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Abstract

Induction of gene expression is correlated with alterations in nuclear organization, including proximity to other active
genes, to the nuclear cortex, and to cytologically distinct domains of the nucleus. Chromosomes are tethered to the
insoluble nuclear scaffold/matrix through interaction with Scaffold/Matrix Attachment Region (SAR/MAR) binding proteins.
Identification and characterization of proteins involved in establishing or maintaining chromosome-scaffold interactions is
necessary to understand how the nucleus is organized and how dynamic changes in attachment are correlated with
alterations in gene expression. We identified and characterized one such scaffold attachment factor, a Drosophila homolog
of mammalian SAF-B. The large nuclei and chromosomes of Drosophila have allowed us to show that SAF-B inhabits distinct
subnuclear compartments, forms weblike continua in nuclei of salivary glands, and interacts with discrete chromosomal loci
in interphase nuclei. These interactions appear mediated either by DNA-protein interactions, or through RNA-protein
interactions that can be altered during changes in gene expression programs. Extraction of soluble nuclear proteins and
DNA leaves SAF-B intact, showing that this scaffold/matrix-attachment protein is a durable component of the nuclear
matrix. Together, we have shown that SAF-B links the nuclear scaffold, chromosomes, and transcriptional activity.
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Introduction

In the eukaryotic nucleus, gene expression is thought to be a

multistep process that involves changes in chromatin organization

and chromatin structure followed by maturation of the polymerase

complex and rearrangements of the transcription unit within the

volume of the nucleus. There is an emerging understanding of the

connection between nuclear structure and gene regulation[1].

Movement of genes as they are expressed or repressed, stereotyped

chromosome domains[2,3], connections between chromosome

linearity and gene expression[4,5], connections between cohesion

and expression[6,7,8], trans-sensing of homologous chromo-

somes[9,10], alterations of chromosome proximity during gene

expression[11], and neighborhoods of co-regulated genes [12,13]

all demonstrate an important contribution by nuclear and

chromatin organization as gene regulatory networks are activated

or inactivated. How these dynamic changes are regulated and the

mechanisms by which the are effected are still outstanding

questions.

Chromatin is thought to be organized in ordered structures

consisting of hundreds or thousands of looped domains fixed at

their bases, usually at AT-rich sequence, to a proteinaceous

structure known as the nuclear scaffold or matrix[14,15].

Whatever the effect of changes within the nucleus, scaffold

proteins that tether chromosomes to nuclear landmarks are being

uncovered as key players – regulators or responders – in gene

expression or boundary formation. Recent work enumerates

dozens of proteins identified as scaffold/matrix components

through biochemical isolation [16]. Several scaffold proteins that

bind DNA directly have been identified and characterized, and

include topoisomerase, lamin, high-mobility group proteins, and

Scaffold Attachment Factors A (SAF-A) and -B (SAF-B). Activities

of Scaffold/Matrix Attachment Region (SAR/MAR) binding

proteins have been characterized biochemically; although it is still

unclear how are they are involved in gene regulation, they have

been proposed to contribute to chromatin structure by mediating

the attachment of chromatin to the nuclear scaffold thereby

folding chromatin into topologically independent loop do-

mains[14,17]. This view may be an oversimplification of a group

of proteins with diverse functions, as many have been shown to

affect transcription, replication, RNA processing, and RNA

transport[18,19,20,21,22]. More work is needed to define the role

of SARs/MARs and their binding proteins in chromatin

remodeling and transcriptional regulation.

One discrete connection between scaffold binding and gene

regulation is known from studies of human and mouse SAF-B

proteins. SAF-B was independently identified as a protein binding

to SAR/MARs, an interaction partner with heterogeneous

ribonucleoprotein A1 (therein called HAP) [23], and a transcrip-

tion factor at the hsp27 and Estrogen-receptor-alpha genes (therein

called HET) [24]. SAF-B misregulation is found in human breast

tumor cell lines, suggesting an important role in gene regula-

tion[25,26,27], and disruption of one SAF-B paralog results in cell

immortalization[28]. Over-expression of SAF-B results in errors in

splicing, transcriptional misregulation, nuclear deformation and

fragmentation, and apoptosis[18,29,30].
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Mammals possess two paralogs of the SAF-B family: SAF-B1

and SAF-B2. The two genes are closely-linked and divergently

transcribed, arguing for co-regulation by the short (500–700 bp)

GC-rich intergenic bidirectional promoter[21]. Both are expressed

in most tissues, but have only overlapping cellular localization –

SAF-B1 is exclusively nuclear, while SAF-B2 is also found in the

cytoplasm. SAF-B1 and SAF-B2 can interact with each other, and

localization to different compartments in the nucleus may

contribute to complex regulation or separation of function[20].

SAF-B1 has been shown to act as an E-box-binding transcriptional

repressor, while SAF-B2 is involved in alternative splicing, and

possibly mRNA export, translational control and cytoplasmic

signaling[20,21]. Both have been implicated in chromatin

organization, transcriptional regulation, RNA splicing, and the

stress response[20,23,26]. SAF-B proteins have been shown to

interact with RNA polymerase II and a subset of serine- and

arginine-rich RNA processing factors (SR proteins) which localize

in the nucleus in a speckled pattern[18,31]. Additionally, SAF-B1

and SAF-B2 interact directly through a C-terminal domain[32].

These observations lend credence to the idea that the matrix is an

important scaffold upon which many aspects of genome regulation

may occur.

