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Abstract

Background: Primaquine, currently the only approved drug for the treatment and radical cure of Plasmodium vivax
malaria, is still used as a racemic mixture. Clinical use of primaquine has been limited due to haemolytic toxicity in
individuals with genetic deficiency in glucose-6-phosphate dehydrogenase. Earlier studies have linked its therapeutic
effects to CYP2D6-generated metabolites. The aim of the current study was to investigate the differential generation of
the CYP2D6 metabolites by racemic primaquine and its individual enantiomers.

Methods: Stable isotope 13C-labelled primaquine and its two enantiomers were incubated with recombinant
cytochrome-P450 supersomes containing CYP2D6 under optimized conditions. Metabolite identification and
time-point quantitative analysis were performed using LC-MS/MS. UHPLC retention time, twin peaks with a mass
difference of 6, MS-MS fragmentation pattern, and relative peak area with respect to parent compound were
used for phenotyping and quantitative analysis of metabolites.

Results: The rate of metabolism of (+)-(S)-primaquine was significantly higher (50% depletion of 20 μM in
120 min) compared to (−)-(R)-primaquine (30% depletion) when incubated with CYP2D6. The estimated Vmax

(μmol/min/mg) were 0.75, 0.98 and 0.42, with Km (μM) of 24.2, 33.1 and 21.6 for (±)-primaquine, (+)-primaquine
and (−)-primaquine, respectively. Three stable mono-hydroxylated metabolites, namely, 2-, 3- and 4-hydroxyprimaquine
(2-OH-PQ, 3-OH-PQ, and 4-OH-PQ), were identified and quantified. 2-OH-PQ was preferentially formed from
(+)-primaquine in a ratio of 4:1 compared to (−)-primaquine. The racemic (±)-primaquine showed a pattern similar to
the (−)-primaquine; 2-OH-PQ accounted for about 15–17% of total CYP2D6-mediated conversion of (+)-primaquine. In
contrast, 4-OH-PQ was preferentially formed with (−)-primaquine (5:1), accounting for 22% of the total (−)-primaquine
conversion. 3-OH-PQ was generated from both enantiomers and racemate. 5-hydroxyprimaquine was unstable. Its
orthoquinone degradation product (twice as abundant in (+)-primaquine compared to (−)-primaquine) was identified
and accounted for 18–20% of the CYP2D6-mediated conversion of (+)-primaquine. Other minor metabolites included
dihydroxyprimaquine species, two quinone-imine products of dihydroxylated primaquine, and a primaquine terminal
alcohol with variable generation from the individual enantiomers.

Conclusion: The metabolism of primaquine by human CYP2D6 and the generation of its metabolites display
enantio-selectivity regarding formation of hydroxylated product profiles. This may partly explain differential
pharmacologic and toxicologic properties of primaquine enantiomers.
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Background
Primaquine, a prototype 8-aminoquinoline, the only licensed
option to treat the relapsing liver stages (hypnozoites) of
Plasmodium vivax, is also used for the prophylaxis of all
forms of human malaria [1-4]. Due to its activity against ma-
ture, infective Plasmodium falciparum gametocytes, this
drug can be employed clinically as a gametocytocide for
blocking transmission in P. falciparum malaria. In areas of
emerging drug resistance, primaquine has shown effective-
ness against and in the prevention of the spread of
artemisinin-resistant P. falciparum strains [5]. Since its
introduction into the market in the 1950s, primaquine
has been documented to trigger haemolysis in individ-
uals with a genetic deficiency in glucose-6-phosphate
dehydrogenase (G6PD) [3,4]. Thus, despite the unique
therapeutic indications of primaquine, the widespread
prevalence of G6PD deficiency across populations in
malaria-endemic areas has limited its clinical use [6,7].
In 1962, Tarlov and co-workers suggested that a me-

tabolite of primaquine, rather than primaquine itself,
might be responsible for the haematotoxicity of prima-
quine [8]. This was based on the observed delay in antic-
atalase activity in an individual dosed with the drug; it
was postulated that redox-cycling of the metabolite
6-demethyl-5-hydroxyprimaquine and its corresponding
orthoquinone caused oxidative stress [8]. Even though
positive identification in metabolic mixtures could be
made only during the last decade [9] due to the high re-
activity of the metabolites and limitations of available ana-
lytical methods, a number of in vitro studies have
shown that 5-hydroxyprimaquine and its oxidative prod-
ucts caused haematotoxicity [10-13]. Carboxyprimaquine,
which has been identified as the major circulating metab-
olite in several species, including man, after oral adminis-
tration of primaquine [14] has been found to be non-toxic
[11] and inactive [15]. An earlier in vitro study suggested
that multiple CYP isoforms (CYP2E1, CYP2B6, CYP1A2,
CYP2D6, and CYP3A4) variably contributed to the hae-
motoxic response of primaquine [16]. Monoamine oxidase
(MAO) has been shown as responsible for the formation
of carboxyprimaquine [17], whereas CYP enzymes, espe-
cially CYP2D6, were found to produce several ring-
hydroxylated primaquine metabolites [18].
Recent work using CYP2D knockout and humanized

CYP2D6 mice, highlighted the dependence of the efficacy
of primaquine and other 8-aminoquinolines (8AQ) on
CYP2D metabolism in a rodent causal prophylaxis model
[19,20]. The human relevance of this finding was substan-
tiated by the observed treatment failures of primaquine
in humans with P. vivax malaria who are deficient in
CYP2D6 enzyme activity which suggested that CYP2D6 is
required for the generation of the active metabolites [21].
Primaquine is a chiral drug and is currently used as a ra-

cemic mixture, approximating a 50:50 ratio of (+)-(S)-
and (−)-(R)-enantiomers. Previously, differential ac-
tivity, toxicity and pharmacokinetic profiles for the
individual enantiomers of primaquine have been shown
[22-24]. (+)-(S)-primaquine showed better causal prophy-
lactic and blood schizonticidal activities in Plasmodium
berghei mouse malaria models and higher propensity to
cause haematotoxicity in a non-obese diabetic/severe
combined immunodeficiency (NOD/SCID) mouse model
engrafted with G6PD-deficient human erythrocytes and
beagle dogs [23]. However, in rhesus monkeys, the re-
sults [24] were in agreement with the report by Schmidt
et al. [22] that both enantiomers had equivalent radical
curative activity against Plasmodium cynomolgi. The
stereo-selectivity in metabolite generation and other
pharmacokinetic behavior of chiral antimalarial drugs
has been known to lead to major differences in phar-
macodynamic properties of individual enantiomers
[25]. Similarly, the enantioselective pharmacologic and
toxicologic properties of primaquine may be attributed
to differential pharmacokinetic profiles of the two en-
antiomers. Studies with mice and humans have shown
that the major serum metabolite, carboxyprimaquine,
which amounted to more than 60% of total metabolites
was predominantly emanating from (−)-(R)-primaquine
[26].
Considering the essential contribution of CYP2D6-linked

metabolism to the efficacy and toxicity of primaquine, and
the generation of multiple quinoline ring-hydroxylated
metabolites on incubation of racemic primaquine with
CYP2D6, it was hypothesized that observed variation
in therapeutic response of the two primaquine enantio-
mers may be attributed to enantio-selective CYP2D6-
mediated ring hydroxylation of primaquine. Challengingly,
the low quantities and the highly reactive nature of the
ring-hydroxylated primaquine metabolites pose major
problems regarding phenotyping and quantification of
these metabolites. Recently this challenge has been ad-
dressed by the application of 50:50 mixture of 13C-stable
isotope labelled (C6) and normal 12C- primaquine followed
by analysis with liquid chromatography–mass spectrometry
(LC-MS/MS) [9].
For the identification of metabolites, 2-, 3-, 4-, and

5-hydroxyprimaquine (2-OH-PQ, 3-OH-PQ, 4-OH-PQ
and 5-OH-PQ) and 8-N-hydroxyprimaquine were pre-
pared as reference standards. Attempts at preparation
of 7-hydroxyprimaquine have been unsuccessful to date.
5-OH-PQ spontaneously underwent oxidation yielding
the orthoquinone product.
Comparison of ultra-high performance liquid chro-

matography (UHPLC) retention times (RT) of twin
mass peaks with difference of 6 (originating from
13C6- primaquine /12C- primaquine) with those of refer-
ence standards, MS-MS fragmentation patterns, and rela-
tive peak area with respect to parent compound were used
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for phenotyping and semi-quantitative analysis of the
metabolites.

Methods
Synthetic chemicals
13C(6)-labelled primaquine (racemic, and the (+)-(S)- and
(−)-(R)- enantiomers) [27] and primaquine alcohol [28]
were synthesized as previously reported. The identity of
the compounds synthesized was confirmed by spectral
infra-red (IR), nuclear magnetic resonance (NMR) and
high-resolution MS and physical data in comparison with
published values. 4-OH-PQ and 5-OH-PQ were prepared
using the previously reported procedures [29,30]. The lat-
ter underwent rapid spontaneous oxidation. Time-lapse
LC-MS analysis indicated formation of quinone-imine,
which underwent demethylation and isomerization
yielding a stable 5,6-orthoquinone analog. The methods
for synthesis of other analogs, which were used as stan-
dards for phenotyping and quantification of the prima-
quine metabolites, are described below.

Synthesis of 2-hydroxyprimaquine diphosphate
2-benzyloxy-6-methoxy-8-(1-methyl-4-phthalimidobutylamino)
quinoline
A mixture of 2-benzyloxy-6-methoxy-8-nitroquinoline
[31] (2.75 g) hydrazine hydrate (3 ml) and Raney Ni
(1.5 g) in ethanol (75 ml) was refluxed for four hours.
The catalyst was removed by filtration through celite
and the filtrate was evaporated. The residue was parti-
tioned between CH2Cl2 and water and the organic layer
was dried with sodium sulphate and evaporated to give
8-amino-2-benzyloxy-6-methoxyquinoline (2.3 g). To
a stirred mixture of this product (2.3 g, 7.8 mm) and
2-oxo-5-phthalimido pentane (2.0 g, 8.6 mm) in glacial
acetic acid (30 ml), sodium borohydride was added portion-
wise while maintaining the temperature below 30°C until
reaction was complete evidenced by thin layer chroma-
tography (TLC). The reaction mixture was poured onto
ice and basified with aqueous sodium hydroxide (50%).
The product was separated by filtration and purified by
chromatography on silica gel with hexanes:ethyl acet-
ate 85:15 to give 2-benzyloxy-6-methoxy-8-(1-methyl-4-
phthalimidobutylamino)quinoline as a yellow crystalline
solid (3.3 g). 1H NMR δ (CDCl3): 1.27 (3H, d, J = 6.0 Hz),
1.60–1.90 (4H, m), 3.62 (1H, m), 3.73 (2H, t, J = 6.8 Hz), 3.84
(3H, s), 5.46 (2H, s), 5.54 (1H, d, J = 6.8 Hz), 6.31 (2H, s),
6.91 (1H, d, J = 8.8 Hz), 7.23 (1H, t, J = 7.6 Hz), 7.38 (2H, t,
7.6 Hz), 7.51 (2H, d, J = 7.6 Hz), 7.66 (2H, m) 7.78 (2H, m),
7.81 (1H, d, 8.8 Hz); HRESIMS [M + H]+ m/z 496.2232
(calculated for (C30H29N3O4 + H)+ 496.2236).

2-hydroxyprimaquine diphosphate
A mixture of 2-benzyloxy-6-methoxy-8-(1-methyl-4-
phthalimidobutylamino)quinoline (2.0 g) and hydrazine
hydrate (1.5 ml) in ethanol (50 ml) was refluxed for four
hours. The reaction mixture was cooled and the white
precipitate was separated by filtration. The filtrate was
evaporated and the gummy residue was dissolved in
CH2Cl2 and washed (× 2) aqueous potassium hydrox-
ide (10%), water, dried over Na2SO4 and evaporated to
give N4-(2-(benzyloxy)-6-methoxyquinolin-8-yl)pentane-
1,4-diamine. This product was dissolved in ethanol
(50 ml) and refluxed with hydrazine hydrate (2 ml) and
Pd/C (10%, 200 mg) for two hours. The catalyst was
removed by filtration and the filtrate was evaporated
under reduced pressure. The resulting yellow solid was
dissolved in ethanol (10 ml) and H3PO4 (85%, 2 ml)
was added drop-wise under stirring. The supernatant was
removed by decantation and the gummy deposit was
washed with ethanol and crystallized from water ethanol
to give 2-OH-PQ diphosphate (1.6 g). 1H NMR δ
(CDCl3): 0.93 (3H, d, J = 6.0 Hz), 1.28 (1H, m), 1.40
(1H, m) 1.42–1.58 (2H, m), 2.77 (2H, t, J = 7.6 Hz),
3.08 (1H, m), 3.44 (3H, s), 5.76 (1H, brs), 5.84 (1H, brs),
6.06 (H, d, J = 9.2 Hz), 7.12 (1H, d, 9.2 Hz); HRESIMS
[M + H]+ m/z 276.1710 (calculated for (C15H21N3O2 +H)+

276.1712).

Synthesis of 3-hydroxyprimaquine diphosphate
3-hydroxy-6-methoxy-8-nitroquinoline
A mixture of 3-bromo-6-methoxy-8-nitroquinoline [32],
(2 g, 7 mm), Pd2dba3 (130 mg, 0.14 mm), 2-di-tert-
butylphosphino-2′,4′,6′-triisopropyibiphenyl (140 mg,
0.33 mm), and KOH (1.2 g, 21 mm) in water:dioxane
(1:1, 20 ml) was heated at 95°C for two hours under ni-
trogen atmosphere. The reaction mixture was poured
onto ice, acidified with hydrochloric acid and filtered.
The solid obtained was purified by column chromatog-
raphy on silica gel with hexanes:ethyl acetate 7:3 as the
eluent to give a yellow crystalline solid (1.36 g). 1H NMR
δ (CDCl3/CD3OD): 3.79 (3H, s), 7.01 (1H, d, J = 2.8 Hz),
7.26 (1H, d, J = 2.8 Hz) 7.35 (H, d, J = 2.4 Hz), 8.35 (1H, d,
2.4 Hz); HRESIMS [M+H]+ m/z 221.0572 (calculated for
(C10H9N2O4 +H)+ 221.0562).

