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ABSTRACT
Background: Trimethylamine-N-oxide (TMAO) is a gut
microbiota–derived metabolite produced from dietary nutrients.
Many studies have discovered that circulating TMAO concentrations
are linked to a wide range of health outcomes.
Objectives: This study aimed to summarize health outcomes related
to circulating TMAO concentrations.
Methods: We searched the Embase, Medline, Web of Science,
and Scopus databases from inception to 15 February, 2022 to
identify and update meta-analyses examining the associations
between TMAO and multiple health outcomes. For each health
outcome, we estimated the summary effect size, 95% prediction
CI, between-study heterogeneity, evidence of small-study effects,
and evidence of excess-significance bias. These metrics were
used to evaluate the evidence credibility of the identified
associations.
Results: This umbrella review identified 24 meta-analyses
that investigated the association between circulating TMAO
concentrations and health outcomes including all-cause mortality,
cardiovascular diseases (CVDs), diabetes mellitus (DM), cancer,
and renal function. We updated these meta-analyses by including a
total of 82 individual studies on 18 unique health outcomes. Among
them, 14 associations were nominally significant. After evidence
credibility assessment, we found 6 (33%) associations (i.e., all-cause
mortality, CVD mortality, major adverse cardiovascular events,
hypertension, DM, and glomerular filtration rate) to present highly
suggestive evidence.

Conclusions: TMAO might be a novel biomarker related to human
health conditions including all-cause mortality, hypertension, CVD,
DM, cancer, and kidney function. Further studies are needed to
investigate whether circulating TMAO concentrations could be an
intervention target for chronic disease. This review was registered at
www.crd.york.ac.uk/prospero/ as CRD42021284730. Am J Clin
Nutr 2022;116:230–243.

Keywords: umbrella review, updated meta-analyses,
trimethylamine-N-oxide, TMAO, all-cause mortality, cardiovascular
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Introduction
Trimethylamine-N-oxide (TMAO) is a gut microbiota metabo-

lite derived from phosphatidylcholine, choline, betaine, and l-
carnitine, which are abundant in seafoods, dairy products, egg
yolks, muscle, and organ meats (1, 2). These nutrients can be
hydrolyzed by trimethylamine (TMA) lyase from gut flora to
form the TMAO precursor TMA, which is further oxidized
by hepatic flavin monooxygenases to form TMAO (2, 3). A
multitude of studies have discovered that circulating TMAO
concentrations are linked to a wide range of health outcomes,
including cardiovascular and cerebrovascular diseases (4–6), type
2 diabetes mellitus (DM) (7), hypertension (8), renal dysfunction
(9, 10), cancer, and mortality (11, 12). The relations between
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elevated plasma TMAO concentrations and health-related traits
have also been explored, including glomerular filtration rate
(GFR) (9), blood pressure (13, 14), BMI (9, 14), and total
cholesterol (15). It has been hypothesized that the intestinal
microbiota may alter the risk of disease by inducing TMAO
changes in the metabolome profile (16), and therefore TMAO
might be a novel biomarker representing human health conditions
related to the gut microbiota (17–19).

Most evidence on the health effects of plasma TMAO
concentrations has been generated by observational studies with
conflicting results. In addition, some studies were conducted
among patients with specific diseases, which calls into question
whether such associations can be generalized to a healthy
population. Hence, it is necessary to synthesize the current
evidence to provide a comprehensive overview of the claimed
associations of TMAO concentrations with health outcomes.

Umbrella review is designed to provide a comprehensive
overview of evidence from systematic review with or without
meta-analysis (20). Several meta-analyses on the relations
between increased TMAO concentrations and risks of obesity
(21), stroke (22), diabetes (23), hypertension (24), and all-cause
mortality (25) have been conducted. A comprehensive credibility
assessment of these associations will help elucidate the role
of TMAO in human health. Using a standardized approach,
we performed an umbrella review to evaluate the validity
and credibility of the evidence from updated meta-analyses of
observational studies. In detail, we summarized the range of
related health outcomes; presented the magnitude, direction, and
significance of the reported associations; assessed the potential
biases; and identified the most convincing evidence in relation to
the health impact of TMAO concentrations.