In studies utilizing in vitro assays or diploid cell culture, it is

difficult to visualize subnuclear structures or to understand details

of the dynamic alterations of the matrix in response to alterations

of gene activity. Hence, we used the genome sequence of Drosophila

melanogaster to search for a protein with the characteristics of SAF-B

so that we could investigate the matrix in an organism with unique

cytogenetic features. We found a sole Drosophila homologue to

SAF-B, which contains all the conserved domains and motifs of the

human homolog. A fusion protein revealed a complex localization

within the nucleus, consistent with roles in chromatin structure,

transcriptional regulation, and nuclear structure. We have

discovered that Drosophila SAF-B binds to discrete sites on polytene

salivary gland chromosomes, which largely overlap with RNA

polymerase II. Alteration of gene expression results in recruitment

of SAF-B, and RNAse treatment of nuclei abolishes much, but not

all, of the SAF-B chromosomal binding. Deletion of the DNA

binding domain eliminates the balance of chromosome associa-

tion. SAF-B forms weblike continua through salivary gland nuclei,

and extraction of soluble nucleoplasmic protein and nucleic acids

from diploid and cell culture nuclei leaves a stable matrix of SAF-

B. Together, these observations establish Drosophila SAF-B as a

bona fide component of the nuclear matrix that links nuclear

structure to gene expression. We discuss a potential role of SAF-B

as an integral component of an emerging model of the nuclear

matrix as a dynamic, loosely-ordered scaffold upon which genome

regulation is organized.

Results

CG6995 is homologous to human SAF-B1 and SAF-B2
saf-b homologues are broadly distributed in eukaryotic organism

such as mammals, frogs, birds, arthropods, fungi, plasmodia, and

both monocot and dicot plants. Since these proteins are thought to

link gene regulation and the nuclear scaffold, we expected SAF-B

homologs in all eukaryotes, and were curious whether Drosophila

contained one or more genes belonging to the saf-b family. saf-b

family members are distinctive because they possess a DNA-

binding SAP domain similar to that found in Ku70/Ku80 and

Protein Inhibitor of Activated STAT[33,34], an RNA-recognizing

RRM motif, and K-rich, R/E-rich, and G-rich domains. Using

these criteria, we used a BLAST search to query the compiled

Drosophila genomic sequence with the DNA sequence of human

SAF-B1 and SAF-B2 homologues. We identified a single gene

(CG6995, at cytological band 96A2-3) with identifiable homology

throughout the predicted protein, and possessing each of the five

recognized domains (Fig. 1A).

CG6995 has regions rich in lysine (18 of residues in a 61 amino

acid region are lysine), arginine and glutamate (52 and 47,

respectively, in a region of 182 residues), and glycine (40 of 211

residues). These regions contain protein-protein interaction

domains[20,24,32,35] but no other ascribed function based on

homology to other SAF-B family members.

In addition to the recognized domains and K, R/E, and G

regions, CG6995 is rich in serine, threonine, and tyrosine residues,

which are capable of accepting phosphorylation modification. Of

the 928 amino acid residues predicted from the conceptual

translation of SAF-B, there are 122 serine, 33 threonine, and 27

tyrosine residues. Fifty-one residues are predicted to be phosphor-

ylation sites using the KinasePhos algorithm[36] and 104 by the

NetPhos 2.0 algorithm[37]. Of these, five corresponding phos-

phorylated peptides have been found in vivo using the PhosphoPep

Figure 1. Structure of the gene and gene products of Drosophila
SAF-B. (A) Human SAF-B1 and SAF-B2 possess the same domains as
the Drosophila homologue, CG6995. Characterized domains (SAP, RRM)
are shown, as well as regions of notable low sequence complexity (K-,
G-, R-, and E-rich). (B) NetPhos 2.0 algorithm identification of potential
phosphorylation sites, height of bar indicates probability of phosphor-
ylation. Phosphopeptides confirmed in PhosphoPep database are in
black, along with putative responsible kinase based on consensus
match (asterisks indicate no clear consensus match); gray bar indicates
Doa consensus without supporting PhosphoPep support. Three
structural determination algorithms (gray bars are PONDR VL-XT,
DisEMBL, and IUPred) show extensive predicted intrinsically disordered
domains. Averaging scores (black line) shows the only predicted
ordered domains are the SAP and RRM domains. (C) Gray bar at top
represents genomic DNA, and locations of oligonucleotide primers
described in Materials and Methods are shown (1-6). Identified mRNA
species (shown as alternating thick exonic and thin intronic gray bars)
encode two different protein products (conceptual translation products
are shown as thick black bars with colored domains as in (a)). Isoform B
is annotated at Flybase, as are two other forms for which we could find
no supportive data - isoform A includes intron 5 (asterisk), and isoform
C includes introns 5 and 6 (double-asterisk) and is missing exons 1-3
and introns 1-3. Our analyses also identified a novel form, D, which does
not possess the RRM, one of the G-rich domains, and contains a shorter
R/E-rich domain.
doi:10.1371/journal.pone.0010248.g001

SAF-B in the Drosophila Matrix
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database (Fig. 1B)[38]. One, with 25 of 42 identified phosphopep-

tides from the database, corresponds to a Casein Kinase 2

consensus (LLHDEASDDKSIKSVKPANK) with evidence for

regulated phosphorylation. Another (SLASQDRPR, 4/42 pep-

tides recovered from database) corresponds to a consensus to the

DNA-activated Protein Kinase family (DNAPK). Two sites were

identified for the CDC2-Like/LAMMER Kinase Darkener-

of-apricot (KESNRARSRRNDDRG and PRHDRERSAKG

SQDH), but only a single phosphopeptide of the latter was found

in the database. Both potential phosphopeptides are from the

region shown to be phosphorylated by CLK2 in humans[18]. Two

additional phosphopeptides were identified (SVGGDLKR and

RDDSHSLGNKR), but they do not correspond to any described

consensus sequence. The protein has a predicted unphosphory-

lated pI of 7.05.

Consistent with the remarkably low sequence complexity,

protein structural analyses (PONDR VL-XT, DisEMBL, and

IUPred) show extensive regions of predicted disorder. In fact, the

only regions with predicted ordered structure are the DNA-

binding SAP and RNA-binding RRM domains (Fig. 1B). Others

have noted the preponderance of intrinsically unstructured

domains in chromatin remodeling proteins and transcription

factors, which may play a role in nuclear structure[39].

