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Abstract: The calibration of a reliable phenological model for olive grown in areas characterized
by great environmental heterogeneity, like Italy, where many varieties exist, is challenging and
often suffers from a lack of observations, especially on budbreak. In this study, we used a database
encompassing many phenological events from different olive varieties, years, and sites scattered all
over Italy to identify the phases in which site-enlarged developmental rates can be well regressed
against air temperature (Developmental Rate function, DR) by testing both linear and nonlinear
functions. A K-fold cross-validation (KfCV) was carried out to evaluate the ability of DR functions
to predict phenological development. The cross-validation showed that the phases ranging from
budbreak (BBCH 01 and 07) to flowering (BBCH 61 and 65) and from the beginning of flowering
(BBCH 51) to flowering can be simulated with high accuracy (r2 = 0.93–0.96; RMSE = 3.9–6.6 days)
with no appreciable difference among linear and nonlinear functions. Thus, the resulting DRs
represent a simple yet reliable tool for regional phenological simulations for these phases in Italy,
paving the way for a reverse modeling approach aimed at reconstructing the budbreak dates. By
contrast, and despite a large number of phases explored, no appreciable results were obtained on
other phases, suggesting possible interplays of different drivers that need to be further investigated.

Keywords: olive; phenological model; developmental rates; agrometeorology

1. Introduction

Olive (Olea europaea, L.) is a long-lived, drought-tolerant species strongly adapted to
the Mediterranean climate [1], where it is counted among the oldest and most important
tree crop species [2]. In this region, temperatures lower than −8 ◦C limit its northward
distribution, whereas annual rainfalls lower than 350 mm y−1 limit its distribution in
arid regions [1,3].

Temperature is the most influencing driver controlling the phenology of olive trees,
especially flowering, for which a positive, mostly linear, relationship has been confirmed
by a large number of studies [4–9]. Temperature also controls the induction of winter
rest and the subsequent vegetative onset [10], although the underlying mechanism is still
poorly understood since the related phenological processes are difficult to observe. Several
studies suggest that the olive tree requires a chilling period, known as endodormancy, to
break the winter rest but little is known about its specific time span and the exact amount
of chilling required [11,12]. Moreover, in different bioclimatic areas, large variability in the
likely chilling period could emerge [11].

Other drivers reported in literature are genotypic diversity [13], latitude [14], topogra-
phy [6,15,16] and rainfall [9,15]. However, it is worth noting that in a multi-environment
trial [13], the genotype by environment interaction explained less than 10% of the observed
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variance in flowering dates, with genotypic diversity mostly affecting the quality of flower-
ing. Lastly, the photoperiod, a major driver of spring phenology and flowering for many
plant species [17,18], has a rather disputed role on the phenology of olive, as in some cases
it did not show remarkable effects [7,14,19], while in others it improved the prediction
of flowering when used as a threshold to start cumulating temperatures in a thermal
sum model [20,21].

Due to the strong ecological and economic relevance of olive groves, a large number
of phenological models have been developed for olive in recent decades. Phenological
models are essential tools for many crop management issues, as they allow for schedul-
ing crop practices, reducing climate risks, optimizing external resources, and enhancing
pest and disease control [22–24]. For instance, the development and spread of many
flower- and seed-eating pests depend on the flowering date or the period of seed setting
of their host plant [25], making the forecast of flowering fundamental for pest manage-
ment [26]. Moreover, phenology is considered a bio-indicator of climate changes and
phenological models have also been widely used to assess them in different areas of the
Mediterranean region [3,7,27].

Phenological models for olive are generally statistical regressions of airborne pollen
data to some meteorological variables [9,14,20,21,28] or a derivation of a thermal sum
model applied on a local scale to predict the day of flowering [4,7,11,19,29]. Several
thermal sum models include a chilling period and the estimation of the starting date to
cumulate the temperatures until flowering (alternatively, the starting date most widely
used in the northern hemisphere is 1 January). However, this topic still remains a challenge,
especially on a large scale, as the endodormancy is not easily identifiable and the budbreak
is rarely observed.

On a large scale, the applicability of phenological models is further hampered by the
large variability in the thermal availability over the growing season [30]. Few studies have
been scaled up from local to regional scale [9,20,31] but they relied solely on the prediction
of flowering, except for the model implemented in [31] that is currently used by the Italian
Council for Agricultural Research and Economics (CREA, Rome, Italy) to forecast many
phenological events of different plant species, including olive (phenological bulletins are
available at http://cma.entecra.it/iphen/bollettini.asp, last access: 28 May 2021). The
main advantage of this model relies on the prediction of many olive phenological events
(i.e., not only flowering). However, due to the heterogeneity of olive varieties and of the
environmental conditions at national level, results need to be corrected with in-season local
phenological observations.