Methods

Study design

In this umbrella review, all meta-analyses on the associations
between plasma TMAO concentrations and health outcomes
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were identified. Original studies that evaluated the associations
between TMAO and health outcomes were also identified to
update the identified meta-analyses. The protocol of the present
study was registered in PROSPERO (CRD42021284730).

Literature search

Two investigators (DL and YL) independently searched the
Embase, Medline, Web of Science, and Scopus databases from
inception to 15 February, 2022 using a search strategy to
identify meta-analyses of observational studies. The literature
search algorithm was as follows: “((((meta-analysis) OR (meta))
OR (systematic overview)) OR (systematic review)) AND
((((trimethylamine oxide) OR (trimethylamine N-oxide)) OR
(trimethylammonium oxide)) OR (TMAO)).” We also searched
for individual observational studies to update the identified
meta-analyses and reported the results in accordance with the
Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) checklist (26). All identified publications
went through a 3-step parallel review of title, abstract, and full
text based on predefined inclusion and exclusion criteria, and any
discrepancies were resolved by consensus.

Eligibility criteria

Meta-analyses performing quantitative analysis of plasma
TMAO concentrations and health outcomes were included in
the umbrella review. All relevant population-based observational
studies including prospective cohort, nested case–control, case
cohort, case–control, or analytical cross-sectional studies were
combined in the updated meta-analysis, and we conducted
subgroup analysis by study design. Guidelines, narrative reviews,
literature reviews, and genetic studies were excluded. We further
excluded studies in which TMAO was not the primary exposure.
Meta-analyses or original studies that had inadequate data (e.g.,
lack of information on RRs, ORs, HRs, or 95% CIs) were also
excluded.

Data extraction and quality assessment

From each eligible meta-analysis, we extracted information
on the lead author’s name, study design, publication year, study
sample, number of studies included, the reported summary risk
estimates [RR, OR, HR, or weighted mean difference (WMD)]
with 95% CIs, the number of participants and cases, and the
investigated outcomes. For meta-analyses on >1 health outcome,
each outcome was recorded separately. Furthermore, we searched
for recently published original articles on TMAO and combined
them with studies identified from the previous meta-analyses to
update the meta-analyses. When updating the meta-analyses, we
added the newly identified studies and re-estimated the summary
effect estimates using random-effects models. To account for
potential confounding and reverse causality, we performed
subgroup analyses by confining the meta-analyses to include only
cohort studies with adjustment for renal function and diet (if
possible). Data extraction at this stage covered information on
study design, number of cases, total number of participants, RR
estimates, and 95% CIs. Two investigators (DL and YL) extracted
data independently using a predesigned data extraction form.
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The quality of individual studies was assessed by the Newcastle-
Ottawa Scale (NOS) for observational studies (27).

Statistical analysis

For each unique meta-analysis of observational studies, several
metrics were estimated, including the summary effect and
corresponding 95% CI using the random-effects model; the
heterogeneity among studies (Q statistic and I2 metric); and
the 95% prediction interval (95% PI) to predict the range of
effect size that would be expected in a new original study after
accounting for both the heterogeneity among individual studies
and the uncertainty of the summary effect estimated in the
random-effects model (28) (the calculation of the 95% PI is
based on the predicted distribution derived from a function of
the degree of heterogeneity, number of studies included, and
within-study SEs) (29, 30). Egger’s regression test was used to
evaluate the small-study effects (31). The excess significance
test was conducted to investigate whether the observed number
of studies with significant results differed from the expected
number of significant studies using the χ2 test (32–34). The
expected number of significant studies for each meta-analysis
was calculated by summing the statistical power estimates for
each component study. We estimated the power of each study for
an effect equal to the effect of the largest study (the study with
the smallest variance), as previously described (35). All statistical
analyses were performed using the “metafor” and “forestplot” R
packages, R software version 4.0.2 (The R Foundation, Boston,
MA).