3-benzyloxy-6-methoxy-8-nitroquinoline
A mixture of 3-hydroxy-6-methoxy-8-nitroquinoline (1.35 g,
6.1.mm), benzyl bromide (1.71 g, 10 mm), and Cs2CO3

(3.25 gm, 10 mm) in DMF (15 ml) was stirred at 65°C for
six hours. The reaction mixture was poured into cold water
and filtered. The crude product was chromatographed over
silica gel and elution with hexanes:ethyl acetate 9:1
gave 3-benzyloxy-6-methoxy-8-nitroquinoline (1.8 gm).
1H NMR δ (CDCl3): 3.81 (3H, s), 5.35 (2H, s), 6.49 (1H, d,
J = 2.4 Hz), 6.68 (1H, d, J = 2.4 Hz) 7.28 (1H, t, J = 6.8 Hz),
7.35 (2H, t, J = 6.8 Hz), 7.48 (2H, d, J = 6.8 Hz), 8.09 (1H,
d, 2.4 Hz), 8.75 (1H, d, 2.4 Hz); HRESIMS [M+H]+ m/z
311.1050 (calculated for (C17H15N2O4 +H)+ 311.1032).
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3-benzyloxy-6-methoxy-8-(1-methyl-4-phthalimidobutylamino)
quinoline
A mixture of 3-benzyloxy-6-methoxy-8-nitroquinoline
(1.8 gm), Raney-Ni (1 g) and hydrazine hydrate (2 ml) in
ethanol (30 ml) was refluxed for four hours. The catalyst
was removed by filtration through a celite plug and the
filtrate was evaporated under reduced pressure. The gummy
residue was partitioned between water and CH2Cl2 and the
organic layer was dried and evaporated to yield 8-amino-3-
benzyloxy-6-methoxyquinoline (1.6 g, 5.7 mm). This prod-
uct and 2-oxo-5-phthalimido pentane (1.5 g, 6.8 mm) were
coupled in glacial acetic acid (15 ml) as described above for
2-benzyloxy analog to afford 3-benzyloxy-6-methoxy-8-(1-
methyl-4-phthalimidobutylamino)quinoline as a yellow
crystalline solid (1.9 g). 1H NMR δ (CDCl3): 1.27 (3H, d,
J = 6.0 Hz), 1.60–1.90 (4H, m), 3.64 (1H, m), 3.72 (2H t,
J = 7.6 Hz), 3.86 (3H, s), 5.15 (2H, s), 5.87 (1H, d, J =
8.4 Hz), 6.15 (1H, d, J = 2.4 Hz), 6.22 (1H, d, J =2.4 Hz),
7.26 (1H, d, J =2.4 Hz), 7.35 (1H, t, J = 6.8 Hz), 7.41 (2H, t,
7.2 Hz), 7.47 (2H, d, J = 7.2 Hz), 7.68 (2H, m) 7.81 (2H, m),
8.33 (1H, d, 2.4 Hz); HRESIMS [M+H]+ m/z 496.2229
(calculated for (C30H29N3O4 +H)+ 496.2236).
3-hydroxyprimaquine diphosphate
The phthalimide protecting group of 3-benzyloxy-6-
methoxy-8-(1-methyl-4-phthalimidobutylamino)quinoline
(1.8 g) was removed by reacting with hydrazine hydrate
(1 ml) in ethanol (40 ml) as described for 2-benzyloxy
analog to give N4-(3-(benzyloxy)-6-methoxyquinolin-8-yl)
pentane-1,4-diamine as a yellow gum. The benzyl group
was removed as described above by refluxing for two
hours in ethanol (30 ml) in the presence of hydrazine hy-
drate (1 ml) and Pd/C (10%, 200 mg). The reaction was
worked up and 3-OH-PQ was crystallized as diphosphate
(1.4 g). 1H NMR δ (CDCl3): 1.10 (3H, d, J = 6.0 Hz), 1.30–
1.65 (4H, m), 2.81 (2H, t, J = 7.2 Hz), 3.45 (1H, m), 3.65
(3H, s), 6.28 (1H, brs), 7.21 (H, d, J = 2.4 Hz), 7.97 (1H, d,
2.4 Hz); HRESIMS [M+H]+ m/z 276.1728 (calculated for
(C15H21N3O2 +H)+ 276.1712).
Other chemicals and reagents
Nicotinamide adenine dinucleotide phosphate, reduced
form (NADPH), glucose-6-phosphate (G6P), G6PD and
magnesium chloride (MgCl2) were purchased from
Sigma-Aldrich (St Louis, MO, USA). HPLC-grade aceto-
nitrile and methanol were purchased from Fisher Scien-
tific (Fair Lawn, NJ, USA). Water for the HPLC mobile
phase was purified in a Milli-Q system (Millipore,
Bedford, MA, USA). Baculovirus-insect cell expressed
recombinant cytochrome-P450 supersomes containing
CYP2D6 (1 nmole CYP per mL) were purchased from
(BD Biosciences, Billerica, MA, USA) and stored at −80°C
until used.
Primaquine/CYP2D6 incubation
The in vitro primaquine metabolism reactions were set
up in a clear 96-well plate. Thawed suspensions of the
supersomes were diluted with potassium phosphate buf-
fer (50 mM; pH =7.4) and aliquots were dispensed in a
clear 96-well plate. Primaquine (racemate or the appro-
priate enantiomer, 50:50 mixture of 12C and 13C-labeled)
was added and the mixture pre-incubated at 37°C for
10 min. Metabolic reactions were initiated by adding the
NADPH-regenerating solution containing magnesium
chloride, G6P and G6PD. The final components of the
incubations were: reduced NADP (1 mM), G6P (5 mM),
MgCl2 (5 mM), G6PD (1 U/mL), recombinant CYP2D6
(0.5 mg/mL) and primaquine (varying concentrations).
Metabolic reactions were terminated at predetermined
time-points through the addition of equal volume of ice-
cold methanol containing 0.5 μg/mL 6-D3-methoxypri-
maquine as internal standard. The mixtures were kept
on ice for one hour and then centrifuged (14,000 rpm, −4
degree centigrade, 20 min). Clear supernatants were kept
for LC-MS analysis. All incubations were performed in
duplicate for intra-day agreement and repeated on separ-
ate days for inter-day comparisons. Control incubations
included: a) those with primaquine but without the super-
somes; b) those with supersomes and primaquine but
without the start solution; and, c) those without the
primaquine. There was no organic solvent in the incuba-
tion mixtures as the contents were water-soluble. After
the initial determination of the kinetic parameters of
primaquine and its enantiomers, the probe primaquine
concentrations for the metabolite identification and quan-
tification were less than the determined Km value.

Detection, identification and quantification of metabolites
Liquid chromatography – mass spectrometry (LC-MS)
method for simultaneous analysis of primaquine and its
metabolites as reported earlier was employed in this
study [9]. Total separation and elution of the analytes
were achieved within 10 min retention time, using the
ACQUITY UHPLC™, BEH Shield RP18 column (100 mm ×
2.1 mm I.D., 1.7 mm) equipped with an LC-18 guard col-
umn (Vanguard 2.1 × 5 mm, Waters Corp, Milford, MA,
USA) on an ACQUITY UHPLC system (Waters Corp, Mil-
ford, MA, USA) to which a conditioned auto-sampler (at 20°
C) was attached. The mobile phase, consisting of water with
0.05% formic acid (A) and acetonitrile with 0.05% formic
acid (B), was applied at a flow rate of 0.25 ml/min in the fol-
lowing linear gradient elution: 0 min, 90% A:10% B in next
5 min to 63% A:37% B, then for 3 min 37% A:63% B and to
100% B in next 2 min. Each run was followed by a 3-min
wash with 100% B and an equilibration period of 3.5 min
with 90% A/10% B. Ten μL of each sample were injected,
and peaks assigned with respect to the mass of the com-
pounds and comparison of the retention times.
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Metabolites in the accurate mass data were found
using the Metabolynx® software. The data were searched
using predicted metabolite mass, mass defects, isotope,
and fragmentation patterns. Each sample was subjected
to data acquisition in full scan and data-dependent posi-
tive MS/MS, targeted MS/MS (ESI positive ionization
mode) and high-resolution MS (HRMS) modes using
the Waters ACQUITYTM XEVO QTOF Mass Spectrom-
eter (Waters Corporation, Manchester, UK) connected
to the UHPLC system via an electrospray ionization (ESI)
interface. Identification of each metabolite was assisted by
its HRMS data, which were used to calculate their elem-
ental compositions. The full scan mass data were screened
and filtered using Waters MetaboLynx XS software. The
qualitative metabolite identification was performed using
this software package.

Data analysis
After suitable calibrations of the substrates and the syn-
thetic metabolites, the initial rate of primaquine (racem-
ate and its enantiomers) metabolism was profiled against
the concentration incubated using the SigmaPlot Enzyme
Kinetic Software, Module 13.0 (Systat Software Inc,
Chicago, IL, USA). The pattern of metabolism was
characterized through the Michaelis-Menten plot (N = 4;
S.D. < 0.05 in all cases, R2 ≥ 0.9) from which the kinetic
parameters were determined. Identified metabolites were
quantified and profiled against time.

Results
Comparative kinetics for metabolism of primaquine
enantiomers
Varying concentrations of primaquine and its enantiomers
were subjected to human CYP2D6-catalyzed metabolism.
The initial velocity of metabolism (Vo) was profiled against
substrate concentration yielding a Michaelis-Menten-type
curve (Figure 1A). The rate of metabolism of (+)-primaquine
was significantly higher (50% depletion of 20 mM
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Table 1 Identified metabolites from CYP2D6-mediated metabolism of primaquine and its enantiomers

Peak [M+H]+ RT Formula Remarks

260.13 1.5 C14H17N3O2 Oxidized product of 5-OH-PQ, preferentially generated from the (+)-primaquine (twice as much
compared to (−)-primaquine)

261.16 8.7 C15H20N2O2 Oxidative deamination of primaquine and subsequent reduction to primaquine alcohol.

275.14 8.8 C15H18N2O3 Possibly terminal amine oxidation, with oxidation and quinone-imine formation on quinoline
ring, predominantly formed from (−)-primaquine (2:1)

276.17 2.08 C15H21N3O2 Identified as 4-OH-PQ; Formed 5 times more predominantly with (−)-primaquine than
(+)-primaquine

276.17 3.64 C15H21N3O2 Identified as 2-OH-PQ; Generated in the ratio 4:1 by (+)-primaquine vs (−)-primaquine

276.17 4.78 C15H21N3O2 Identified as 3-OH-PQ; Generated in the ratio 2:3 by (+)-primaquine and (−)-primaquine

290.15 3.42 C15H20N3O3 Putatively identified as dihydroxylated primaquine metabolite converted to quinone-imines,
generated in the ratio 3:2 by (−)-primaquine and (+)-primaquine.

290.15 4.56 C15H20N3O3 Putatively identified as a dihydroxylated primaquine metabolite converted to quinone-imine;
Generated more predominantly with (−)-primaquine, minimally with (±)-primaquine and not
detected with (+)-primaquine

292.16 4.59 C15H21N3O3 Putatively identified as dihydroxyprimaquine; Generated with (−)-primaquine only

306.14 3.65 C15H20N3O4 Putatively identified as trihydroxylated primaquine converted to the quinone-imine; selectively
generated with (+)-primaquine

308.16 1.4 C15H21N3O4 Putatively identified as trihydroxyprimaquine; detected in trace amount; more prominently
generated with (+)-primaquine
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and identified as respective quinone-imines or orthoquiones
(m/z 290) were also identified. The two dihydroxymetabo-
lites exhibited different retention times (3.42 and 4.5 min),
probably due to hydroxylation at different positions on the
quinoline ring. Trace amounts of primaquine terminal alco-
hol were also detected. Figure 2 shows suggested pathways
for metabolism of primaquine by human CYP2D6.
2-hydroxyprimaquine
The identification of 2-OH-PQ was confirmed through
the availability of its synthetic standard. 2-OH-PQ was
preferentially formed from (+)-primaquine peaking early
within 15 min at about 390 ng/mL compared to the peak
of less than 100 ng/mL generated by (−)-primaquine
(Figure 3A). The rate of metabolism of the racemic
(±)-primaquine to 2-OH-PQ was similar to that of the
(+)-primaquine. A small reduction in the level of 2-OH-
PQ in was recorded for (+)-primaquine after 30 min, with
the level of 2-OH-PQ levelling at about 300 ng/mL,
presumably reflecting further metabolism of this spe-
cies. However, the level of 2-OH-PQ generated from
(−)-primaquine peaked at 15 min. The pattern of 2-
OH-PQ generation suggests that the amount observed
with the racemic (±)-primaquine at two hours approxi-
mates the cumulative sum of those generated by the
individual enantiomers. Thus, the enantiomers do not
compete with each other for their metabolism to 2-OH-PQ
with CYP2D6. The 2-OH-PQ accounted for about 15–17%
of total CYP2D6-mediated metabolism of (+)-primaquine
or (±)-primaquine.
3-hydroxyprimaquine
With a retention time of 3.6 min, synthetic 3-OH-PQ
was used to confirm the formation of this metabolite
with CYP2D6. The level of 3-OH-PQ peaked at 30 min
and was formed with 1.5-fold more abundance from
(−)-primaquine than with (+)-primaquine, while the levels
of 3-OH-PQ generated from (±)-primaquine were appar-
ently the cumulative generation from the individual enan-
tiomers. The 3-OH-PQ also was identified as a stable
metabolite (Figure 3B).
4-hydroxyprimaquine
The identity of 4-OH-PQ was also confirmed through
the synthetic standard with a chromatographic retention
time of 2.1 min and m/z 276.25. It was preferentially
formed with (−)-primaquine, generating five times the
quantity observed with (+)-primaquine. It accounts for
about 22% of the total metabolism of (−)-primaquine.
The pattern of its generation appears to be complemen-
tary to the generation of 2-OH-PQ. It peaked at 30 min
in (−)-primaquine with slight drop in the quantity gener-
ated over the next 90 min (Figure 3C).
5-hydroxyprimaquine
5,6-orthoquinone analog (m/z 260), the product of the
spontaneous transformation of 5-OH-PQ was identified
based on its retention time (1.65 min) and fragmentation
pattern. It was semi-quantified relative to the parent
primaquine calibration. The LC-MS/MS profile of this
product as identified in primaquine and CYP2D6 reaction



Figure 2 Putative metabolic pathways of primaquine with human CYP2D6.
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mixture was identical to the oxidation products formed
with the synthetic 5-OH-PQ. Based on semi-quantification
of this 5,6-orthoquinone product as a marker for 5-OH-
PQ, the generation of 5-OH-PQ is estimated to account
for 18–20% of the CYP2D6-mediated conversion of
(+)-primaquine. The formation of this 5-OH-PQ product
from (+)-primaquine was more than twice as abundant as
with (−)-primaquine. However, generation of 5-OH-PQ
marker product from (±) primaquine was of about half
the amount from (−)-primaquine and more than four-fold
less than that generated from (+)-primaquine. This ob-
servation suggested that at these concentrations, the
individual primaquine enantiomers may be competing
with each other for metabolism of primaquine through
this pathway (Figure 3D).