CG6995 has three reported mRNA splice forms, each with a

unique peptide product[40]. CG6995-R/P-B (CG6995 - RNA

and Protein - form B) is distinctive because it is the only protein

that possesses all of the domains known from mammalian SAF-Bs

(Fig. 1C). The existence of the 2784 base pair CG6995-R-B splice

form was confirmed with Reverse-Transcriptase-PCR (primer sets

1-6 and 2–5) (Fig. 2A), which codes for a predicted protein with an

unmodified mass of 102 kiloDaltons. Using two sets of primers for

cDNA construction from adult tissues (separate male and female),

mixed-sex larvae, and mixed-sex 0–24 hour embryos, with

multiple sets of PCR primers, we were unable to obtain products

corresponding to CG6995-R-A (primer sets 2-5 or 3–5) or

CG6995-R-C (primer sets for CG6995-R-A or 3–6), and believe

them to be aberrant or artifactual splice products erroneously

considered mature mRNAs.

We used cDNA from adults to detect the full-length CG6995,

and discovered a heretofore uncharacterized splice form of 1744

base pairs (primer set 1–6) (Fig. 1C and 2A). This was confirmed to

be a splice form (which we call CG6995-R-D) that retains reading

frame and translates to a protein lacking the RRM domain

(CG6995-P-D) with a predicted, unmodified mass of 63 kilo-

Daltons and pI of 5.22.

Due to the strong sequence identity between CG6995 to human

SAF-B proteins, particularly in the conserved motifs, and in

addition to results below showing similarity in expression and

localization, we henceforth refer to CG6995 as saf-b.

Expression of SAF-B in Drosophila
Human SAF-B1 and SAF-B2 genes are expressed in brain, liver,

heart, lung, pancreas, and kidney, suggesting broad or ubiquitous

expression[41]. However, expression was limited to a subset of

human cancer cell lines[26,29] and cell types in human testes[20],

suggesting potentially regulated expression. We tested whether

Drosophila saf-b expression is restricted to some cells or whether it is

expressed during all developmental stages and in a wide number of

tissues. We performed Reverse Transcriptase Polymerase Chain

Reaction using primers specific for SAF-B, and detected

expression in pooled 0–24 hour embryos, larvae, and adult heads

and bodies (Fig. 2A). Primer sets for RT-PCR separately detected

both forms, which appear unchanged in relative expression level in

the pooled tissue samples.

We considered that expression may be limited or enriched in

some tissues, and thus saf-b RNA was detected in fixed wild-type

embryos and adult tissues by whole mount RNA in situ

hybridization. We found that saf-b RNA is loaded into eggs

during oogenesis, and is present in pre-blastoderm embryos.

Although tissue-specific expression is not clear in early or mid-

stage embryos, by germband extension saf-b RNA is present at a

higher level in the nervous system than in other tissues (Fig. 2B-H).

This enriched nervous system expression persists through hatching

and larval molting, and the third instar larval brain and imaginal

tissues retain a high level of expression at a time when they are

undergoing cell divisions (Fig. 2I–K).

In adult tissues, saf-b RNA is found in the testis and ovaries near

the apical tip, but distinct from germ cells, thus is low (or excluded)

Figure 2. Expression profile of saf-b. (A) Reverse-Transcriptase
Polymerase Chain Reaction shows expression in all life stages, and in
soma (heads) and mixed soma/germ (bodies). Primers 2 and 5 were
used for the B form, and 2 and 6 were used for the D form. 18S rRNA
was used as extraction, reverse transcriptase, PCR, and loading control.
Lanes 1–7 are embryos, larvae, pupae, female heads, female decapitat-
ed bodies, male heads, and male decapitated bodies. (B–H) embryonic
stages showing expression in precellularized syncytial embryos (B), mid-
cellularized blastoderm embryos (C), gastrula (D), germ-band elongated
(E) and retracted (F) embryos, and late-stage embryos with noticeably
intense staining in the central (G) and peripheral (H) nervous system. (I-
K) Expression in third-instar larval brains (I), leg imaginal discs (J), and
eye-antennal discs (K). (L-M) Expression in the germline of males (L) and
females (M). Expression is not detected in the germline stem cells
(upper-rightmost tips in both testes and germaria), but is evident in
developing spermatocytes, and nurse cells and oocytes.
doi:10.1371/journal.pone.0010248.g002
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from stem cells, but induced in those cells undergoing premeiotic

mitotic divisions (Fig. 2L,M). In testes, expression is clearly absent

(or reduced) in gonia, but is evident in the cortically-located

spermatocytes. In ovaries, expression begins in stage 3 germaria, at

which time premieiotic mitoses have created the 16-cell cyst, and

persists through individualized follicles. saf-b RNA is loaded into

the developing oocyte, consistent with the detection of RNA in

unfertilized eggs (data not shown) and embryos prior to the onset

of zygotic transcription (Fig. 2B).

Whole mount in situ hybridization using RNA probe directed at

the RRM-encoding exon only was indistinguishable, indicating

that the D isoform was not expressed in a pattern appreciably

different from the expression of the full-length B isoform.

SAF-B is found in two nuclear compartments
We do not possess an antibody specific for Drosophila SAF-B, nor

do antibodies raised to the human protein cross-react to the

Drosophila protein (data not shown). Since our goal was to

understand where all SAF-B is in the nucleus, regardless of

structure or post-translational modification, we constructed a

genomic DNA fragment that expressed a fusion protein linking

GFP to the C-terminus of SAF-B in order to detect localization of

all forms in cells. Such a fusion protein has been used in human

cells, and appears to give an accurate reflection of total protein

localization[42].

To determine if Drosophila SAF-B protein was found in the

nucleus, S2 cells were transfected using a plasmid containing

this SAF-B-GFP fusion protein under a ubiquitous and

constitutive actin5C promoter. Cells were transfected and

allowed to express for 3 days before they were fixed and

analyzed. SAF-B-GFP fusion was found to occupy two

compartments within the S2 cell nucleus. First, SAF-B-GFP

was found throughout the nucleoplasm, overlapping with

chromatin in general, but excluded from the DAPI-dim

nucleolus and neither enriched in nor excluded from the

DAPI-bright constitutive heterochromatic compartments

(Fig. 3A). Second, SAF-B-GFP formed more intense foci in

the nucleoplasm (Fig. 3A–D), which did not correspond to any

obvious DAPI landmarks. There were many small, less-intense

foci, but modally 4-10 larger foci in most nuclei. These foci were

also present in living cells (data not shown), and so are not

artifacts of fixation. We do not believe that these foci are

aberrant nuclear aggregates as a result of over-expression, since

we see nucleoplasmic and focal localization even in S2 cells with

very low levels of expression (Fig. 3C). Cortical focal localization

did not overlap with nuclear pores (Fig. 3B). Identical

localization is seen using a GFP-SAF-B (N-terminal) fusion

protein (Fig. 3D). Similar partitioning of SAF-B into nucleo-

plasmic and focal localization has been seen in human

cells[20,22].