Indeed, the heterogeneity in crop varieties, geography, and environment that charac-
terize Italy makes the development of a reliable phenological model challenging. However,
we argued that if the temperature is the most influencing driver controlling the phenol-
ogy of olive trees, then an approach that explores its predictive power over many phases
embracing a heterogenic pool of data could help overcome the problems arising from the
environmental and genotypic diversity.

The present work aimed to ascertain if the above hypothesis is correct and verify
whether it is possible to calibrate a simple, generalized, large-scale phenological model for
olive growing in Italy based on air temperature. Such a model would allow for regional
applications with a minimal input of data, under a wide range of environmental conditions,
and/or where the reference to a single variety could be reductive. To this end, we used
the data collected within the project PHENAGRI (1996–2003) [32], which has the valuable
peculiarity of including observations of many phenological events, including budbreak,
from different olive varieties, years, and experimental sites scattered all over Italy, to
identify the phases whose developmental rates could be well regressed by a function of air
temperatures, testing both linear and nonlinear curves. Moreover, a possible improvement
from the use of daylength as a predictor variable was also tested. Single models were tested
phase by phase with a K-fold cross-validation (KfCV) [33]. KfCV is a well-established
method for model evaluation where each sample has the opportunity of being tested
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one time as well as serving as training data in the remaining K−1 times, allowing the
full exploitation of the data set and, thus, making the evaluation more reliable. Highly
performing phases were chosen to embody the phenological model and findings were
discussed in the light of the current knowledge of olive phenology.

2. Materials and Methods
2.1. Data Source

We used phenological field observations collected within the project PHENAGRI
(1996–2003) [32]. In such a project, a large number of field observations on both weather
and phenological development of olive trees were collected from seven experimental sites
widely spread over Italy (Table 1). Weather data consisted of daily records from in situ
meteorological stations (when present) or from the nearest reference station belonging to
the national networks of CREA or to the Air Force Met service (AFM, Roma, Italy).

Table 1. Coordinates of experimental sites and olive varieties monitored in the PHENAGRI project.

Site Latitude Longitude Varieties

Montepaldi (Tuscany, FI) 43.66 11.14 Carolea, Coratina, Picholine, Frantoio, Leccino, Moraiolo, Pendolino
Villasor (Sardinia, CA) 39.38 8.91 Carolea, Coratina, Picholine, Bosana, Tonda di Cagliari
Valenzano (Apulia, BA) 41.03 16.85 Carolea, Coratina, Picholine, Nocellara Etnea
Torre Alegra (Sicily, CT) 37.41 15.00 Carolea, Coratina, Picholine, Moresca, Tonda di Iblea
BeliceMAre (Sicily, TP) 37.60 12.85 Carolea, Picholine, Biancolilla, Nocellara Etnea, Nocellara Messinese
Rende (Calabria, CS) 39.36 16.23 Carolea, Coratina, Picholine, Cassanese, Nocellara Messinese
Prepo (Umbria, PG) 42.99 12.26 Carolea, Coratina, Picholine, Frantoio, Moraiolo

The dataset includes observations on 17 olive varieties representative of the different
geographical areas in which the experimental sites were located. Three varieties (Carolea,
Coratina, Picholine) are common to all locations. For each experimental site and olive
variety, four shoots were chosen on four different plants to take the observations. Winter
rest and vegetative onset were periodically monitored by looking at both the apical and
lateral buds. The subsequent phenological events were observed over the same shoots. The
date of a single phenological event was defined as the median between the dates recorded
on each plant. Field surveys to monitor plants’ phenology were performed with a variable
frequency depending on the ongoing phenological phase: every 4 days during flowering
and every 7 days during the remaining phases Further details on the operational protocol
used for the collection of data adopted by the PHENAGRI project are reported in [34].

The observed phenological events, reported in BBCH centesimal scale [35], are sum-
marized in Table 2. Figure 1 shows the geographical distribution of the experimental
sites, while Figure 2 shows the variability of daily temperatures among sites experienced
over the period 1997–1999 along with the observed distributions of some representative
phenological events expressed as the day of the year (DOY) when they occurred.

Table 2. