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Multiple sclerosis (MS), a disease of the central nervous system, affects the white matter of the brain. Neurologists interpret
magnetic resonance images that are often complicated, time-consuming, and contradictory. Using EEG signals, this disease can be
analyzed and diagnosed more accurately. However, it is imperative that MS be diagnosed by specialists using assistive technology.
Until now, a few methods have been proposed in this field that are sometimes associated with different challenges in analysis. $is
paper presents a hybrid approach to MS diagnosis in order to decrease classification error rates. Using the proposed method, EEG
descriptors in both the time and frequency domains are analyzed. After the feature extraction stage, a modified version of the ant
colony optimization method (m-ACO) was used to select the appropriate subset of features. $en, the support vector machine is
used to determine whether the disease exists. A metaheuristic algorithm adjusts the support vector machine’s parameters to
withstand overfitting challenges. Despite a limited number of input channels, significant classification accuracy has been achieved
using wavelet analysis techniques, dividing all five subbands of EEG signals, signal windowing, and extracting efficient features
from the data. Additionally, alpha, beta, and gamma bands of the signal are important, and the accuracy, sensitivity, and specificity
levels are higher than 98.5%. Compared to similar MS diagnostic methods, the proposed method achieved significantly higher
diagnostic accuracy. Application and implementation of this method can be effective in treating neurological diseases, including
multiple sclerosis.

1. Introduction

As an autoimmune disorder that damages myelin sheaths in
the brain and spinal cord, multiple sclerosis (MS) affects
nerve cells in the brain and spinal cord [1, 2]. Damage to the
nervous system’s communication components can result in
a wide variety of symptoms and physical difficulties [3, 4].
$is condition most commonly affects people between the
ages of 20 and 40. Based on disease distribution estimates
across different countries, it is estimated that this disease is
currently confined to Europe and the Far East [4]. Symptoms
of MS are varied, and new symptoms occur recursively (i.e.,
multiple recurrences of the disease) or over time [5]. $ere
may be complete disappearance of disease symptoms be-
tween relapses; however, permanent neurological problems
persist, particularly as the disease advances [6]. Symptoms of

the disease are usually recurrent and improve over time.
Initially, seizures are almost completely recovered; neuro-
logical disabilities, however, may gradually persist with
varying degrees of seizures [7]. Numerous studies have been
conducted on this subject recently due to the importance of
early diagnosis of MS. MRI is a noninvasive method for
diagnosing and detecting mild cognitive disorders, Alz-
heimer’s, Parkinson’s, and other neurological diseases [8].
Lesions caused by diseases such as MS, Alzheimer’s, and
other prevalent brain diseases cannot always be distin-
guished from one another [9, 10]. Researchers are
attempting to use MRI images to detect and diagnose
neurological disorders with the least amount of error.
Identifying the related lesions of this disease in its early
stages will provide treatment options for the disease. Di-
agnoses and differentiations of brain lesions are currently
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done manually. To perform this procedure properly, a
neurologist must spend a long time and be extremely precise
[11]. A lack of contrast and resolution of images, as well as
the similarity of the lesions created by the disease with other
brain tissue, leads to differing interpretations of brain MRI
images.

Electroencephalography (EEG) signals represent the
brain state through body potentials. EEG-based computa-
tional methods are widely used to diagnose and identify
various diseases [12]. Epilepsy diagnosis [13–15], seizures
and strokes [16, 17], Alzheimer [18, 19], convulsions, de-
pression [20], attention deficit disorder [21], biometric fields
[22], and fatigue diagnosis [23, 24] are among the appli-
cations of EEG.

Numerous EEG-related analyses have used entropy
calculation in recent years. By using this calculation, it is
possible to identify the signal’s complexity, instability, and
nonlinearity [25]. $e brain signals are considered to be
functional electrophysiological effects of the brain [26–28],
and recording the EEG signal can help differentiate pa-
thologies, such as coma caused by hypoxia, convulsions,
physiological recording, and similar cases [29]. $ere is a
highly ambiguous correlation between brain signals and
pathology in neuropsychological circumstances. Due to the
complexity of the signals in people withMS, the ability to use
EEG signals in MS diagnosis is less widely recognized.

In some studies of MS incidence, time limits and severity
assessments have been made based on the study of the
disease’s incidence. When analyzing the nonstationary
characteristics of an EEG signal, methods such as signal
windowing can be effective. Simulated annealing (SA) and
genetic algorithms enable detection of MS by analyzing EEG
signals with better decision-making capabilities. A hybrid
approach to MS diagnosis has been proposed, which ana-
lyzes both time and frequency domains of EEG. $e ant
colony optimizationmethod (m-ACO) was used to select the
appropriate subset of features after feature extraction. Using
these features, the SVM determines the disease’s presence.
To avoid overfitting, a metaheuristic algorithm is used to
adjust the SVM’s parameters. One of the essential objectives
of this work is to provide an automated method for diag-
nosing MS from EEG signals. $e most important contri-
butions of research are as follows:

(i) $e possibility of analysis based on appropriate
interpretation methods based on machine learning
methods such as subband decomposition through
frequency bands, windowing, linear and nonlinear
feature extraction, feature selection, and classifica-
tion will significantly reduce error disease diagnosis.