Evaluation of evidence credibility

We used credibility assessment criteria (Supplemental Table
1), as described in previously published umbrella reviews (35–
37). Evidence from meta-analyses of observational studies with
nominally significant summary results (P < 0.05) was classified
into 4 categories: convincing, highly suggestive, suggestive, or
weak evidence (class I, II, III, and IV, respectively) (35–37). For
meta-analyses performed on the same outcome, we examined the
consistency between studies and the largest meta-analysis was
retained for further analyses.

Results
Figure 1A shows the process of literature searching and

screening for the umbrella review. The literature search retrieved
211 unique articles. After literature screening, 15 articles (21–
25, 38–47) were eligible, which contained 24 meta-analyses
for 15 unique outcomes (Supplemental Table 2). There was
1 meta-analysis published for stroke (22), hypertension (42),
diastolic blood pressure (DBP) (24), systolic blood pressure
(SBP) (24), diabetes (23), BMI (21), LDL/HDL cholesterol
(24), total cholesterol (TC) (24), triglycerides (24), C-reactive
protein (CRP) (41), and GFR (47); there were 2 meta-analyses
for cardiovascular disease (CVD) (39, 46); 5 meta-analyses
for all-cause mortality (25, 38–40, 45); and 6 meta-analyses
for major adverse cardiovascular events (MACE) (25, 38,
43–45).

Figure 1B shows the process of selection of original
studies in conducting the updated meta-analyses. The initial
search yielded 1239 publications. After literature screening,
we retrieved 46 new articles; and together with 46 individual
studies from previous meta-analyses, a total of 92 individual
studies were included in the study. Among them, 82 individual
studies were included in the meta-analyses. The updated meta-
analyses evaluated the associations between plasma TMAO
concentrations and 18 unique health outcomes. Supplemental
Tables 3–5 show the quality assessment of the included
studies.

All-cause mortality

The updated meta-analysis included 37 studies from 32 articles
(3, 5, 10–12, 48–74) with >9553 cases out of 38,862 participants.
All-cause mortality in the highest TMAO category was compared
with that in the lowest TMAO category, and it was found
that a higher TMAO concentration was associated with higher
mortality (HR: 1.60; 95% CI: 1.43, 1.79; P = 8.33 × 10−16)
(Figure 2, Supplemental Figure 1). A dose-response meta-
analysis based on 10 studies (3, 5, 10, 12, 58, 62, 65, 66, 68,
70) showed that a 1-unit increment of TMAO (1 μmol/L) was
associated with a 9% increased risk of all-cause mortality (HR:
1.09; 95% CI: 1.07, 1.11; P = 8.03 × 10−12) (Figure 3A).
We also conducted a subgroup analysis by disease status and
found that the association between TMAO and all-cause mortality
was predominant in CVD patients (HR: 1.66; 95% CI: 1.46,
1.88; P = 1.84 × 10−15) (Supplemental Figure 2), whereas
no significant association was reported in other populations. The
association with all-cause mortality remained significant when
including only the studies that adjusted for renal function (HR:
1.56; 95% CI: 1.38, 1.77; P = 3.45 × 10−12) (Supplemental
Figure 3).

Cardiovascular outcomes

Regarding MACE, 36 studies from 32 articles (2, 5, 10, 48–53,
55–61, 63, 65, 66, 68, 70, 75–85) were included in the updated
meta-analysis, contributing >7070 cases in 39,314 participants.
In the random-effects model, circulating TMAO was positively
associated with an increased risk of MACE (HR: 1.74; 95% CI:
1.56, 1.95; P = 1.13 × 10−22) (Figure 2, Supplemental Figure
4). The association remained significant in the confined meta-
analysis of cohort studies that adjusted for renal function (HR:
1.65; 95% CI: 1.45, 1.88; P = 1.50 × 10−14) (Supplemental
Figure 5). Three studies (66, 68, 70) were included in the dose-
response analysis, resulting in 11% increased risk of MACE per
1-μmol/L increment of TMAO (RR: 1.11; 95% CI: 1.07, 1.14;
P = 1.04 × 10−4) (Figure 3B).