S2 cells do not allow an understanding of localization in

different cell types. We therefore expressed SAF-B fusions in intact

animals under the bipartite control of actin5C-gal4 and UAS-SAF-

B-GFP gene expression system. Localization of SAF-B-GFP

appeared as general nucleoplasmic staining with more intense

foci, and was similar in cycling embryonic cells and neuroblasts to

what we saw in S2 cells (Fig. 3E,F).

Others have reported mammalian SAF-B2 in the cyto-

plasm[21,32], and SAF-B C-terminal domains interact with

hnRNPs known to shuttle across the nuclear pore. We have also

observed weak detection of SAF-B-GFP in the cytoplasm of some

of our S2 preparations (data not shown), but cannot rule out

artifact since our detection is inconsistent and very close to the

background of the immunofluorescence assay.

Deletion of the DNA binding SAP domain affects
subnuclear localization

Mammalian SAF-B can interact physically with the RNA

polymerase II C-terminal domain, TAFII15, and the CHD

nucleosome remodeling complex[43], and may be recruited to

compartments or foci in the nucleus as a result of transcrip-

tion[18]. However, SAF-B has a SAP domain, a non-sequence-

specific DNA-binding domain that shows preference for SAR/

MAR DNAs[34], and could be recruited to chromatin compart-

ments as a result of direct binding. It is not known what fraction of

chromosome-bound SAF-B is associated with DNA directly, and

how much is associated with chromosomes indirectly through

nascent pre-mRNA or via protein-protein interactions with the

RNA transcriptional machinery.

In order to determine if SAF-B is recruited to DNA as a result of

direct DNA binding, we constructed a GFP-fusion to a truncated

SAF-B protein that lacked the N-terminal SAP domain. Uniform

GFP fluorescence with the same puncta seen for the wild-type

fusion protein confirmed expression and stability and an active

nuclear localization signal, and demonstrated that the SAP

domain is not necessary for proper nuclear localization (Fig. 4A),

suggesting that a large fraction of localization is not due to DNA

contacts through the SAP domain.

We noted consistently enlarged foci of protein in these nuclei

(Fig. 4B–D), even when variability in transfection efficiency

produced cells with relatively low amounts of chimeric SAF-B

protein. The foci seemed in most cases to be associated with

decreased general nucleoplasmic localization and by the occa-

sional appearance of continua of GFP fluorescence which

connected the bright foci. Not all nuclei showed continua, but

we observed that those that did not have continua showed more

intense foci, while those with smaller focal staining had more

extensive continual filaments (compare Fig. 4B,C to 4D).

SAF-B forms a network in nuclei and binds to discrete
sites on chromosomes

We wished to view SAF-B localization in the nucleus at greater

detail, and capitalized on the large polytene nuclei of Drosophila

salivary glands to do so. These cells are interphase, but possess

polytenized chromosomes consisting of hundreds of aligned and

cohered chromosomes. SAF-B-GFP localization within these

nuclei provided additional details of SAF-B structure in nuclei to

what we observed in S2 culture and embryonic cells. The

immunoreactivity of SAF-B-GFP was found to form a continuous

threadlike network (Fig. 5A,B). This is similar to what we saw in

some S2 cells for the truncated protein lacking the SAP domain,

and may represent the matrix in these cells. Others have

documented nucleic-acid-dependent high molecular weight com-

plexes which contain SAF-B[20], although they did not have clear

cytological evidence of such complexes. In our studies, there was

clear apposition of SAF-B-GFP with DNA, but the majority of

SAF-B-GFP intensity did not overlap DAPI-stained DNA, nor was

it merely in the nucleoplasm excluded from the chromosomes.

Each nucleus had modally three to five foci of increased intensity

where these continua converged (Fig. 5A,B,I).

SAF-B in humans binds AT-rich DNAs, but the extent to which

SAF-B binds specific genomic loci has not been described,

although considerable binding has been reported in promoters

of some genes[41]. The DNA binding SAP domain has no known

consensus sequence, unlike the AT-hook common in other SAR/

MAR binding proteins, and so may bind to sequence even without

a high AT constitution. Indeed, binding of human SAF-B to

inducible promoters has been described[35,44]. To better

SAF-B in the Drosophila Matrix

PLoS ONE | www.plosone.org 4 April 2010 | Volume 5 | Issue 4 | e10248



Figure 3. Localization of SAF-B fusion proteins in cells. (A) Carboxy-terminal GFP protein fusion to SAF-B (SAF-B-GFP) in an S2 cell nucleus.
Independent channels for immunodetection of SAF-B-GFP and DAPI fluorescence of DNA, and the merge. General nucleoplasmic staining is evident,
as well as more intense focal accumulations of protein. SAF-B is not enriched or excluded from the DAPI-bright heterochromatic compartment, but it

SAF-B in the Drosophila Matrix
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understand the nature of SAF-B-DNA interactions, we squashed

salivary glands to free the chromosome arms. Detection of the

GFP moiety on these chromosomes revealed that SAF-B-GFP

localized to discrete bands on polytene chromosomes, suggesting it

binds to specific loci distributed through the genome (Fig. 5C),

which are reproducible between nuclei (Fig. 5D). There was not

pronounced localization to the nucleolus or to the heterochromatic

chromocenter, although the latter had some focal localization

(Fig. 5E, arrowhead), consistent with our observations of diploid

interphase cells (Fig. 3A,C,D).

