significant protein breakdown in more advanced phases during which also
resting energy expenditure is adjusted to accompany the deficiency in energy supply [21,22]. On the
contrary, patients with cancer cachexia present increased lipolysis with increased mRNA expression
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of the hormone-sensitive lipase enzyme (HSL) and elevation in β oxidation of free fatty acids [23,24].
Affected patients frequently have increased proteolysis associated with reduced protein synthesis [25].
Thus, in this cascade of metabolic events, cancer cachexia has been quoted as a state of “autocannibalism”
in which catabolic metabolism takes place to improve anabolic tumor metabolism [12].

Recently, a hybrid metabolic state, defined by the capability of cancer cells to switch between
oxidative and glycolytic metabolism, has been proposed to explain how cancer cells can adapt to
distinct microenvironments [26]. Even though cells under physiological conditions tend to be more
oxidative or glycolytic depending on their metabolic function and substrate availability, cancer cells
may have a hybrid state, allowing them to develop a phenotype with both metabolic features to
support survival and proliferation [27]. Moreover, cancer cells seem to upregulate plasma membrane
transporters of glucose, lactate, and amino acid with the purpose to support their growth [28].

It is important to acknowledge that the energetic cost of a tumor for the host may range from
100–1400 kcal/day [29]. The tumor type also plays a role in altering energy balance, once a higher
resting energy expenditure has been demonstrated in patients with lung cancer when compared
to patients with gastrointestinal cancer [30]. In addition, central tumor localization, compared to
peripheral localization, in patients with lung cancer also showed a more pronounced increase in energy
expenditure [16]. Although we can assume that energy imbalance may be more frequent in certain
types of cancer (i.e., lung cancer), further studies assessing energy metabolism in cancer subpopulations
are necessary. In fact, a hypermetabolic state is a common feature in patients with cancer, although a
lower percentage of patients may develop hypometabolism or no changes at all [31].

The Harris-Benedict equation has been largely used to estimate the energy expenditure in patients
with cancer in spite of its limitations to predict energy expenditure in malnourished patients [32]. A
predicted resting energy expenditure higher than 110% has been described in 58% of patients with
unselected cancer [33] and it has been independently associated with poor prognosis in a recent study
with metastatic non-small cell lung cancer (NSCLC) [34]. However, a more appropriated analysis
would be to correct measured resting energy expenditure (by indirect calorimetry) for lean body
mass (LBM), considering that patients with cancer might present a daily energy consumption of 43.7
kcal/kg [34].

Skeletal muscle mass is the largest contributor to resting energy expenditure and along with
adipose tissue an energetic reservoir for many bodily functions. A study in patients with stage III and
IV of head and neck cancer assessed the reduction in LBM and fat mass after one month of concurrent
chemo-radiation treatment and found a reduction by 71.7% and 28.3%, respectively [35]. In addition,
muscle wasting is not an exclusive feature of skeletal muscle involved in locomotion, it has also been
shown to affect respiratory muscles and even myocardium in patients with chronic disease-associated
wasting [36–38]. Additionally, the progression of tumor cells, as well as cardiotoxicity induced by
cancer treatment, may lead to a condition called “cardiac cachexia” that is characterized by cardiac
atrophy, fibrosis, and myocardial dysfunction [39].

In light of these findings, the metabolic derangement seems to lead to a decline in global skeletal
muscle mass followed by loss of adipose tissue to a lesser degree (Figure 1), though other studies have
shown that the loss of fat mass can occur without reductions in muscle mass in 17% of patients with
pancreatic cancer [8]. However, the order and contribution of each body compartment in the course of
wasting still need to be determined by further studies.
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Figure 1. Metabolic derangement as a result of byproducts released from adipose tissue, tumor cells,
skeletal muscle and liver, leading to clinical endpoints.

Furthermore, cancer cachexia is often associated with anorexia and, in many cases, it is not only
a matter of inadequate food intake [40]. Anorexia has shown to impact appetite, taste, and smell in
these patients [41]. The mechanism for these modifications seems to operate on a central level, once
pro-inflammatory factors released by the tumor may cross the blood–brain barrier and act on the
hypothalamus through pro-opiomelanocortin neurons, reducing appetite and feeding behavior [42,43].