(ii) Meanwhile, evolutionary algorithms can be very
useful in improving analytical areas such as feature
selection and classification.

(iii) Our study uses subband signal decomposition,
windowing, feature extraction based on different
fractal dimension features, statistical and nonlinear
features as in the study [30], feature selection using
ant colony algorithm, and classifier parameters. We

try to classify MS patients from healthy people, and
in this way, we use signals with a minimum number
of channels to record the signal.

$e remainder of the paper is outlined as follows. In
Section 2, related studies are discussed. $e method in
Section 3 provides an analysis of EEG signals for the di-
agnosis of MS. Findings from research are presented in
Section 4.$e results of the study will be discussed in Section
5, and the conclusions will be discussed in Section 6.

2. Related Work

Torabi et al. [30] proposed the classification scheme of two
groups of healthy individuals and individuals with MS as a
nonlinear model. $eir study’s main objective was to dis-
tinguish two groups of healthy volunteers and MS patients
employing nonlinear features of EEG signals while con-
ducting cognitive tasks. $ey applied nonlinear methods to
extract the signal feature vector. $ey used criteria such as
the T-test and the Bhattacharya test to decrease the di-
mension of the feature vector by scaling the features. In
order to distinguish MS patients from healthy people, KNN
and linear SVMmethods were used.$emaximum accuracy
for diagnosing healthy people with MS before and after
implementing the feature selection procedure has been
evaluated to be 79.79% and 93.08%, respectively.

Kiiski et al. [31] have experimented Visual Evoked
Potential (VEP) signals to assess the rate of disease pro-
gression in patients with MS. $ey studied 78 samples, of
which 35 had MS, and 43 were healthy. $e evoked potential
signals varied from 0 to 700 milliseconds, and the study
interval of the samples ranged from 1 to 13 months.

Arafat et al. [32] compared the brain signals of patients
and healthy individuals with MS diseases. $ey used Virtual
Reality- (VR-) based simulation in their investigations as
rehabilitation systems. In this way, they performed dizziness,
nausea, nausea, inattention, and the like for people and
recorded brain signals. $e connection between neurons is
severed in MS disease, and thus, it is possible to analyze
under experimental conditions as a stimulus procedure.
$ey also recorded people’s signals before stimulation and
examined the relationship between the test and the process.
However, they identified apparent differences between the
characteristics of both groups and sought to generalize their
diagnosing patients with MS.

Zipser et al. [33] also extracted information such as N45
or N100 amplitudes from EEG signals to diagnose MS
patients. $eir procedure helps differentiate between MS
and healthy individuals and facilitates comparing the dif-
ferent amplitudes of the signals.

Similar studies have been performed to distinguish
healthy individuals from patients with MS, which can be
divided into phase-synchrony evaluation based on bivariate
empirical mode decomposition (EMD) during a visual task
[34], Computer-Aided Diagnosis (CAD) system based on
phase to amplitude coupling in covert visual attention [35],
and Optimization of Recurrence Quantification Analysis for
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Detecting the Presence of Multiple Sclerosis [36]. Each of
them analyzed the MS and healthy people and implemented
methods based on machine learning.

de Santiago et al. [37] proposed a model to identify
individuals at different stages of MS progression using
Multifocal VEP (mfVEP). $ey constructed feature vectors
with characteristics about the latency intensity and singular
values of the mfVEP signals. $ey also designed a hierar-
chical classifier (HC) and a flat multiclass classifier (FMC),
and both were performed using the k-NN method.

In the study of Karaca et al. [38], bipolar channel co-
herence analysis of EEG signal obtained from MS patients
and healthy individuals was performed. $erefore, feature
extraction was conducted from specific frequency bands. In
their work, the “Subspace Discriminant” classification was
trained using the obtained features with 95.8% accuracy, and
then the system was tested. As a result, accuracy, sensitivity,
and specificity were achieved at 91.67%, 85.71%, and 100%,
respectively.

Recent research has examined the application of new
optimization algorithms to different learning methods and
has been used in a variety of fields of medicine [39]. Using
virtual reality technology andmonitoring EEG signals before
and after displaying diversified environments, Rezaee and
Zolfaghari [40] developed a novel therapy approach for
reducing stress levels in MS patients.

3. Proposed Method

$e proposed method consists of three steps of feature
extraction, feature selection, and finally classification.
Figure 1 shows a schematic of the process steps. $e data
obtained is divided into three parts, that is, training,
testing, and validation of data. $e data obtained is di-
vided into three parts, that is, training, testing and vali-
dation of data. Figure 2 depicts how data is assigned in
each step of the proposed algorithm. Figure 3 illustrates
the decomposition method for separating subbands of
EEG signals.