Dihydroxylated primaquine metabolite converted to
quinone-imines
The two metabolites, corresponding to dihydroxylated
primaquine presumably degraded or further metabolized
to quinone-imines or orthoquinones (m/z 290), were
identified in small quantities. Generation of these metab-
olites also exhibited differential pattern with racemate
primaquine and individual enantiomers (Figure 4). The
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differential positions of OH on the quinoline ring gener-
ated the metabolites with distinctly different retention
time. The first of these two quinone-imine products ap-
peared at 3.4 min and was generated in the ratio 3:2,
(−)-primaquine vs (+)-primaquine (Figure 4A). It was
generated in higher levels from the individual enantio-
mers than from the racemic primaquine, although the
level of this metabolite was very low based on semi-
quantitation. The second quinone-imine appeared at
4.56 min and was almost exclusively generated from the
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(−)-primaquine. Only a small amount of this metabolite
appeared transiently between 10 and 30 min from
(±)-primaquine. No formation of this metabolite was de-
tected from (+)-primaquine. (Figure 4B).

Dihydroxyprimaquine
Formation of a metabolite, predicted as dihydroxyprima-
quine (m/z 292) and presumably formed by further hy-
droxylation of a monohydroxy primaquine, was detected
in significant levels (Figure 5A). The exact hydroxylation
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site in this metabolite could not be established. This metab-
olite, which was exclusively generated from (−)-primaquine,
peaked within 20 min incubation and remained high
until end of 120 min of incubation. This metabolite
was not detected in the CYP2D6 incubation mixtures
with (+)-primaquine or (±)-primaquine.

Primaquine alcohol
Formation of primaquine alcohol has also been reported
earlier [9,18]. The identity of this metabolite was con-
firmed based on the similarity of its MS/MS fragmenta-
tion with the synthetic primaquine alcohol, having the
same retention time and UV spectrum. Primaquine alco-
hol was exclusively generated from the (+)-primaquine
enantiomer (Figure 5B).

Discussion
The results presented in this paper confirm earlier reports
regarding generation of multiple mono-hydroxylated me-
tabolites of primaquine in vitro by primary human hepato-
cytes [16,17] and CYP2D6 [18,19]. However, previous
studies [16-19] did not provide evidence regarding the
specific sites of oxidation on the quinoline ring. The re-
sults presented here provide definitive evidence that
CYP2D6-mediated oxidation of primaquine occurred
at several different positions on the quinoline ring. The iden-
tification and quantification of three mono-hydroxylated
primaquine metabolites were successfully carried out.
Mono-hydroxylated primaquine metabolites were iden-
tified as 2-, 3- and 4-OH-PQ by comparing the retention
times on LC and MS/MS fragmentation data with those of
the synthetic standards. An orthoquinone product of
a fourth hydroxyl product was identified as a major
CYP2D6 metabolite and is a likely marker for the 5
hydroxylation pathway. Definitive generation of these
metabolites from 13C(6)-primaquine/12C-primaquine (1:1)
was confirmed by identification of twin mass peaks for
each metabolite. Even though both 2- and 4-OH-PQ can
form oxidized products with keto-imine groups, they
appear to be stable due to quinolinol-quinolone tautomer-
ism. Further, analysis of the data showed significant quanti-
tative differences in generation of these metabolites from
the individual primaquine enantiomers.
This is the first report on differential preferences of

human CYP2D6 for individual primaquine enantiomers.
The rate of metabolism of (+)-primaquine was about 2
fold higher compared to (−)-primaquine. However, the
rate of metabolism of racemic primaquine was similar to
(−)-primaquine. This may be due to possible inhibition
of the metabolism of one enantiomer by the other. Sup-
posedly, (+)- and (−)-primaquine produce respective (+)-
and (−)-metabolites. No isomerization has been detected
with PQ and carboxy PQ and has been earlier confirmed
with carboxyprimaquine generated in vitro with human
hepatocytes (9).
Relative importance of individual hydroxylated prima-

quine metabolites in efficacy vs haemolytic toxicity vis-
à-vis their preferential generation from the individual
primaquine enantiomers are yet to be determined. Pref-
erential formation of the orthoquinone marker of the
5-OH-PQ, reported to be the most reactive primaquine
metabolite, may explain the greater haemolytic effect
of (+)-primaquine in rodent models [33-36]. However,
it has been demonstrated in primates that the two en-
antiomers share identical radical curative potencies,
though the toxicities are qualitatively different [22,24].
How the two enantiomers compare in efficacy and tox-
icity in humans is still a matter for further study. It
was recently reported that when racemic primaquine is
administered in a single dose to human volunteers, the
carboxyprimaquine metabolite (quantitatively a major
circulating metabolite) is virtually all derived from the
(−)-primaquine [Walker et al. personal communication].
Understanding the pathways for metabolism of prima-