Fifteen studies (3, 15, 53, 55, 58, 65, 66, 77, 83, 84, 86–
90) were included in the updated meta-analysis of hypertension,
comprising 10,293 cases and 18,854 total participants. There was
a significant association between TMAO concentrations and risk
of hypertension (RR: 1.39; 95% CI: 1.22, 1.57; P = 3.47 × 10−7)
(Figure 2, Supplemental Figure 6), which was consistent with
a former published meta-analysis (42). The association remained
significant in the confined meta-analysis of cohort studies only
(RR: 1.34; 95% CI: 1.16, 1.55; P = 8.58 × 10−5) (Figure 2),
and the association was still significant when the meta-analysis
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FIGURE 1 Flow diagram of study selection. (A) Study selection for umbrella review; (B) study selection for the updated meta-analyses. TMAO,
trimethylamine N-oxide.

included only the studies that adjusted for renal function (RR:
1.40; 95% CI: 1.13, 1.72; P = 1.65 × 10−3) (Supplemental
Figure 7). Eight studies (3, 53, 55, 58, 66, 87–89) were
eligible for dose-response analysis, which showed that the risk
of hypertension increased by 7% per (1-μmol/L) increment of
TMAO (RR: 1.07; 95% CI: 1.03, 1.11; P = 6.49 × 10−4)
(Figure 3C).

The updated meta-analysis on CVDs included 12 studies (4,
6, 83, 91–96) with 22,945 participants and showed that high
TMAO concentrations were statistically significantly associated
with an increased risk of CVD (OR: 1.50; 95% CI: 1.26,
1.79; P = 8.00 × 10−6) (Figure 2, Supplemental Figure
8). Eight studies from 5 articles (11, 14, 60, 72, 83) were
used to perform a meta-analysis on CVD mortality. The results
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FIGURE 2 High compared with low TMAO concentrations and associations with multiple health outcomes. Estimates are RRs and meta-analyses are
based on random-effect models. An I2 value ≥50% is considered to indicate substantial heterogeneity. All results are presented as HR with 95% CIs, using
the Mantel–Haenszel method with a random-effects model. CRC, colorectal cancer; CVD, cardiovascular disease; DM, diabetes mellitus; GDM, gestational
diabetes mellitus; MACE, major adverse cardiovascular events.

revealed that participants with high TMAO concentrations were
more likely to die from CVDs than those with low TMAO
concentrations (HR: 2.02; 95% CI: 1.74, 2.34; P = 6.01 × 10−21)
(Figure 2, Supplemental Figure 9). The association remained
significant when the meta-analysis was restricted to cohort
studies (HR: 2.00; 95% CI: 1.72, 2.33; P = 3.06 × 10−19)
(Figure 2).

Results from the updated meta-analysis of stroke showed
that higher circulating TMAO concentrations were associated
with a higher risk of stroke [9 studies (66, 69, 83, 90, 97–
100) enrolling 9393 participants, OR: 2.88; 95% CI: 1.54, 5.39;
P = 9.35 × 10−4] (Figure 2, Supplemental Figure 10). However,
this association was attenuated and not significant when the meta-
analysis was restricted to cohort studies (RR: 2.46; 95% CI: 0.52,
11.62; P = 0.255) (Figure 2).