Physical interaction of human SAF-B with the transcriptional

machinery[24], and genetic interaction with repressed genes [45]

suggested that SAF-B might be recruited to active or inactive

genes. To address this possibility in Drosophila, we performed

double localization with SAF-B-GFP and RNAPII(Ser2-PO4)

antibodies, which detects actively elongating RNA polymerase

II. We detected many bands of overlap, but also some bands which

contained only one of the two epitopes (Fig. 5F–I). In fact, the

intensity of SAF-B detection did not mirror the intensity of

RNAPII(Ser2-PO4). Less-intense SAF-B bands were found

primarily in interbands of the polytene chromosomes, and were

found even when RNAPII was not detectable (Fig. 5G,H). In

whole-mount nuclei, bands of RNAPII(Ser2-PO4) and SAF-B are

still evident, and regions of overlap are clear. As with squashed

chromosome preparations, it is clear that the most intense foci

where continua of SAF-B converge are not simply sites of

transcription (Fig. 5I).

The salivary gland nuclear distribution of SAF-B with a deletion

that removed the SAP domain looked similar, although subtly

different in the number and intensity of SAF-B bands on

chromosomes (Fig. 6A), specifically the most intense bands were

mitigated. Any retained binding to chromosomes without the

DNA binding domain implies that there is another DNA binding

domain in SAF-B, or that it is recruited to chromosomes in a

DNA-independent fashion. To determine how much of SAF-B is

recruited via interactions with RNA Polymerase II or by binding

to RNA, we treated nuclei with RNAse prior to immunodetection

(Fig. 6B). Most bands disappeared, showing that a large fraction of

SAF-B is recruited via direct interaction with RNA, or through

some RNA-mediated protein-protein interaction, consistent with

the RNA-dependent high-molecular-weight complexes in human

cells[20]. A few intense SAF-B bands remained, suggesting some

fraction of SAF-B was recruited to DNA via RNA-independent

direct DNA binding or protein interaction. To confirm this, we

RNAse treated cells expressing SAF-B lacking the SAP domain,

and observed that nearly all SAF-B was lost from chromosomes

(Fig. 6C). We cannot determine if the few bands that remain on

these chromosomes (e.g., arrowhead) are due to protein-protein

interactions, particular binding characteristics at these sites, or

incomplete RNAse treatment, but our observation that these

remaining bands overlap with intense RNA Polymerase II bands

suggests the last interpretation.

SAF-B responds to transcriptional activity
If RNA is responsible for a significant fraction of SAF-B on

chromosomes, then induced gene expression should cause new or

increased SAF-B binding. Upon heat shock, stereotyped alter-

ations in gene expression reveal new areas of RNA transcription

which are visible as decondensed chromosomal puffs [46,47]. We

observed the distribution of SAF-B-GFP in the polytene nuclei of

flies before and after a 15-minute heat shock. Prior to heat shock,

we did not detect SAF-B at cytological band 87A-C (Fig. 6G).

However, SAF-B was directed to puffs of chromatin which were

undergoing decondensation and expression (Fig. 6D). Recruit-

ment was not dependent on the DNA binding SAP domain, since

a fusion protein lacking the SAP domain behaved the same

(Fig. 6E). RNAse treatment reduced the amount of SAF-B-GFP

at the heat shock puffs, although RNA Polymerase II remains

(Fig. 6F). These data are consistent with our interpretation that

much of this protein’s association with chromosomes is dependent

upon RNA.

SAF-B is part of the durable nuclear matrix
SAF-B has been considered a major component of the nuclear

matrix, determined by its binding to Scaffold/Matrix Attachment

Region DNAs. However, biochemical fractionation of human

nuclei detected SAF-B in the soluble nucleoplasm and insoluble

chromatin fraction, but not in the precipitable matrix fraction[41].

Indeed, others failed to find durable (DNAseI and detergent

resistant) nuclear retention common for matrix proteins[22,48].

However, the purification of SAF-B as a scaffold-associated

protein predicted that it would be found in a durable component

of the nucleus, either the cortex or an inner network similar to

is clearly excluded from the DAPI-dim nucleolus. (B) Immunodetection of Nuclear Pore Complex proteins p110 and p95, an integral membrane
nuclear pore complex, fusion with images from (A), and an image with increased magnification showing no overlap between nuclear pore complexes
and SAF-B foci. (C) Immunodetection of SAF-B-GFP and DAPI stained DNA, and the merge. Three S2 cells with different levels of SAF-B-GFP expression
all show same nucleoplasmic and focal localization. (D) Amino-terminal GFP protein fusion to SAF-B (GFP-SAF-B) in an S2 cell nucleus. Independent
channels for immunodetection of GFP-SAF-B, DAPI fluorescence of DNA, and the merge. Distribution of GFP-SAF-B is identical to that of the carboxy-
terminal fusion shown in (A). (E) Distribution of SAF-B-GFP in early pre-determined embryonic nuclei, showing general nucleoplasmic and focal
localization, as in S2 cells. (F) Distribution of SAF-B-GFP in larval neuroblast nuclei, showing general nucleoplasmic and focal localization, as in S2 cells
and early embryos. Scale bar 2 mm (A, B, D, F) or 5 mm (C, E).
doi:10.1371/journal.pone.0010248.g003

Figure 4. Distribution of SAF-B missing the conserved DNA-
binding SAP domain. (A) Truncated SAF-B protein, lacking the DNA-
binding SAP domain, fused to GFP, in larval neuroblast nuclei.
Independent channels are shown for immunodetection of SAF-B-GFP,
DAPI fluorescence of DNA, and the merge. Few smaller foci (as seen in
Fig. 3) are often replaced by one or more larger foci. These foci are often
connected via continual ‘‘threadlike’’ structures of staining. (B-D) as in
(A), SAPless SAF-B-GFP channel only. Scale bar 2 mm.
doi:10.1371/journal.pone.0010248.g004
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what we saw in salivary gland nuclei. We sought to discover if this

was the case in Drosophila, as has been shown for other

proteins[48,49].