quine has been a daunting challenge. Two distinct pathways,
the more prominent mono-amine oxidase-catalyzed gener-
ation of carboxyprimaquine, the major circulating metabol-
ite, and another mediated through CYP are involved in the
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metabolism of primaquine. Clear evidence was obtained that
specific CYP isoforms could accomplish the conversion of
primaquine to methaemoglobin-generating metabolites
[8,35]. Multiple hydroxylated metabolites were formed
on in vitro incubation of primaquine with human he-
patocytes and also CYP2D6 [16,18]. Hydroxylated me-
tabolites of primaquine are known to be reactive in
nature and have been shown to produce haemolytic
toxicity [8,29,33]. Understanding the precise nature of
the hydroxylated metabolites and the determination of
their biological efficacy in vitro and in vivo has been
challenging, primarily due to the reactive nature of
these metabolites. This challenge has been addressed
by the application of sensitive LC-MS/MS analytic methods,
stable 13C-isotope labelled primaquine and highly reliable
metabolite prediction software. Additionally, chemical syn-
thesis of analytical and fully characterized hydroxylated ana-
logs of primaquine, described herein, has provided further
confirmation on the nature of several of the hydroxylated
metabolites and their precise quantitative analysis.
Recently, CYP2D metabolism was demonstrated to be

essential for the causal prophylactic efficacy of prima-
quine and several other 8-aminoquinoline compounds in
mice [19,20]. The recent report by Bennett et al. also
demonstrated the requirement for CYP2D6 metabolism
for primaquine efficacy in humans [21]. These findings
strongly suggest that a CYP2D6-generated metabolite(s)
is responsible for the liver stage efficacy of primaquine.
Although 5-OH-PQ has previously been suggested as
the active metabolite [35-37], it has been difficult to gen-
erate conclusive evidence due to the highly reactive nature
of this metabolite. The current studies, with chromato-
graphic and mass spectrometric evidence identifying these
primary hydroxylated species, afford new tools for probing
these questions in vivo, and these studies are currently
underway.
Differential pharmacological, toxicological, metabol-

ism, and pharmacokinetic profiles of enantiomers of
primaquine were recognized many years ago [22], but
the findings in several laboratories suggest that these
are highly species-dependent [23,24]. So far it has been
difficult to substantially dissociate the efficacy and haemo-
lytic effects of the enantiomers, although some suggestive
evidence has been reported [22-24]. The current effort
aimed to assess whether the enantiomers differ substan-
tially in their ability to serve as substrates for recombinant
human CYP2D6. In contrast to the markedly more prom-
inent metabolism of (−)-primaquine, as compared to
(+)-primaquine to carboxyprimaquine [25] (believed to
proceed by sequential action of the amine oxidase and
aldehyde dehydrogenase), (+)-primaquine was observed to
be the preferred substrate for CYP2D6. The overall rate of
metabolism of (+)-primaquine by human CYP2D6 was
about 1.5-fold faster compared to (−)-primaquine. Taken
together, these findings suggest that (−)-primaquine
should be less efficacious in humans, by virtue of the
lower conversion to 5-OH-PQ marker (5,6 orthoqui-
none), and greater conversion to the carboxy metabol-
ite, believed to be inactive. However, the ultimate fate
of the carboxyprimaquine metabolite, which accumu-
lates to high levels in plasma [14], is not clear. Recent
findings suggest that carboxyprimaquine can be further
metabolized in human hepatocytes to ring-hydroxylated
metabolites [Walker et al. personal communication]. The
pharmacological or toxicological significance of these, if
any, remain to be elucidated. But given the basic structural
requirements for CYP2D6 substrates, these are not likely
generated via this pathway.
This study presents new evidence regarding different

rates and metabolic profiles for the CYP2D6-mediated
hydroxylation of primaquine and its enantiomers. It will
be important to confirm the biological activities and
metabolic profiles of the primaquine enantiomers in
humans.

Conclusion
The metabolism of primaquine by human CYP2D6 and
the generation of its metabolites display enantio-selectivity
in the hydroxylated product profiles. (+)-Primaquine pref-
erentially generated 2- and 5-OH-PQ while 3- and 4-OH-
PQ were predominantly generated from (−)-primaquine.
This may partly explain differential pharmacologic and
toxicologic properties of primaquine enantiomers. Genetic
polymorphism of CYP2D6 in humans leading to the
classification of slow and fast metabolizers may be an
important consideration in primaquine therapy. The sus-
ceptibility of (+)-primaquine to CYP2D6 activity more
than (−)-primaquine makes this important if individual
enantiomers are administered.
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