3.1. Signal Windowing. By regarding the overlap between
the frames, discontinued points on the signal are miti-
gated, which is a critical step in enhancing accuracy.
Some studies do not employ windowing, preferring to
utilize the whole signal to extract the feature, which
impairs classification accuracy. $e best potential output
is estimated, based on which the frame length and the
overlap between the frames will be prepared to obtain the
best frame length. Arithmetic progression according to
(1) is applied to achieve the number of frames based on
time interval:

an � a1 +(n − 1)d, (1)

where an is the last term of the signal on which the frame is
placed (the last frame covering the signal), a1 is the first term
of progression, d is the distance between the frames in the
case of overlap, and finally n is the number of frames
generated.

3.2. Feature Extraction. Power spectral density (PSD) esti-
mation, known as one of the critical methods of EEG signal
processing, has been used. In order to estimate autocorre-
lation sequences, nonparametric techniques such as Welch’s
method are used by calculating a Fast Fourier Transform
(FFT). F≈(i)

yy (f) the modified periodograms and L segments
of the signal are taken into consideration when Welch’s
power spectrum is calculated [41]:

F
S
yy �

1
L



L− 1

i�0
Pyy(f)
≈ (i)

. (2)

$e sample entropy (SE) is the changed structure of the
approximate entropy (AE). $e AE estimates the complexity
of a dynamic model. Low AE value regularly designates high
low complexity and predictability of time series (TS). $e SE
for a signal with a length of N is provided by

SE(x, y) � lim
N⟶∞

− ln
C

x+1
(y)

C
x
(y)

 . (3)

Cx(y) is the possibility of the relationship of two se-
quences in m points (i.e., based on distance), and also
Cx+1(y) is the possibility of two sequences in x + 1 points.
When N is a terminable capacity, the determined SE can be
displayed as

SE(x, y) � − ln
C

x+1
(y)

C
x
(y)

. (4)

In the above expression, x is the length of the investi-
gated sequence, and y is the tolerance, on the basis of which a
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Figure 1: $e overall schematic of proposed model.
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relationship between the sequences may occur and is usually
chosen as 20% of N. Input signals are assumed to have a
variance of 20% and 2 of the standard deviation. Spectral
entropy (SpE) is another entropy described for the EEG
signal, which is measured using the following formula:

H(f) � − (ln(N))
− 1



N

i�1
pi ln pi( , (5)

where N and pi are the areas of the ith frequency spectrum
and the cumulative number of frequencies, and the aggre-
gate of all pi equals 1. $e density of the power spectrum is
achieved in each frequency period by determining the

normalized value. $e length of each period is equal to one
spectral unit and is regularly considered to be 1Hz.$e high
value of spectral entropy indicates the developed complexity
of the frequency spectrum. Its low value designates the high
density of the spectral power in a frequency period.

In fractals, deformation occurs frequently based on the
starting position and is dependent on repetition. Katz and
Higuchi models are the most prominent methods of gen-
erating random fractal dimensions.

Katz approach: in this system, D denotes the Euclidean
distance within two samples:

d � max
i,j

(D(P(i), P(j))) i, j ∈ 1, . . . , N{ },

Len � 
N− 1

i�1
D(P(i), P(j)), D(P(i), P(j)) �

������������������������������

x1(i) − x2(j)( 
2

+ y1(i) − y2(j)( 
2

 



,

(6)

where d denotes the max Euclidean distance of two
continuous points or thicknesses. $e Len additionally
describes the entirety of all Euclidean distances for

every two continuous points. Regarding the normali-
zation factor a� L/NL and the parameter d as the fractal
dimension, we will have
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Figure 2: Data dividing based on K-fold cross validation.
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Figure 3: $e decomposition procedure to separate subbands of EEG signals.
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− 1

. (7)

Higuchi approach: the Higuchi approach presents an
agreeable estimation of the fractal dimension for short

sections of the signal with high velocity. A novel series
of input series x is designed as equations (7) and (8) to
determine the fractal dimension in this design:

x � x(1), x(2), ..., x(N){ }, (8)

x
k
m � x(m), x(m + k), x(m + 2k), . . . , x m +⌊

N − m

k
⌋k  , (9)

where m represents the starting point of each series,
and [.] is the integer of each number. $e length of
Lm(k) for xk

m is equal to

x
k
m � x(m), x(m + k), x(m + 2k), . . . , x m +⌊

N − m

k
⌋k  . (10)

3.3. Feature Selection. $e proposed method’s feature se-
lection has been carried out by getting inspiration from
Rezaee and Zolfaghari method [40]. $eir method was ant
colony optimization (ACO), which was also considered in
the present study to achieve the best subset of features, and
the cost calculation in the fitness function was performed
based on minimizing the classifier error. A constraint
scheme called the subset size determination scheme is uti-
lized in the m-ACO algorithm to address the problem of
determining the subset sizes. As shown in Figure 4, we
modified the procedure to select and jump to find the best
global subset of features. $e scheme controls the ants in
guidable and reduced-size subsets.