DM

Our updated meta-analyses, including 18 studies [from
17 articles (3, 7, 15, 55, 65, 77, 83, 84, 86, 87, 90, 93, 101–
105) enrolling 22,999 subjects], found a significant association
between TMAO and DM (OR: 1.75; 95% CI: 1.42, 2.16;

P = 1.50 × 10−7) (Figure 2, Supplemental Figure 11). The
association was also significant in the confined meta-analysis of
cohort studies (OR: 1.81; 95% CI: 1.54, 2.12; P = 2.09 × 10−8)
(Figure 2), and the association remained significant when the
meta-analysis was restricted to cohort studies that adjusted for
renal function (OR: 1.71; 95% CI: 1.35, 2.18; P = 1.12 × 10−5)
(Supplemental Figure 12). In our dose-response meta-analysis,
based on data from 3 articles (87, 88, 102), we found no
statistically significant relation between TMAO concentrations
and DM (P = 0.228) (Figure 3D). Furthermore, our meta-
analysis of 3 studies enrolling 2180 subjects showed that
women with high TMAO concentrations were more likely to
have gestational diabetes mellitus (GDM) (OR: 2.24; 95%
CI: 1.72, 2.93; P = 3.08 × 10−9) (Figure 2, Supplemental
Figure 13).

Cancer risk

We identified 6 observational studies that examined the
associations of TMAO concentrations with cancer risk including
colorectal cancer (CRC) (106–108), prostate cancer (109), pri-
mary liver cancer (110), and pancreatic cancer (111). Quantitative
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FIGURE 3 Dose–response association between circulating TMAO concentrations and all-cause mortality (A), MACE (B), hypertension (C), and DM (D).
Risk spline (solid line) and 95% CIs (shadow) of pooled RR of all-cause mortality, MACE, hypertension, and DM by 1 μmol/L of TMAO. DM, diabetes
mellitus; MACE, major adverse cardiovascular events; TMAO, trimethylamine N-oxide.

meta-analysis could only be performed for CRC, which included
3 individual studies and showed a positive association between
high TMAO concentrations and increased risk of CRC (OR: 1.49;
95% CI: 1.19, 1.88; P = 5.93 × 10−4) (Figure 2, Supplemental
Figure 14). Three articles reported positive associations of
TMAO with prostate cancer (OR: 1.36; 95% CI: 1.02, 1.81;
P = 0.039) (109), primary liver cancer (OR: 2.85; 95% CI:
1.59, 5.11; P = 0.003) (110), and pancreatic cancer (OR:
2.36; 95% CI: 1.30, 4.26; P = 0.02) (111) (Supplemental
Table 6).

Blood pressure and cardiometabolic biomarkers

The results of the updated meta-analyses showed no significant
association between TMAO and DBP [14 studies (9, 13–
15, 59, 67, 87–89, 98, 112–114) enrolling 10,085 subjects,

WMD: −0.25; 95% CI: −0.95, 0.46; P = 0.495] (Figure 4,
Supplemental Figure 15). Higher circulating TMAO was related
to higher SBP [16 studies (3, 9, 13–15, 59, 67, 87–89, 98,
112–115) enrolling 17,369 subjects, WMD: 1.92; 95% CI: 1.33,
2.51; P = 1.70 × 10−10] (Figure 4, Supplemental Figure 16)
and BMI [19 studies (3, 9, 13, 14, 53, 65, 67, 84, 87–90,
98, 103, 113–116) enrolling 20,851 subjects, WMD: 0.54; 95%
CI: 0.12, 0.97; P = 0.012] (Figure 4, Supplemental Figure
17). The association between TMAO concentrations and SBP
remained significant when the meta-analysis included only cohort
studies (WMD: 1.91; 95% CI: 1.39, 2.43; P = 6.85 × 10−13)
(Figure 4).

The updated meta-analyses showed that high TMAO con-
centrations were associated with increased CRP concentrations
(WMD: 0.27; 95% CI: 0.06, 0.48; P = 0.012) (Figure 4,
Supplemental Figure 18) and decreased concentrations of TC
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FIGURE 4 High compared with low TMAO concentrations and associations with multiple health outcomes. Estimates are WMD and meta-analyses are
based on random-effect models. An I2 value ≥50% is considered to indicate substantial heterogeneity. All results are presented as HR with 95% CIs, using the
Mantel–Haenszel method with a random-effects model. CRP, triglycerides and C-reactive protein; DBP, diastolic blood pressure; GFR, glomerular filtration
rate; HDL, HDL cholesterol; LDL, LDL cholesterol; SBP, systolic blood pressure; TC, total cholesterol; WMD, weighted mean difference.
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(WMD: −0.57; 95% CI: −1.14, −0.01; P = 0.047) (Figure 4,
Supplemental Figure 19) but not of other lipids (HDL choles-
terol, LDL cholesterol, triglycerides) (Figure 4, Supplemental
Figures 20–22). The associations between TMAO concentrations
and CRP (WMD: 0.31; 95% CI: 0.09, 0.53; P = 0.006)
(Figure 4), HDL cholesterol (WMD: −1.45; 95% CI: −2.75,
−0.16; P = 0.028) (Figure 4), LDL cholesterol (WMD: −1.74;
95% CI: −3.30, −0.18; P = 0.029) (Figure 4), and TC
(WMD: −0.79; 95% CI: −1.42, −0.15; P = 0.016) (Figure 4)
were significant in the confined meta-analyses of cohort
studies.

Renal function

The umbrella review identified 1 meta-analysis reporting that
circulating TMAO was associated with a decrease of GFR
(WMD: −12.86; 95% CI: −16.57, −9.15; P = 1.11 × 10−11)
(47). Our updated meta-analysis including 20 studies from
19 articles (3, 9, 13, 14, 48, 53, 55, 59, 65–67, 70, 77, 80,
89, 98, 113–115) enrolling 29,497 subjects found a consistently
significant association (WMD: −13.30; 95% CI: −16.73, −9.86;
P = 3.14 × 10−14) (Figure 4, Supplemental Figure 23). The
association remained significant in the confined meta-analysis
of cohort studies (WMD: −15.38; 95% CI: −19.32, −11.45;
P = 1.78 × 10−14) (Figure 4).

Other health outcomes

We identified 10 original articles (17, 109–111, 117–122)
that reported associations between TMAO concentrations and
other health outcomes (Figure 1B, Supplemental Table 6).
One reported that TMAO was not significantly associated with
the risk of pre-eclampsia (117). Others reported significant
associations between TMAO concentrations and other health
outcomes [metabolic syndrome (17), diabetic retinopathy (118),
hip fracture (119), Parkinson disease (120), and nonalcoholic
fatty liver disease (121, 122)]. Quantitative meta-analysis could
not be performed owing to the limited number of studies
identified for these health outcomes.

Evidence assessment of included studies

Evidence assessment of the identified associations was
performed according to our credibility assessment criteria
(Supplemental Table 1, Table 1). Eight (44%) meta-analyses
had P < 10−6, 6 (33%) had a 95% PI that excluded the
null, 12 (67%) had >1000 cases (or >20,000 total participants
for continuous outcomes), 5 (28%) had no large heterogeneity
(I2 < 50%), and 11 (61%) had neither small-study effects nor
excess significance bias. After credibility assessment, no out-
come presented convincing evidence; 6 (33%) health outcomes
presented highly suggestive evidence (class II: CVD mortality,
hypertension, MACE, all-cause mortality, DM, GFR); 3 (17%)
presented suggestive evidence (class III: stroke, CVD, and CRC);
and 5 (28%) presented weak evidence (class IV: SBP, BMI, TC,
CRP, and GDM) for their associations with circulating TMAO
concentrations.

Discussion
Our updated meta-analyses included a total of 82 individual

studies and examined the associations of TMAO with 18 unique
health outcomes. Among them, 14 outcomes (all-cause mortality,
CVD, MACE, stroke, hypertension, CVD mortality, SBP, BMI,
CRP, TC, DM, GDM, GFR, CRC) were found to be significantly
associated with TMAO concentrations. When we restricted meta-
analyses to only include cohort studies, 11 outcomes (all-cause
mortality, MACE, hypertension, CVD mortality, SBP, CRP,
HDL cholesterol, LDL cholesterol, TC, DM, GFR) were still
significantly associated with TMAO concentrations. The dose-
response analyses revealed that circulating TMAO concentrations
were positively associated with the risk of hypertension and
MACE. After assessment of the evidence credibility, we found
highly suggestive associations of TMAO concentrations with
6 health outcomes, including all-cause mortality, CVD mortality,
MACE, hypertension, DM, and GFR.

Former published meta-analyses (25, 38–40, 45) demonstrated
that high TMAO concentrations were related to an increased
risk of all-cause mortality and the updated meta-analysis showed
consistent results. When conducting subgroup analysis by disease
status, TMAO showed a significant association with all-cause
mortality only in patients with CVD. In addition, our study
revealed a positive association between TMAO concentrations
and CVD risk. Given that the majority of evidence was from
case–control studies, we cannot rule out reverse causality. It
has been reported that TMAO may affect platelet reactivity,
lipid metabolism, and endothelial dysfunction, which could result
in the acceleration of atherosclerotic plaque formation (123).
Because atherosclerosis is one of the major causes of CVD,
high concentrations of TMAO could be related to high incidence
of CVD, due to TMAO’s contribution in the development of
atherosclerosis. However, no causal association between TMAO
and CVD was identified in a recent bidirectional Mendelian
randomization study (124). Taken together, current evidence
suggests that TMAO might be a novel biomarker indicating the
risk of CVD.

Our umbrella review reported a highly suggestive association
between TMAO concentrations and hypertension, and both the
former published study (42) and the updated meta-analysis
revealed that this association displayed a dose–response relation.
Previous studies have found that hypertensive patients had more
gut microbial enzymes involved in TMA production than those
without hypertension (125). Animal studies have also found
that elevated plasma concentrations of TMAO can prolong
the duration of elevated blood pressure (126–128). TMAO
could also promote Ang II–induced vasoconstriction via the
PERK/ROS/CaMKII/PLCβ3 (protein kinase r-like endoplasmic
reticulum kinase (PERK), reactive oxygen species (ROS),
calmodulin-dependent protein kinase (CaMK), phospholipase c
β3 (PLCβ3) axis, thereby facilitating Ang II–induced hyperten-
sion (126).

Both the former published study (23) and the updated
meta-analysis revealed a positive association between TMAO
concentrations and risk of DM. Previous studies reported sup-
portive evidence on associations between TMAO and diabetes-
related traits, including insulin resistance, impaired glucose
metabolism, and metabolic syndrome (17, 129, 130). Animal
studies also found that TMAO may exacerbate impaired glucose
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tolerance and hyperglycemia by blocking the hepatic insulin
signaling pathway and causing inflammation in adipose tissue
(131), whereas a decrease of plasma TMAO could reduce
plasma glucose and insulin resistance in mice by inhibiting
the main TMAO-generating enzyme FMO3 (flavin-containing
monooxygenase-3) (132). Furthermore, we found evidence from
2 studies (133, 134) reporting a positive association between
TMAO concentrations and GDM, but the involvement of TMAO
in any causal or compensatory pathway has not been proven.
Therefore, further studies should be conducted to understand the
mechanism of TMAO influencing GDM.