On the other hand, the typical skinny patient with wasting-related complications associated with
cancer cachexia may not always be the case. Indeed, cachectic patients can be obese, causing an elusive
“protection” due to a phenomenon known as the obesity paradox [9]. In a population of patients with
pancreatic cancer, 16.2% of patients developed sarcopenia associated with obesity and the presence of
sarcopenic obesity has also been shown to be an independent indicator of adverse prognosis in this
population [44].

3. Inflammatory Markers and Muscle Mass

Under healthy physiological conditions, macrophages and dendritic cells, part of the innate
immune system, are responsible for detecting agents that might cause infection and tissue damage in
the organism. As a result of this, they produce an immune response via pro-inflammatory cytokines
release, such as IL-6, IL-1β, TNF, and IFN-γ, and these inflammatory markers might act in nearby
(paracrine action) or distant tissues (endocrine action). Likewise, the tumor microenvironment releases
cytokines that contribute to their growth and favor the energy supply for them [45]. Based on this
context, this section aims to describe the inflammatory pathways within skeletal muscle that may lead
to muscle wasting.

In patients with cancer, IL-6 binds to its receptor IL-6R and exerts its effect by activating the signal
transducer and activator of transcription 3 (STAT3) (Figure 2) [46]. STAT3 interacts with its receptor
(glycoprotein 130) through janus kinases (JAKs) phosphorylating the specific tyrosine residue (Tyr
705), and as a result, triggers the transcription of specific genes related to cell proliferation, cell growth
and inhibition of apoptosis [47]. Moreover, other mediators can also activate STAT3 such as IL-2,
IL-10, epidermal growth factor (EGF), and IFN-γ [48]. Interestingly, STAT3 can increase, in a positive
feedback fashion, the expression of genes involved in its own activation, including IL-6, IL-10, and
EGF [49].
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Figure 2. Pro-inflammatory mediators causing an energetic imbalance between catabolic (in the
bottom right side in bold) and anabolic (in the bottom left side in bold) pathways. Akt, Protein
kinase B; AMPK, AMP-activated protein kinase; BAT, brown adipose tissue; IGF-1, insulin-like
growth factor 1; IL-6, interleukin-6; MAFbx, muscle atrophy F-box; mTOR, mammalian target
of rapamycin; MuRF-1, muscle RING Finger-1; NF-κB, nuclear factor kappa-light-chain-enhancer
of activated B cells; PGK 1, phosphoglycerate kinase 1; PI3K, phosphoinositide 3-kinase; PTHrP,
tumor-derived parathyroid-hormone-related protein; SNS, sympathetic nervous system; STAT3,
activating the signal transducer and activator of transcription 3; TNF, tumor necrosis factor; UPS,
ubiquitin-proteasome system.

Although the development and progression of cancer cachexia due to overactivation of STAT3 is
unclear, increased activation of STAT3 has been associated with loss of muscle mass in several mice
models [50–52]. In addition, STAT3 has been shown to be associated with two important proteolysis
pathways, including the ubiquitin-proteasome system (UPS) and apoptosis through activation of
caspase-3 (Figure 2), whereas blocking STAT3 preserved muscle mass in a mouse model of C26 colon
carcinoma and Lewis lung carcinoma cells [50]. Moreover, STAT3 has also been described to be
related to loss of muscle mass by stimulating myostatin, a strong inhibitor of myogenesis [53], while
moderate-intensity exercise in mice was able to maintain muscle mass in spite of increased STAT3
activity [54].

IL-6 secretion has also been shown to directly regulate energy homeostasis by phosphorylating
phosphoglycerate kinase 1 (PGK 1), which is an enzyme responsible for generating adenosine
triphosphate (ATP) through glycolysis by transferring a phosphate from 1,3 diphosphoglycerate to
adenosine diphosphate (ADP) in the sixth reaction of glycolysis [55]. Simultaneously, PGK1 can also
stimulate pyruvate dehydrogenase kinase and inhibit the entrance of pyruvate into the mitochondrion
(Krebs cycle), increasing lactic acid production in the cytosol which is then exported to other tissues
(Figure 2) [56]. Interestingly, increased expression of PGK1 in colon cancer tissue has been associated
with metastasis in a cohort of patients with colon cancer [57].