Treatment of S2 cell nuclei with DNAse and detergent removed

much of the DNA and all histone H3 (which is not known to be

linked to the matrix and thus serves as a positive control for

extraction). What remained was a complex of SAF-B-GFP,

showing that Drosophila SAF-B is included in a DNAse-durable

matrix (Fig. 7A). Supportive of the idea that SAF-B is found in the

durable matrix, DNAseI-resistant SAF-B-GFP localization did not

require DNA binding through the SAP domain (Fig. 7B). We

believe that the durable matrix of SAF-B that we observe is

Figure 5. Distribution of SAF-B-GFP in polytene larval salivary gland nuclei. (A) Immunodetection of SAF-B-GFP, DAPI staining of DNA, and
the merge. The same nucleoplasmic and focal distribution seen in diploid cells are apparent. Additionally, more intense foci and threadlike continua
are seen to connect foci. (B) Increased magnification to show continua. Brighter foci are at confluences of continua. (C) Squashed nuclei showing
distribution of SAF-B-GFP, and merge with DAPI-stained DNA. SAF-B associates with specific bands on polytene chromosomes. White dots highlight
SAF-B bands at the tip of the X chromosome. (D) A different polytene X chromosome, labelled as in (C), showing consistency of banding pattern. (E)
The chromocenter (arrowhead) of salivary gland chromosomes does not show enhanced or reduced localization of SAF-B-GFP, although some foci
are seen, and the nucleolus (arrows) shows only very low level of SAF-B-GFP. (F) Immunodetection of SAF-B-GFP, RNA Polymerase II (Ser2-PO4), and
merge with DAPI-stained DNA. Extensive areas of overlap of both epitopes are evident, as are bands with detection of only SAF-B-GFP or RNA
Polymerase II. (G) Immunodetection of SAF-B-GFP counterstained with DAPI to reveal salivary gland chromosome bands. SAF-B localized primarily to
interband regions. (H) Immunodetection of SAF-B-GFP and DAPI staining of DNA as in (G), with immunodetection of RNA Polymerase II (Ser2-PO4),
showing most bands of SAF-B overlap with RNA Polymerase II, but some bands of only one detectable epitope are apparent (arrowheads). (I)
Immunodetection of SAF-B-GFP and RNA Polymerase II (Ser2-PO4) in whole-mount salivary gland nuclei, and merge with DAPI-stained DNA. Scale bar
50 mm (A), 10 mm (B–E, I), or 20 mm (F).
doi:10.1371/journal.pone.0010248.g005
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maintained through protein-protein or protein-RNA interactions,

not through binding of DNA.

Residency in the nuclear matrix predicted that SAF-B should

disperse as the nuclear envelope and matrix break down during the

cell cycle, rather than be retained with chromosomes packaged as

chromatin, a prediction that we confirmed by observing localization

in fixed tissues of cycling larval neuroblasts. During mitosis in larval

neuroblasts, when the nuclear envelope forms vesicles and no longer

contains the chromosomes, we see punctate SAF-B throughout the

cytoplasm (Fig. 7C). Discrete sites along chromosome arms or at

telomeres are not evident, however low occupancy, dispersed

binding, or loss during chromosome condensation might also

explain our failure to detect chromosomal foci.

Discussion

The nuclear matrix (or scaffold) is thought to be a relatively-

insoluble scaffold which organizes chromosomes within the

nucleus. The matrix has been proposed to organize chromosomes

through the cell cycle, and play pivotal roles in organizing

Figure 6. RNA- and transcription-dependent localization of SAF-B. (A) Immunodetection of SAF-B-GFP lacking the DNA-binding SAP domain
(green) and RNA Polymerase II (Ser2-PO4) (red) merged with DAPI-staining of DNA (blue). (B) Immunodetection of full-length SAF-B-GFP (green) and
RNA Polymerase II (Ser2-PO4) (red) merged with DAPI-staining of DNA (blue) after treatment with RNAseA. (C) Immunodetection of SAF-B-GFP lacking
the DNA-binding SAP domain (green) and RNA Polymerase II (Ser2-PO4) (red) merged with DAPI-staining of DNA (blue) after treatment with RNAseA.
Arrowheads point to bands of retained SAF-B. Insets in A-C are whole mount nuclei. (D) Immunodetection of SAF-B-GFP at cytological bands 87A-C
(green) merged with DAPI-stained DNA (blue), after 15 minute heat shock to induce expression. (E) Immunodetection of SAF-B-GFP lacking the DNA-
binding SAP domain merged with DAPI-stained DNA after 15 minute heat shock, showing recruitment of SAPless SAF-B-GFP to the newly transcribed
DNA. (F) Immunodetection of SAF-B-GFP (green) at cytological bands 87A-C (green) is reduced after RNAse treatment, although RNA Polymerase II
(Ser2-PO4) (red) is still present. (G) Immunodetection of SAF-B (green) is negligible prior to heat shock induction of transcription. Scale bar 20 mm or
10 mm (inset images).
doi:10.1371/journal.pone.0010248.g006
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replication, transcription, and pre-mRNA processing. However, its

existence is controversial to some because it is not observed in

living cells, and is only revealed through non-physiological salt

treatments or extractions[1,50]. One putative matrix protein,

SAF-B, has been studied since over-expression and biochemical

studies have linked roles in gene expression, RNA processing,

nuclear structure, and apoptosis [18,21,23,26,51].

SAF-B was one of the first proteins biochemically identified as a

component of the nuclear matrix. It binds to DNA, as was

expected, but also to RNA and to other SAF-B molecules[20,41].

These properties were consistent with expectations for a nuclear

matrix protein, and revealed a possible role in coupling nuclear

matrix/structure and gene expression. These compelling connec-

tions have drawn the attention of many investigators to attempt to

understand the role of SAF-B in the nucleus. Despite being a

major component of the matrix, SAF-B localization in fixed cells

revealed general nuclear localization, and analysis did not allow a

detailed understanding of any subnuclear localization, or an

understanding of the nature of SAF-B-nucleic acid interactions.

Here, we have provided evidence that Drosophila melanogaster has

a single SAF-B homologue which shares many features of the two

homologues of mouse and human experimental systems. Using

fusion proteins and immunofluorescence, we demonstrated

features of the putative matrix protein SAF-B in Drosophila

melanogaster. We observed what appears to be generalized

nucleoplasmic distribution with puncta of more intense localiza-

tion. In these tissue culture nuclei, nuclear extractions showed that

SAF-B resides within the matrix. Deletion of the DNA binding

domain did not affect nuclear import nor association with

chromosomes, but resulted in pronounced large continuous (or

aggregated) structures.

The salivary gland nuclei of Drosophila are very large, providing

us a view of SAF-B in interphase cells. Localization was both

cortical and spread through the center of the nucleus, connected in

a weblike matrix. This structure may well represent the

‘‘biochemically-defined’’ matrix in these specialized nuclei. Such

structures have never been described in mammalian cells where

most previous work on SAF-B has been done, but this may be a

limitation of resolution in diploid cells of those studies. Indeed, our

observations using S2 cell culture did not reveal these structures

when using wild-type proteins but they were apparent in the large

salivary gland nuclei.

Although we used GFP fusion proteins to detect SAF-B

localization, we feel that what we see is an accurate reflection of

endogenous SAF-B localization for four reasons. First, the fusion

localization in salivary gland cells is similar to that of diploid

interphase cells. Second, nuclear GFP is known to be nucleoplas-

mic, and has not been described to form filaments or territories

resembling the SAF-B localization we observe. Third, others have

described SAF-B localization in human and mouse diploid cell

culture, using direct immunodetection, and HA, FLAG-, GST-

and Fluorescent Protein-tagged fusion proteins; all methods

resulted in very similar patterns (save for the aforementioned

inconsistent cytoplasmic localization)[18,21,32,35,42]. Fourth,

expression of the fusion protein is not lethal to the flies, suggesting

that the localization we describe is neither antimorphic nor

neomorphic.

Others have used nuclear extracts and fractionation to

demonstrate that SAF-B is not part of the nuclear matrix [41].

In contrast, Drosophila SAF-B is durable during detergent and

nuclease treatment, and forms what appear to be aggregated

threads of protein in interphase salivary gland nuclei. We believe

that the apparent nucleoplasmic SAF-B of mammals and stable

SAF-B of Drosophila can be reconciled if we consider that the SAF-

B-containing matrix may be a dynamic structure that may

assemble or disassemble a subset of total SAF-B, much like the

actin, tubulin, or nuclear lamin cytoskeletons. We consider the

possibility that the structure of these SAF-B-containing continua or

matrices may be ephemeral, subject to post-translational modifi-

cation, gene activity, or nucleic acid binding[20], and thus only a

subset may be stabilized at any time. The scaffold protein SAF-A,

which is related to SAF-B in primary structure and forms

complexes with SAF-B, is capable of forming strikingly-ordered

aggregates when in the presence of DNA or RNA[52]. Whether

SAF-B creates, regulates, or is incorporated in these structures has

not yet been tested.

A recent report of human SAF-B1 and SAF-B2 chromatin

immunoprecipitation with gene promoter regions suggests that

SAF-B1 binds to hundreds of genes[51]. This is superficially

similar to our demonstration of discrete banded binding to salivary

gland chromosomes, however we found that most of the binding in

Drosophila may be a consequence of transcription, a possibility not

considered in that study. Nonetheless, Hammerich-Hille and

colleagues did find gross misregulation of many genes, a subset of

which overlapped with characterized SAF-B-bound promoters,

which provides support for an active role of SAF-Bs in regulating

gene expression or chromosome structure.

For a matrix protein to be involved in regulation of gene

expression, and be involved in the rearrangements seen in nuclei

as new programs of gene expression are induced[53], it would

need to be part of the nuclear matrix, be able to pinion

chromosomes to the matrix, and reflect alterations in gene

Figure 7. Nuclear extraction reveal SAF-B is a durable
component of the nuclear matrix. (A) Immunodetection of SAF-F-
GFP and histone H3, and DAPI-staining of DNA after salt, detergent, and
DNAseI extraction of mildly fixed nuclei. DNA and histone (a soluble
nuclear and chromosome-bound component) are both removed
entirely, while the SAF-B is retained. Scale bar 2 mm. (B) SAF-B truncated
protein, lacking the SAP DNA-binding domain, is also retained in the
nuclear matrix after extraction. Scale bar 2 mm. (C) Immunodetection of
SAF-B in diploid mitotic neuroblast cells, DAPI-stained DNA, and merge.
SAF-B is found in foci throughout the cytoplasm, and is not detectably
associated with chromosomes. Scale bar 2 mm (A, B) or 5 mm (C).
doi:10.1371/journal.pone.0010248.g007
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expression. We have shown that SAF-B is part of a durable nuclear

matrix which is refractory to nuclear extraction, and appears to

form interesting and elaborate threadlike continua within some

cell types. SAF-B interacts with DNA dependent upon its SAP

DNA-binding domain, with other chromosomal loci dependent on

RNA, and is recruited de novo upon induction of transcription.

How DNA and RNA binding by SAF-B may contribute to the

nuclear matrix and coordinate gene expression will continue to be

exciting areas of research, particularly with the unique cytogenetic

tools available in Drosophila.

Materials and Methods

DNA constructs
Drosophila SAF-B was amplified from wild-type genomic DNA

using Polymerase Chain Reaction with primers 1 and 6 (sequences

below). The PCR product was cloned into the pENTR/D-TOPO

Gateway entry vector according to the manufacturer’s instructions

(Invitrogen) and the complete sequence was verified by DNA

sequencing. The SAP-less form was amplified using primer 6 and

CACCATGAGAGCTGAAGGGCTCGACCC. SAF-B sequence

was excised from pEntr/D-TOPO and ligated into pAWG,

pAGW, pTW, pTGW and pTWG, from the Drosophila gateway

collection, using the LR Clonase reaction according to the

manufacturer’s instructions (Invitrogen).

Primer 1: CACCATGCCCGAGGCAGGAAAGAA, Primer 2:

GGCTTCCGACGACAAATCTA, Primer 3: TGGATGAC-

GATGGAAACTGA, Primer 4: TGATTGGGTTGCTGAT-

GAAA, Primer 5: GCGCTCCTCACGTATCTTCT, Primer 6:

GTAGCGCGACACCGGTC. PCR cycling conditions were: 2-

minute 94uC initial denaturation, 35 cycles of 20-second

denaturation, 20-second 57uC annealing, and 4-minute 68–72uC
extension steps, followed by a final 10-minute final extension.