The former published study (47) and updated meta-analysis
showed that an increase of TMAO concentrations was associated
with lower GFR. Previous studies showed that chronic dietary
exposures that increased TMAO concentrations appeared to
directly contribute to progressive renal fibrosis and dysfunction
(10, 135), which is one of the main end-stage renal diseases
and a common outcome of almost all progressive chronic
kidney diseases (CKDs) (136). Animal studies demonstrated
that inhibition of TMAO production attenuated CKD devel-
opment and cardiac hypertrophy in mice, suggesting that
TMAO concentrations may play an important role in CKD
development and TMAO reduction may be a novel strategy
in treating CKD and its CVD complications (137). However,
in this umbrella review, we only assessed the observational
association of TMAO with GFR as an intermediate surrogate
trait of CKD. Future studies focusing on CKD as an endpoint
need to be performed to examine the association with TMAO
concentrations.

It is widely known that TMAO is produced from the
fermentation of dietary nutrients (choline, betaine, and carnitine)
by the gut microbiota. Considering high concentrations of
TMAO being associated with gut microbiota balance and
several diseases, nonpharmacologic strategies, including foods
and dietary supplements rich in bioactive compounds or nutrients,
have the potential to modulate the gut microbiota to reduce
TMAO concentrations, and therefore decrease the risk of several
diseases. There is evidence showing that TMAO concentrations
can be reduced by some bioactive compounds, such as resver-
atrol, allicin, capsanthin, and dietary components present in the
apple, oolong tea, natural wheat bran, and low-fat diet, whereas
strategies such as the paleolithic diet, high-fat diet, and high-
protein diet promote increased TMAO concentrations (138).
Because TMAO is a metabolite produced by the gut microbiota,
targeting the gut microbiota and the metabolic pathway of
TMAO might provide new strategies for the prevention of these
related diseases (139). Further studies should be conducted
to evaluate these dietary components’ effectiveness, dose, and
intervention time on TMAO concentrations and whether their
health effects could be mediated through regulating TMAO
concentrations.

Study strengths and limitations

Although previous meta-analyses of TMAO and the risk of
disease outcomes have been conducted, our study is the first to
summarize and present the evidence for the associations between
TMAO concentrations and a wide spectrum of health outcomes
systematically and thoroughly by incorporating information
from meta-analyses of observational studies. In addition, our

dose-response analyses revealed that there were no critical
concentrations of TMAO in terms of varying degrees of risk
in patients with all-cause mortality, diabetes, hypertension,
and MACE disease. Subgroup analyses further evaluated the
associations by only including prospective studies or studies
adjusted for certain confounding factors. Although previous
studies reported multiple health outcomes associated with TMAO
concentrations, our study evaluated the reliability of these
associations based on established credibility criteria.

Our study also has limitations. First, because all the included
studies were observational, causal associations between circulat-
ing TMAO and related outcomes cannot be inferred. Second, sex-
and ethnicity-specific findings could not be obtained owing to
limited data. Diet-specific findings could not be obtained owing to
limited data, and therefore we were not able to perform subgroup
analyses to further explore the associations by minimizing the
potential confounding of dietary patterns. Third, there was high
heterogeneity in the current meta-analyses, possible reasons
being the inclusion of different populations and different study
designs. Further, our evidence grading was not sensitive to
the use of 95% PIs or excess significance bias because the
evidence grading remained the same when we removed them
consecutively. In addition, when updating the meta-analyses, we
added the newly identified studies, re-estimated summary effect
estimates using random-effects models, and applied a set of well-
established criteria to properly classify the evidence according to
the reported P values, heterogeneity, and excess significance bias,
with consideration of the inflated risk of false positives inherited
by the updated meta-analyses (140). Finally, the underlying
mechanisms between TMAO and the development of various
diseases have not been explored in depth.

Conclusions

In conclusion, our umbrella review and updated meta-analyses
identified multiple health outcomes associated with TMAO
concentrations. Evidence assessment demonstrated that TMAO
concentrations are associated with several health conditions,
including all-cause mortality, CVD, hypertension, diabetes, and
CKD. Our dose-response meta-analyses indicated that there were
no critical concentrations of TMAO in terms of its health impact.
Further studies are needed to investigate whether circulating
TMAO concentrations could be an intervention target for chronic
disease.
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