Our modified algorithm procedure to obtain the optimal
solution is as follows:

Step-1: It has been assumed that N represents the
feature set in the D data and Cc contains d separate
classes (c� 1, 2, . . ., d). Moreover, n specifies the final
number of features of N, and the pheromone trail of τ
and exploratory information of η of all n features are
assumed by assigning values equal to τ and η.
Step-2: Measuring the information gain for n features
using the gain measurement scheme.
Step-3: Generating a k-member artificial set of ants
assumed to be equal to n; k � n.
Step-4: Making decisions regarding the initial size, “r”
for each ant based on the problem size.
Step-5: Completing the generation process to deter-
mine the status. $e steps will continue if the subset
generation is performed for all sets; otherwise, the
procedure will return to step-4.
Step-6: $e subset of features is measured according to
the subset evaluation scheme and the classifier per-
formance measurement.
Step-7: Select the best local subset and also the best
global subset.

Step-8: Evaluating the search termination conditions,
including obtaining the optimal accuracy, the number
of iterations threshold, or a specific execution time.
Step-9: Updating τ and η values for all features.
Step-10: Generating a new set of ants to reiterate the
mentioned steps.

3.4. Optimized Support Vector Machine. $e primary pur-
pose of support vector machines (SVM) is to find an op-
timal hyperplane as a level of decision-making that
maximizes the margin between the two classes. We map the
data to another space byΦ kernel function to classify highly
complex data. We represent the kernel function of the data
from the input space to a space with higher dimensions, so
that it is possible to separate the data in that space linearly.
We have employed the Radial Basis Function (RBF) kernel
trick for the SVM classifier. Typically, when a nonlinear
kernel is selected, i.e., especially an RBF or polynomial
kernel, the performance of the SVM in the conventional
classification increases:

K x, xi(  � exp −
c x − xi

����
����
2

2σ2
⎛⎝ ⎞⎠. (11)

$e best c and C adjustments can be discovered by fixing
one parameter and then performing a computationally
demanding search within the range provided for the other
parameter.

To select the best kernel RBF parameters, the grass-
hopper optimization algorithm (GOA) is used. Although
GOA has proven to be effective in extracting valuable an-
swers and ensuring accurate convergence, it is not a pop-
ulation-based strategy. As a result, the GOA possibility will
lead to achieving the exact optimal point even in the in-
creased dimensions of the functions. In this algorithm, the
best answer always indicates the destination for the search
grasshoppers. $us, the grasshoppers do not deviate from
the original optimal of the problem. In addition, the jumping
behavior of the propellers in this algorithm allows it to
search the exploration space around the optimal of the
problem well and have good accuracy in obtaining the
optimal. $e steps of this algorithm are described according
to Algorithm 1.
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In the comfort zone update (an area with no attraction or
repulsion), Cmax represents the maximum value, Cmin rep-
resents the minimum value, l represents the current (rep-
etition) interactions, and L represents themaximumnumber
of interactions. Furthermore, in updating the location of
each locust, the first expression considers the position of the
other locusts. It implements the interactions of the grass-
hoppers in nature, which are ub d upper limit and lb d lower
limit in the d dimension space. $e second expression Td is
the value of the dth dimension in the target (i.e., the best
answer ever seen) that mimics the grasshoppers’ desire to
move toward the food source. It should also be noted that the
c parameter has been used twice for the following reasons:
external c reduces the movement of the propellers around
the target.

Moreover, c reduces the internal area of gravity, comfort
zone, and repulsion area between the grasshoppers. $e fit
function is expressed according to

Fitness � (1 − α) ×(Accuracy) + α × 1 − Gmean( , (12)

α indicates the obtained significance or error coefficient, and
Gmean indicates the geometric mean when the classifier
predicts the existence of MS classes (i.e., using RBF pa-
rameters). In order to expand the comfort zone to the new
domain, equation (13) would look like this:

c � cmax − l
cmax − cmin

L
 . (13)

$is will update each grasshopper’s position using the
following:

x
d
i � c 

N

j�1
j± i

c
Ubd − lbd

2
s x

d
j − x

d
i



 −
xj − xi

dij

 
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ + Td. (14)

4. Experimental Results

MATLAB R2019b was used to implement the proposed
method in the Windows 10 operating system. Simulations
were performed on a system with an Intel® CoreTM i5-8500
with 8GB of RAM plus 16GB of SSD RAM. Additional
complementary software, such as SPSS, was also employed.
Further, in the ACO algorithm, the classification error rate
for all three simulation phases, including various signals of
individuals, varied within the intervals of 0.056 to 0.062,
0.056 to 0.092, and 0.1 to 0.11. Initialization was required for
the ACO algorithm. $ere are several significant initiali-
zation values, including the iteration number of the ACO
algorithm, number of ants, constraint coefficients, control
parameter of pheromone trail effect, control parameter of
metaheuristic information effect, pheromone evaporation
rate in the global update, the initial pheromone values, the
number of decision variables, and the matrix size of the
decision variables. In each step, the ACO algorithm selected
the most optimized features and improved the detection
algorithm by removing excess and repeated features.
According to the mentioned points, the GOA parameters
were acquired experimentally and through trial and error.
$e number of bits determined for displaying the setting
parameters was 36.

To determine the appropriate initial population and to
account for the large dimensions of the search space, an
initially large population is generated as part of the opti-
mization process. $en, the initial population is chosen
based on the superior parameters in the RBF kernel. In the
GOA, α, Cmax, Cmin, and maxiter parameters were set to be
1.25, 1, 0.00001, and 100, respectively.

In addition to the extracted features in the proposed
method section, various statistical features in the time do-
main include features such as integral of the primary signal,
absolute mean value, fundamental values of the third, fourth,
and fifth-order temporal moments, root mean squares,
orders of V, waveform length, and zero-crossing. Each of
these features can be found in a different channel of EEG
signals, which is a defect, and features vary for each channel.
Furthermore, all the features extracted through the fractal

Initializing

Algorithm is repeated for N times

+

Repeated for the L construction steps

Generate K ants

+

++

Selecting and jumping to next
Feature and update the related
pheromones to search subset

Is the desired
subset has min

Err?

Is the
pheromone

matrix made?

Global update pheromone

Satisfy
condition?

Yes

Yes

Yes

No

No

No

Subset is selected

Figure 4: $e feature selection procedure based on modified ACO
(m-ACO).
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dimension are around five features (the Katz dimension, the
Higuchi dimension, the Petrosian dimension, the correla-
tion dimension, and the self-similar fractal). On the basis of
two feature models obtained from the two tables and also the
acquired features from the proposed methods section, 31
features were generated. Decomposition of the signal
revealed that alpha, beta, and gamma were the most effective
bands. A total of 36 features were derived. $e final selected
vector produced an appropriate classification accuracy at a
distance of 25 to 40% from the total features.

4.1. Dataset. $e primary data is formed by a combination
of a variety of MS-diagnosed individuals. Healthy indi-
viduals have also been examined in this study as manifest or
control variables. $e sampling process was performed
using a probabilistic method. Furthermore, patients’
characteristics were registered and collected by question-
naires. Moreover, the patients have undertaken a complete
neurological examination. $e obtained signals have been
the outcome of performed records under different proto-
cols in the laboratory. $e EEG signal recording is per-
formed such that the subject is resting with closed eyes. $e
electrodes are positioned on the scalp surface. A trained
technician simultaneously applies an electrolyte gel to the
skin according to International System 10–20. Two other
electrodes (A1 and A2) are also connected to the earlobes,
in addition to the main channels of F, C, T, P, and O. An
electrode is located in the middle of the forehead (Z). In
unipolar recording, this electrode serves as a reference
electrode. $e output EEG signals were collected through
4-minutes recordings (in case of removing artifacts such as
blinking, average meaningful signals have a 1-minute

duration), and the data are stored in “.txt” files. $e pa-
tients’ consent and approval of the attending physician
have been acquired to conduct the study. $e total number
of study participants was 40; 19 subjects were clinically
diagnosed with MS, and 21 were healthy. $e mean age of
the participants was 28.4± 5.2. $e study sample included
23 women (14 MS-diagnosed and nine healthy individuals)
and 17 men (5 MS-diagnosed and 12 healthy individuals).
$e signal sampling frequency was 250Hz, and three
channels were utilized to record the EEG signal.

Since some of the obtained signals of subjects were
lengthy, synchronization of both types of received signals
from the recording stages of participants was considered
equal, which included the separated signals (240 seconds, in
which 15 seconds of random signal recording has been
separated from 60 seconds of meaningful signal recording).
If the maximum length of each placed frame on each signal is
considered to be 400ms (selecting the size of this frame has
been experimental and based on the mentioned methods in
previous studies), around 50 frames will be acquired for a 15-
second random signal selected from a 1-minute meaningful
signal with 35% overlap rate among the windows. Five
subbands and three channels have been investigated in each
signal. In summation, a total of 500 meaningful segments
will be obtained from each signal. According to the 250Hz
sampling frequency, the time step is equal to 0.004 s;
therefore, for a 400ms frame, 100000 samples will be
generated that are appropriate for feature extracting of that
segment. Considering the number of signal segments in both
healthy andMS-diagnosed states, theK-fold cross-validation
method (CV� 10) was utilized. $us, the training samples
have been equally sorted for EEG signals (56000 training
signals and 4000 test signals).

Input: Validation and train signals based on the grasshopper optimization algorithm
Output: Included in the RBF kernel parameters are ck and Ck

(1) while (If the finishing criteria have not been met), do
(2) RBF kernel parameters initialized randomly for Ck and ck

(3) Initiate the parameters maxiter, pop, Cmax, Cmin, and α
(4) for $e GOA algorithm does this for each grasshopper
(5) In SVM, the Ck and ck are initialized
(6) $e SVM evaluates the performance of a model based on selected parameters
(7) Based on equation (11) and Ck and ck, compute the cost function
(8) If Based on Ck and ck, cost function should be better than old values, then
(9) New values should be exchanged
(10) Replace grasshopper positions with new lbd and Ubd

(11) If Upon satisfaction of the evaluation condition, then
(12) $e best position is saved in Td according to the best grasshopper
(13) Updating the Cmax and Cmin based on the (12)
(14) end if
(15) end if
(16) end for
(17) Find best global ck and Ck
(18) for each grasshopper, do
(19) Updating the position through equation (13)
(20) end for
(21) end while

ALGORITHM 1: $is algorithm shows the steps to find the parameters of the RBF kernel in SVM classifier using GOA.
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4.2. Evaluations. $e confusion matrices are presented
using the 2× 2 matrix, and the following various models are
considered:

(a) Model-1: Temporal feature extraction and simple
classification (SVM).

(b) Model-2: Frequency feature extraction and simple
classification (SVM).

(c) Model 3: Temporal and frequency feature extraction
and their aggregation and simple classification
(SVM).

(d) Model 4: Temporal and frequency features extraction
and their aggregation, simple feature selection, and
classification (SVM).

(e) Model 5: Temporal and frequency feature extraction
and their aggregation, optimized feature selection
(m-ACO), and classification of SVM by GOA.

In all detection models, training and test data have been
generated by the K-fold method (CV� 10), all subbands of
the signal have been applied to the analysis, and the con-
fusion matrix of the mean results of each tenfold for various
models has been presented in Figure 5.$e accuracy average
is increased by 2 to 3% by adding the algorithms mentioned
parts (gradually from model-1 to model-5).

$e proposed model of the research is model-5 utilized
to diagnose the disease in each EEG signal by segmenting
random signals. In this model, demonstrated in the last
section of Figure 5, the highest accuracy level for a random
fold is about 99.03%. Moreover, the sensitivity and speci-
ficity values have been reported by 98.90% and 99.18%
values, respectively. In this model, the variation level is low,
and the stability of solutions represents low solution dis-
persion. In Figure 6, the performance of the proposed model
for MS diagnosis is shown that is based on three random
folds of two groups of unseen EEG signals.

In Figure 7, the receiver operating characteristic curve
(ROC curve) of the proposed method for MS diagnosis has
been shown that it is based on various EEG signals. In the
figures shown, the performance of the proposed model is
demonstrated by other similar methods such as SVM, SVM
with GOA, and SVMwith improved GOA.$e performance
of method SVM with optimized GOA is significantly im-
proved compared to the other two techniques. As a result,
the classification outcome shows that the area under the
curve (AUC) is satisfactory. Hence, it inferred that the
proposed approach could classify EEG signals related to
healthy individuals and MS patients.

5. Discussion

In Table 1, the classification results of the K-fold method
(K� 10) in 5 iterations and applying 3 feature levels (sta-
tistical, fractals, and hybrid) of classification mode have been
demonstrated in comparison to the optimized SVM clas-
sification technique. As a result, the effective features based
on the proposed feature selection method indicate a suffi-
cient impact on the final classification accuracy and play an

important role in the diagnosis of MS. Furthermore, this fact
has been effective for the diagnosis of diseases, and 30% to
50% of the selected features have resulted in maximum
classification accuracy.

In Figure 8, the convergence has been considered based
on 50 limited iterations, and the modified ACO for two
groups of unseen data is converged to the optimum value
after 16 iterations.

If the feature volume reaches below 30% or higher than
60%, a particular reduction of accuracy will be observed. $e
reason for such decline is the existence of some excess or
inappropriate features. $is point has been presented in Fig-
ure 8. Although it seems that final accuracy and consequently
accuracy resulting from features aggregation can be increased
by extracting more features in the frequency domain, selecting
10 to 20 features results in favorable classification.

To compare the features effectiveness and the classifi-
cation, the set of extracted features in the time domain and
the frequency domain and for realizing a better under-
standing of the effective features on the correlation among
brain signals with 5-iteration K-fold have been utilized to
test the MS diagnosing accuracy. $e accuracy of classifi-
cation based on aggregated and selected features is higher
than each presented model of time domain- and frequency
domain-extracted features; moreover, the classification ef-
fect of the optimized support vector machine method has
considerably improved the accuracy by 3% to 5%.

$e R2 criterion is utilized to demonstrate the correlation
amount. $is criterion is the square of the existing rela-
tionship among the observed labels and estimated labels in
the MS-diagnosis process. Equations (15) and (16) are used
to acquire this criterion, which is efficient for investigating
the extracted features.

MSE(y, y) �
1
n



n

i�1
yi − y( 

2
, (15)

R
2
(y, y) � 1 −


n
i�1 yi − y( 

2


n
i�1 yi − y( 

2, (16)

where y, y, and y represent the main values, model-pre-
dicted values, and the mean values, respectively. Each of
these values is considered according to the calculations
resulting from the difference between the manually sepa-
rated main model and the predicted values. In this regard,
various tests have been performed. According to Figure 9,
the box plots have been formed and examined to compare
the approaches similar to the current approach in feature
extraction, feature selection, classification, and classification
optimization based on R2 calculation. Each test was repeated
twice. $e presented box plots in Figure 9 exhibit the
extracted features examination, comparison of feature se-
lection methods, comparison of SVM classification, and
comparison of similar optimization methods in improving
the vector machine hyperplane parameters. In Figure 9, the
methods of time feature analysis, frequency feature analysis,
time-fractal features analysis, frequency-fractal features
analysis, and time-frequency-fractal features analysis have
been compared, in which the dispersion of the last-
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mentioned model (time-frequency-fractal) utilized in this
study is low. Moreover, the demonstrated R2 value of this
method has been appropriately compared to its obtained
value in other models.

Similar to the previous analysis in the second line with
twice test repetition, the ACO in the feature selection
method represents a higher relative mean R2 value in
comparison to genetic algorithm, particle swarm optimi-
zation (PSO) method, differential evolution (DE) algorithm,
and artificial bee colony (ABC) algorithm. Furthermore, its

minimum value is higher than other methods and algo-
rithms. However, its dispersion is higher than genetic and
DE algorithms. Nevertheless, the ACO method has been
selected since it has resulted in a higher mean R2 value.

$e SVM classification method has been compared with
similar techniques to make an accurate estimation of MS
disease. In Figure 9, in the third line, the k-nearest neighbor
classifier, feed-forward neural network (ff-NN), decision tree
(DT), and Naive Bayes (NB) algorithms have been compared.
$e generated mean R2 value in the SVMmethod was higher

92.75%
(1855)

Model 1 (fold 1)

MS

M
S

Hlt

H
lt 7.25%

(145)

10.40%
(208)

89.60%
(1792)

93.15%
(1863)

Model 2 (fold 1)

MS
M

S
Hlt

H
lt 6.85%

(137)

7.80%
(156)

92.20%
(1844)

96.00%
(1920)

Model 3 (fold 1)

MS

M
S

Hlt

H
lt 4.00%

(80)

4.85%
(97)

95.15%
(1903)

97.80%
(1956)

Model 4 (fold 1)

MS

M
S

Hlt

H
lt 2.20%

(44)

3.45%
(69)

96.55%
(1931)

98.95%
(1979)

Model 5 (fold 1)

MS

M
S

Hlt

H
lt 1.05%

(21)

2.00%
(40)

98.00%
(1960)

91.70%
(1834)

Model 1 (fold 2)

MS

M
S

Hlt

H
lt 8.30%

(166)

9.45%
(189)

90.55%
(1811)

95.05%
(1901)

Model 2 (fold 2)

MS

M
S

Hlt

H
lt 4.95%

(99)

9.40%
(188)

90.60%
(1812)

96.25%
(1925)

Model 3 (fold 2)

MS
M

S
Hlt

H
lt 3.75%

(75)

6.05%
(121)

93.95%
(1879)

97.00%
(1940)

Model 4 (fold 2)

MS

M
S

Hlt

H
lt 3.00%

(60)

4.00%
(80)

96.00%
(1920)

99.10%
(1982)

Model 5 (fold 2)

MS

M
S

Hlt

H
lt 0.90%

(18)

1.40%
(28)

98.60%
(1972)

Figure 5: Two random folds of each model have been displayed. $e improved procedure is shown in the performance of models with
darker colors.
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Figure 7: $e shown ROC curves of the proposed method for MS diagnosis are based on various EEG signals. $e performance of the
proposed model is demonstrated by other similar methods such as SVM, SVM with GOA, and SVM with improved GOA.

Table 1: Assessments of accuracy in different data dividing situations and with/without feature selection strategy and change in the type of
features. $e bold values are the best measures achieved.

Data dividing Type of features
Without feature selection With feature selection

Best value Mean value Worst value Best value Mean value Worst value

10-fold (1)
Statistical 0.93± (0.05) 0.90± (0.06) 0.88± (0.09) 0.96± (0.03) 0.94± (0.05) 0.93± (0.06)
Fractals 0.91± (0.05) 0.90± (0.06) 0.88± (0.09) 0.97± (0.03) 0.94± (0.05) 0.93± (0.05)
Hybrid 0.93± (0.04) 0.91± (0.05) 0.89± (0.08) 0.98 ± (0.02) 0.95 ± (0.03) 0.94 ± (0.05)

10-fold (2)
Statistical 0.93± (0.04) 0.92± (0.07) 0.88± (0.08) 0.96± (0.02) 0.95± (0.04) 0.94± (0.05)
Fractals 0.93± (0.04) 0.91± (0.07) 0.88± (0.09) 0.98± (0.02) 0.95± (0.04) 0.94± (0.05)
Hybrid 0.93± (0.05) 0.91± (0.06) 0.89± (0.08) 0.98 ± (0.01) 0.96 ± (0.02) 0.94 ± (0.04)

10-fold (3)
Statistical 0.92± (0.05) 0.90± (0.05) 0.87± (0.08) 0.95± (0.02) 0.94± (0.05) 0.93± (0.05)
Fractals 0.92± (0.05) 0.91± (0.05) 0.88± (0.09) 0.97± (0.02) 0.95± (0.04) 0.94 ± (0.04)
Hybrid 0.92± (0.05) 0.91± (0.04) 0.88± (0.08) 0.98 ± (0.01) 0.97 ± (0.02) 0.94± (0.05)

10-fold (4)
Statistical 0.93± (0.06) 0.91± (0.06) 0.88± (0.08) 0.96± (0.03) 0.95± (0.05) 0.94 ± (0.03)
Fractals 0.92± (0.04) 0.90± (0.06) 0.89± (0.08) 0.97± (0.03) 0.95± (0.05) 0.93± (0.05)
Hybrid 0.93± (0.05) 0.92± (0.06) 0.89± (0.07) 0.98 ± (0.02) 0.97 ± (0.03) 0.94± (0.04)

10-fold (5)
Statistical 0.92± (0.04) 0.91± (0.07) 0.87± (0.08) 0.96± (0.03) 0.94± (0.05) 0.93± (0.05)
Fractals 0.93± (0.04) 0.90± (0.08) 0.88± (0.07) 0.97± (0.03) 0.96± (0.04) 0.94± (0.05)
Hybrid 0.93± (0.03) 0.92± (0.07) 0.88± (0.07) 0.98 ± (0.02) 0.97 ± (0.02) 0.95 ± (0.03)
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Figure 8:$e considered convergence based on 50 limited iterations and the modified ACO for the two groups of unseen data is converged
to the optimized value after 16 iterations.

10 Computational Intelligence and Neuroscience



than other methods. Although the dispersion value of NB and
DT methods is less than the SVM method in the presented
figures, it was inferred from different repetitions that the SVM
kernel’s dispersion level is lower than other techniques.

By performing other tests and comparing the accuracy-
test results, we realize that the alpha, beta, and gamma bands
have a significant influence on the signal. $e result has been

obtained directly from the repetition of the method’s test
using random 15- to 20-second segments of a meaningful
60-second signal. Previous approaches have examined the
MS incidence; however, the length of the disease and the
degree of severity of the disease have not been adequately
considered. As well as detecting MS disease from EEG, the
present study evaluated results by windowing methods. As a
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result of this point, the error rate in diagnosing MS disease
significantly falls. $e framing method may have been an-
alyzed in previous methods for various lengths; however,
based on current settings, it is clear that this method has
significantly contributed to the process. Similar methods
examine only the brain signals or exclusively the EEG sig-
nals. Analysis of these studies has not led to the identification
of influential features that lead to correlation with responses.

Unlike the Torabi et al. study [30], which utilized the
classification of two health and MS-diagnosed groups as a
nonlinear model, this study is based on the extraction of
linear frequency, temporal, and their aggregated features.
Afterward, using the optimized SVM classification, which
for the first time was optimized for EEG signals by the GOA,
this study’s method has resulted in higher accuracy than
Torabi et al. study. In contrast to the proposedmethod of this
study, studies [31, 32] and [42] have calculated high dis-
persion level outputs and solely have focused on monitoring
the disease progress.

A real-time or near-real-time simulation of computa-
tional complexity using the proposedmethod was conducted
in experiments. As opposed to providing structures for
constructing features, our primary goal is to segment
(windowing) and get the best classification result from EEG
data. Increasing the number of signal components led to an
increase in overlap and calculation time. It becomes difficult
to analyze a nonstationary signal if it is not segmented. An
optimal real-time system for neuromodulation feedback
loops requires not only software-optimized methods, but
also powerful hardware components the authors do not
possess yet. In the offline training phase, our proposed
model requires much time to learn. However, through the
testing phase, the data processing was near real-time (i.e., the
average processing time was 700 milliseconds). We will
leverage IoT technology in future research initiatives. Since
there is no need for additional hardware, the method can be
applied in real time.

$e method’s performance varies to some extent as the
level of noise increases (e.g., electrode impedance fluctua-
tions, patient movement artifacts, etc.). Consequently, the
robustness of the method is reduced when the amount of
noise in the signal increases. Even though sufficient data is
analyzed, it takes a considerable amount of training data to
acquire the necessary features. Besides computational
complexity, class imbalance, and uncertainty, there are other
factors that affect the performance of proposed learning
methods.

6. Conclusion

It takes expertise and time to make an accurate diagnosis of
MS. A significant improvement in the accuracy of MS di-
agnosis is demonstrated here by analyzing EEG signals from
health and MS-diagnosed individuals and utilizing methods
such as linear and nonlinear signal describers, modified ant
colony optimization, and an optimized SVM classification
algorithm. $e GOA has successfully improved the RBF
kernel parameters for SVM. In addition, adding steps such as
windowing for the nonstationary EEG signal have improved

accuracy. In spite of the influence of the alpha, beta, and
gamma sub-bands in signal analysis, the robustness of the
technique with a random selection of 15 to 30-second
segments of the EEG signal and the detecting capability of
the algorithm have caused it to be appropriate for gener-
alization. Furthermore, deep learning methods can improve
the accuracy of the final MS diagnosis in this regard. $e
authors of this study will attempt to reduce the algorithm’s
computational complexity and execution time in the future.
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