Drosophila stocks
Flies were maintained on standard cornmeal, yeast, and sugar

medium with Tegosept. Crosses were performed at 25u. The wild-

type was yellow1 white67c23. The gal4 drivers used in this study were:

w1118; P{w+mC = Sgs3-GAL4.PD}TP1 (Bloomington Stock 6870)

and y1 w*; P{w+mC = Act5C-GAL4}25FO1/CyO, y+ (Bloomington

Stock 4414). All fly lines are available from the Bloomington

Drosophila Stock Center (http://flystocks.bio.indiana.edu).

Reverse-Transcriptase PCR
Total RNA from embryos, third instar larvae and adult flies of

wild-type flies was isolated by lysis and homogenization in TriZOL

(Invitrogen), followed by chloroform/isopropanol extraction,

ethanol precipitation, and resuspension in DEPC-water. Reverse

Transcription was done following the manufacturer’s instructions

(New England Biolabs). Subsequent PCR amplification of the 18S

rRNA using primers GACTACCATGGTTGCAACGGG and

TTCGTCACTACCTCCCCGAG served as control. PCR cy-

cling conditions were: 2-minute 94uC initial denaturation, 35

cycles of 20-second denaturation, 20-second 57uC annealing, and

45-second 68–72uC extension steps, followed by a final 10-minute

final extension.

RNA in situ hybridization
Unstaged (0-24 hour after egg deposition) embryos were

collected from apple juice agar collection bottles, bleach

dechorionated, fixed, and processed for in situ RNA detection[54].

Ovaries, brains, imaginal discs, and testis were dissected form

larvae or adults in Phosphate Buffered Saline and fixed for 15 min

with 4% paraformaldehyde in phosphate-buffered saline. Digox-

igenin-labeled antisense RNA probes directed at CG6995 were

made by transcribing PCR-amplified DNA using genomic DNA as

template and primers TAATACGACTCACTATAGGGAT-

GACCGAGGCAGGAAAGAA and ATTAACCCTCACTAAA-

GGGAGTAGCGCGACACCGGTC (which include the T7 and

T3 RNA polymerase promoters, respectively [55]).

S2 cells transfection
S2 Schneider cells were grown in Schneider’s medium

(GIBCO), 10% Heat-inactivated fetal bovine serum (GIBCO)

and 50 mg/ml each of penicillin and streptomycin (GIBCO). S2

cells were transiently transfected by calcium phosphate precipita-

tion with pAWG or pAGW containing SAF-B, incubated for 3

days, and analyzed by immunofluorescence or nuclear matrix

extraction.

Nuclear matrix extraction
Cells were washed twice in Phosphate-Buffered Saline (PBS)

and extracted in CSK buffer (100 mM NaCl, 300 mM sucrose,

10 mM PIPES pH 6.8, 3 mM MgCl2, 1 mM PMSF, 0.5% Triton

X-100, and 20 units/mL RNAse inhibitor). After 10 min on ice,

the buffer was removed by aspiration. Extractions was carried out

by adding Extraction buffer (250 mM ammonium sulfate,

300 mM sucrose, 10 mM Pipes, pH 6.8, 3 mM MgCl2, 0.5%

Triton X-100, 1 mM PMSF, and 20 units/ml RNAse inhibitor)

for 5 min at 4uC. Extraction buffer was replaced with Digestion

buffer (50 mM NaCl, 300 mM sucrose, 10 mM Pipes pH 6.8,

3 mM MgCl2, 0.5% Triton X-100, 1 mM PMSF, 20 units/mL

RNAse inhibitor, and 200–500 units/mL RNase-free DNase) and

incubated for 60 min at room temperature. The digestion was

terminated by replacing Digestion buffer with Extraction buffer.

The slides were then processed for immunofluorescence.

Immunofluorescence and Microscopy
For S2 cells, cells were fixed with 4% paraformaldehyde at 37uC

for 30 min[56], and for nuclear matrix extractions, cells were fixed

with 2% paraformaldehyde at room temperature for 15 min.

Fixed cells were washed, permeabilized in 0.2% Triton X-100 for

10 min, blocked for 30 minutes with bovine serum albumin, and

incubated with primary antibody at 4uC overnight. Primary

antibodies were removed and secondary antibodies were incubat-

ed overnight. Primary antibodies: anti-GFP (Santa Cruz) at 1:200,

anti-Nuclear Pore Complex protein (Covance) at 1:200, anti-RNA

Polymerase II (Ser2-PO4) (Abcam) at 1:200 and anti-H3K4

(trimethylated) (Upstate). Secondary antibodies: FITC-conjugated

anti-rabbit goat IgG and FITC-conjugated anti-mouse goat IgG

(Jackson Immunoresearch), TRITC-conjugated anti-mouse goat

IgG and TRITC-conjugated anti-mouse goat IgG (Jackson

Immunoresearch). All secondaries used at 1:200. DAPI (1 ng/

mL) was added to Vectashield (Vector Labs) as mounting medium

for visualization of DNA.

For RNAse treatment of the whole mount salivary gland nuclei,

glands were dissected in PBS and incubated in TBS (10 mM Tris-

HCl, pH 7.15, and 150 mM NaCl) plus 50 mg/ml RNAseA for

45 min at room temperature. The glands were transferred to

TBS/0.05% Tween 20 for 5 min and then fixed in formaldehyde

fixative solution (PBS with 1% Triton X-100, with 3.7%

formaldehyde freshly added). For RNAse treatment of squashed

salivary gland chromosomes, glands were dissected in PBS and

incubated in PBS with 0.1% Triton X-100 for 2 minutes, then

were transferred to PBS with 0.5 mg/ml RNAseA for 8 min.

For polytene chromosome squashes, heat shocks were done for

15 min at 37uC [57]. Squashes were washed in PBST (PBS with

0.1% Tween-20) on ice. Antibodies in PBST supplemented with
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0.1%–0.5% BSA were added and allowed to incubate overnight at

4uC. Slides were washed in PBST secondary antibodies in PBST

incubated 1.5 hours at room temperature. DAPI (1 ng/mL) was

added to Vectashield (Vector Labs) as mounting medium for

visualization of DNA.
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