Additionally, even though overactivation of IL-6 has been extensively linked to muscle degradation
in cancer cachexia, IL-6, released by contracting skeletal muscle, has been demonstrated to contribute
positively to glucose muscle uptake and adipose tissue mobilization after a single bout of aerobic
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exercise in a model of IL-6 knockout mice [58]. This positive effect on skeletal muscle metabolism of
muscle IL-6 is thought to generate a crosstalk between adipose tissue and skeletal muscle, and it can
also explain the controversial inflammatory results found in some studies [59]. Overexpression of
IL-15, another cytokine with anti-inflammatory properties, has been shown to attenuate muscle fatigue
by improving oxidative capacity in skeletal muscle of a mouse model of breast cancer [60].

In humans, obese elderly patients have shown a reduction in IL-6 and TNF expression in skeletal
muscle after 12 weeks of combined aerobic and resistance exercise, while a diet-induced weight loss
intervention had no effect on inflammatory markers [61]. Moreover, whilst combined exercise training
may have an impact on reducing inflammation, the absence of physical activity has been shown to
increase muscle levels of IL-6 expression after a 7-day period of bed rest in older adults [62]. However,
we still lack similar results in patients with cancer, especially in association with cancer cachexia.

TNF, initially called cachectin, combined with IL-6 induces activation of the nuclear factor
kappa-light-chain-enhancer of activated B cells (NF-κB) [63]. NF-κB is an important regulator of genes
related to tumorigenesis [64] and, in the skeletal muscle, may reduce protein into amino acids causing
muscle atrophy, as shown in a cancer cachexia model [65]. Moreover, the ability of NF-κB to promote
loss of muscle mass has been shown to be stimulated by chemotherapeutic agents [66,67] as well as
muscle-specific E3 ubiquitin ligases intermediate of the UPS, such as muscle RING (really interesting
new gene) Finger-1 (MuRF-1), and muscle atrophy F-box (MAFbx)/atrogin-1 (Figure 2) [65]. Although
STAT3 and NF-κB may regulate genes expression in a cooperative manner, the role of NF-κB in muscle
metabolism is still poorly understood [49].

It has been postulated that MuRF-1 may be responsible for degrading contractile and structural
muscle proteins, such as titin, troponin-1, myosin heavy, and light chains, and proteins associated
with glycolysis/glycogenolysis, whereas MAFbx/atrogin-1 is involved in impaired muscle protein
synthesis, including MyoD as substrate [68,69]. These alterations in MuRF-1 and MAFbx/atrogin-1,
however, seem to take place even before the presence of weight loss [70] or in early stages of cancer
cachexia [71], whilst patients with cancer cachexia have been shown to present an inverse relation
between the muscle expression of ubiquitin mRNA and the level of weight loss [72].

In addition, the mammalian target of rapamycin (mTOR), a serine/threonine protein kinase, is
composed of two distinct complexes termed as mTOR complex 1 and 2 (mTORC1 and mTORC2,
respectively) and is responsible for the main signaling pathway in cell growth and proliferation. It
works through a cascade that starts with growth signals (e.g., insulin-like growth factor 1; IGF-1)
phosphorylating the receptor tyrosine kinase, followed by activation of phosphoinositide 3-kinase
(PI3K) and protein kinase B (Akt) (Figure 2) [73]. Interestingly, mTORC1 stimulates protein and lipid
synthesis while suppressing catabolic pathways involved in autophagy [74]. However, IL-6 has been
shown to suppress mTOR activity in a dose-dependent manner in human skeletal muscle and cultured
C2C12 myotubes by activation of AMP-activated protein kinase (AMPK), but not Akt (Figure 2) [75].

With regards of the reduced activity of mTOR that may lead to impaired suppression of autophagy,
several studies have demonstrated that intermediates of the autophagic-lysosomal proteolytic system
are also increased in patients with different types of cancer [76–78]. Thus, these modifications in the
suppression of mTOR associated with elevated autophagy further support the concept that autophagy
may also be exacerbated in patients with cancer cachexia.

4. Insulin Resistance in Cancer Cachexia

The glucose uptake in muscle and adipose tissue is mediated by insulin that removes glucose from
the circulation when there is an elevation in glucose concentration and simultaneously decreases glucose
production in hepatic cells. However, unlike patients with type II diabetes mellitus characterized by
chronic hyperglycemia, patients with cancer have normal level of fasting glucose, probably due to the
redistribution of glucose to supply energy demand in cancer cells [79].

Chronic insulin resistance (IR) has been described in several types of cancer [80,81] and in early
stages of cachexia in a mice model [82], but some studies have not shown any association between
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IR and loss of body weight in a cohort of unselected patients with cancer [83]. Of interest, insulin
sensitivity has shown to be restored after surgical removal of the tumor, showing that the tumor may
be the underlying cause of IR [84].

Recent genetic studies with phenotypes resembling cancer cachexia, using the fruit fly Drosiphila
melanogaster, have found a tumor-secreted factor that was shown to be responsible for the wasting
process in organs distant from the tumor [85]. This is an insulin growth factor binding protein (IGFBP)
homolog called ImpL2 and its release may be involved in a crosstalk between tumor and muscle
cell. Additionally, in another study with the same fly model, only malignant, but not benign, tumors
promoted a downregulation of the insulin signaling pathway, which led to IR in peripheral tissues [86].

Furthermore, IR has been associated with reduced whole-body protein anabolism in male patients
with NSCLC and this impaired anabolic response was mediated by increased proteolysis that increased
amino acids in circulation (hyperaminoacidemia), leading to an exacerbated IR [81].

Concurrently, adipose tissue, as an endocrine organ, releases adiponectin that controls
anti-inflammatory responses and regulates glucose and lipid metabolism [87]. Under healthy
physiological condition, adiponectin inhibits IL-6 and TNF and seems to have a functional interplay
with IGF-1 that may be impaired in cancer patients [88,89]. However, adiponectin has been shown to
be reduced in patients with cancer cachexia and its combination with cytokines released by the tumor
microenvironment may exacerbate the inflammatory response seen in cancer patients, which further
may lead to IR without changes in plasma glucose concentration [79].

Clinical investigations on the interaction between adipocytes/cancer cell byproducts and IR, as
well as growth factor, in the development and progression of cancer cachexia are still scarce and well
conducted studies with tissue sampling along the cancer trajectory are needed.

5. Brown Adipose Tissue and Metabolism

Adipose tissue is a vital organ in controlling body composition through the regulation of energy
homeostasis, though it is commonly overshadowed by the increasing attention given to muscles. In
humans, two distinct types of adipose tissue have been described, white adipose tissue (WAT) and
brown adipose tissue (BAT), they are responsible for energy storage and hypothermia, respectively.
BAT maintains body temperature by heat generation that involves an increase in the adipose tissue
expression of uncoupling protein 1 (UCP1) and also regulates glucose and lipid metabolism [90].

Classical brown adipocytes are derived from a myf-5 cellular lineage, while white adipocytes
are derived from a non-myf-5 lineage [91]. The latter has been also termed beige or brite cells when
stimulated via browning, a process that has been characterized by the gradual conversion of white
adipocytes into brown like cells (especially in the abdominal region) during the progression of cancer
cachexia [10]. NF-κB p65, a subunit of NF-κB, has been shown to be upregulated in WAT promoting
inflammation in this tissue in cachectic patients [92].

In addition, this thermogenic effect of BAT has been suggested to enhance resting energy
expenditure and lipid mobilization (Figure 2). Although the effect of browning has been described to
be similar across metabolic disorders such as obesity, diabetes mellitus and cancer, these alterations
in lipid metabolism and energy expenditure have proved to be detrimental in the context of cancer
cachexia [10].

The modulation of BAT seems to depend on Prep1, a proposed regulator of adipo-osteogenesis,
that has been shown to induce reductions in WAT volume associated with increase in BAT density
and reduced osteogenesis in a mice model [93]. Moreover, the activation of BAT is mediated by β-3
adrenergic receptor that is activated by the sympathetic nervous system leading to fat cell shrinkage
(Figure 2) [94].

IL-6 also plays an important role in mediating BAT activation throughout the course of cachexia
(early to late-stage cancer cachexia) in gastric and colorectal patients [95], via increased UCP1 expression
and genes related to the β-oxidation of fatty acids that activate thermogenesis as shown in a mice
model of colorectal tumor [96]. Additionally, in a Lewis lung carcinoma model, it has been shown
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that tumor-derived parathyroid-hormone-related protein (PTHrP) regulates the gene expression
involved in adipose tissue thermogenesis (Figure 2), lipolytic enzymes, and muscle atrophy (myostatin,
MuRF-1, and MAFbx/atrogin-1), whereas blocking PTHrP, even in the presence of increased tumor
size, promoted maintenance of muscle and fat mass in these mice [94].

Interestingly, in a cohort of 47 patients with NSCLC or colorectal cancer, 17 of these patients
presented higher levels of PTHrP accompanied by lower LBM and increased resting energy
expenditure [94]. Although these results suggest a browning/thermogenic effect of adipose tissue
on wasting of either fat or muscle mass, more prospective studies need to be conducted to elucidate
the real contribution of fat mass in inflammation and body composition changes in patients with
cancer cachexia.

6. Role of Liver Cells in Metabolism

The liver is the main organ, along with muscle and adipose tissue, responsible for orchestrating
the requirement and distribution of energy to support systemic metabolism. Recently, some studies
have suggested that tumor can promote structural and metabolic changes in liver cells, which may
contribute to greater inflammation and metabolic derangement in cancer cachexia (Figure 1) [97,98].
Paradoxically, protein synthesis in hepatocytes is increased while, as mentioned above, it is reduced in
skeletal muscle [10].

The interaction between liver and cancer cells is thought to be mediated by mononuclear cells
through IL-6 activation [99]. Moreover, in patients with pancreatic cancer and cachexia, the infiltration
of macrophages into liver tissue has been shown to trigger liver parenchymal cells to induce the
production of pro-inflammatory cytokines resembling IL-6 [100]. In addition, IL-4, a cytokine with
anti-inflammatory properties, has been shown to be downregulated in hepatocytes of pancreatic patients
with cancer cachexia [101]. These adaptations in liver cells may exacerbate the imbalance between
pro- and anti-inflammatory responses of patients with cancer cachexia leading to the progression of
the disease.

Furthermore, reduced ATP synthesis and elevated energy wasting have been reported in
hepatocytes mitochondria of a mice model of peritoneal carcinosis. Cardiolipin, a protein essential to
liver oxidative phosphorylation, has shown to be increased in the cachectic mice [102] and biosynthesis
dysregulation of cardiolipin has been mediated by TNF in vitro [103]. In humans, steatosis in
hepatocytes has been described in cachectic patients [104].

Of interest, L-carnitine, a transporter of fatty acids matrix into the of the mitochondrion, has
prevented the progression of non-alcoholic steatohepatitis and increased the expression of genes related
to mitochondrial β-oxidation, while suppressing oxidative stress in hepatocytes of a mice model [105].

Additionally, in a model of C26 adenocarcinoma mice, L-carnitine upregulated the expression of
carnitine palmitoyltransferase I/II (CPT I and CPT II) in liver tissue and reduced the serum levels of
IL-6 and TNF [106]. In a further study, L-carnitine has shown to decrease NF-κB p65 expression by
suppressing peroxisome proliferator-activated receptor-gamma and alpha (PPAR-γ and α) in a CPT
I-dependent manner, suggesting that L-carnitine may be involved in liver inflammation and to a lesser
extent in the systemic inflammation [107]. Interestingly, L-carnitine has shown to increase BMI in
patients with advanced pancreatic cancer with fat mass being a major contributor in this process [108].

PPAR-α suppression and increased gluconeogenesis in hepatic metabolism have been shown to
be the cause of reduced serum ketones in a mouse model of NSCLC, whereas the restoration of ketone
production in liver cells via PPAR-α agonist agent (fenofibrate) prevented weight loss and attenuated
the degradation of type II muscle fibers compared to control fasted mouse [109]. Taken together, these
findings involving PPAR-α and L-carnitine suggest that tackling hepatic metabolism can improve
cancer cachexia status, although the mechanisms may be different between cancer types.
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7. Treatment Perspective

Patients with cancer cachexia often experience reduced physical function, higher symptom
burden, and poor quality of life (Figure 1) [110,111]. Cancer cachexia requires a multimodal approach
in which drug therapies, nutritional support, and physical exercise must be included. However,
an ideal pharmacological candidate to counteract cancer cachexia is still under development and
should be an agent that targets systemic inflammation, improves body compartments while enhancing
anabolism/catabolism balance, and in particular hinders anorexia [112,113].

Even though the pathogenesis of cancer cachexia is not fully understood, several candidates to
prevent the loss of muscle and fat mass have been tested in experimental studies, including leucine and
fish oil [114], rosiglitazone (insulin sensitizer) [115], activin receptor type 2 blockers [116], trimetazidine
(exercise mimetic) [117], bortezomib (NF-κB inhibitor) [118], and vitamin D supplementation [119].

In addition, other agents have already reached clinical trials, such as myostatin inhibitors [120],
the appetite stimulant megestrol acetate [121], testosterone [122], antimyostatin antibody [123], and
monoclonal antibody (MABp1) [124], showing the influence of these drugs in different aspects of the
spectrum of cancer cachexia. Recently, a combination of drugs to treat patients with cancer cachexia
has been tested [125]. On the other hand, some compounds, including thalidomide, produced side
effects that may outweigh their potential benefits [126].

Ghrelin, the so-called hunger hormone, has been demonstrated to produce an anti-inflammatory
effect and inhibit pro-inflammatory cytokines in cachectic patients [127], while improving food
intake, gastric motility, modulation of taste, and glucose metabolism [128]. Anamorelin, a selective
ghrelin-receptor agonist, has been demonstrated to mimic the action of growth factors (e.g., IGF-1 and
GH), showing its potential to treat patients with cancer cachexia. In a series of phase 3 clinical trials
in patients with NSCLC (ROMANA 1, 2 and 3), anamorelin, compared with placebo, was shown to
improve body weight and symptoms related to cancer cachexia in all studies, whereas LBM and fat
mass were increased in ROMANA 1 and 2 lacking changes in muscle strength across all trials [129,130].

Another advanced studied compound for muscle wasting is the selective androgen receptor
modulators (SARMs), an oral non-steroidal compound that resembles testosterone in its action with
limited side effects. SARMs have successfully demonstrated significant improvement in LBM combined
with increased time and power on the stair climb test in patients with cancer (NSCLC, colorectal cancer,
non-Hodgkin lymphoma, chronic lymphocytic leukemia, and breast cancer), independent of dose
administration [131].

Additionally, because patients with cancer often develop cardiovascular alterations due to
chemotherapy agents, β-blockers have also been proposed to treat and prevent cardiac and muscle
wasting in such patients [132,133]. Espindolol, classified as a non-selective β-blocker, seems to mitigate
the effects of cancer cachexia in three potential therapeutic steps: (1) by reducing catabolism via β

receptor blockade, (2) by decreasing fatigue and thermogenesis, and (3) by enhancing anabolism via
agonist action on β2 receptor [134].

In a phase II clinical trial (ACT-ONE trial), patients with colorectal cancer and NSCLC (phase III
and IV) were allocated to either placebo, low-dose (2.5 mg bd), or high-dose (10 mg bd) espindolol
treatment for 16 weeks. High-dose group showed greater gain in LBM with maintenance of fat mass
compared to placebo and further associated with handgrip strength, while there was not statistically
differences between low- and high-dose, and low-dose and placebo for these parameters [134].

To date, anamorelin, SARMs, and espindolol are the most promising candidates proposed to treat
patients with cancer cachexia, showing an important improvement in LBM with, still, controversial
impact on clinical outcomes (handgrip strength and physical performance) across trials. Therefore,
more randomized, double-blind, placebo-controlled studies must be conducted to test these agents.

An interesting approach to tackle cancer cachexia is a combination of treatment modalities,
including exercise training, nutrition intervention, and pharmacological agent, which is currently
tested in the MENAC trial [135]. The aim of this trial is to mitigate or reverse the effects of cachexia in
patients with cancer. Considering a broader multimodal intervention, knowledge, awareness, and
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regonition of cancer cachexia must be implemented earlier in medical schools to prepare healthcare
professional to treat patients with such conditions [136].

In fact, aerobic exercise training has been associated with positive healthy-related outcomes, such
as reduced systemic inflammation, improved immune function, and enhanced metabolism, which may
be replicated in patients with cancer [137]. Although the mechanisms behind these adaptations are
not fully elucidated, it has been suggested that exercise may metabolically compete with tumors and
cause a redistribution of energy substrates, which in turn deprive energy supply for tumor cells [138].
Moreover, resistance exercise training has shown to increase muscle mass and muscle strength in
patients with prostate cancer [139], while muscle mass loss is attenuated with combined aerobic and
resistance training compared to only aerobic exercise in obese elderly patients [140].

Another treatment modality that may improve cancer cachexia status is nutrition supplementation.
Protein intake between 1.2–1.5 g/kg/day has been suggested to treat patients with cancer and low
muscle mass, but the nutrition intervention may not be limited to protein intake alone and should
include other amino acids and derivatives, such as leucine (2–4 g/day), glutamine (0.3 g/day), creatine
(5 g/day), and carnitine (4–6 g/day) [141].

8. Conclusions

In summary, metabolic dysfunction related to cancer cachexia still remains a challenge. The
pathophysiology of cachexia is multifactorial and mediated by an interplay between the release of
cytokines from the tumor and some organ of the host, including liver, muscle, and adipose tissue.
These cytokines produce an imbalance between pro- and anti-inflammatory responses that change
glucose, lipids, and protein metabolism, restraining anabolism while a catabolic state is sustained.

Moreover, several drugs have been tested in experimental studies and others have already yielded
positive results in phase 2 and 3 clinical trials, showing improvements in lean body mass, but not
physical function. Nonetheless, along the years, targeting a single therapy has not led to effective
treatment of this condition, so further studies must focus on an integrated approach, which includes
pharmacological agents, nutritional support, and physical exercise, to better understand the complex
interaction that culminate in the wasting of body compartments in patients with cancer cachexia.
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Abbreviations

ADP Adenosine diphosphate
Akt Protein kinase B
AMPK AMP-activated protein kinase
ATP Adenosine triphosphate
BAT Brown adipose tissue
BMI Body mass index
CPT I Carnitine palmitoyltransferase I
CPT II Carnitine palmitoyltransferase II
EGF Epidermal growth factor
GH Growth hormone
HSL Hormone-sensitive lipase
IFN-γ Interferon-gamma
IGFBP Insulin growth factor binding protein
IGF-1 Insulin-like growth factor 1
IL-1β Interleukin-1 beta
IL-2 Interleukin-2
IL-4 Interleukin-4
IL-6 Interleukin-6
IL-10 Interleukin-10
IR Insulin resistance
JAKs Janus kinases
LBM Lean body mass
MABp1 Monoclonal antibody
MAFbx Muscle atrophy F-box
mTOR mammalian target of rapamycin
mTORC1 mTOR complex 1
mTORC2 mTOR complex 2
MuRF-1 Muscle RING Finger-1
NF-κB Nuclear factor kappa-light-chain-enhancer of activated B cells
NSCLC Non-small cell lung cancer
PGK 1 Phosphoglycerate kinase 1
PI3K Phosphoinositide 3-kinase
PPAR-γ Peroxisome proliferator-activated receptor-gamma
PPAR-α Peroxisome proliferator-activated receptor-alpha
PTHrP Tumor-derived parathyroid-hormone-related protein
SARMs Selective androgen receptor modulators
STAT3 Activating the signal transducer and activator of transcription 3
TNF Tumor necrosis factor
UCP1 Uncoupling protein 1
UPS Ubiquitin-proteasome system
WAT White adipose tissue
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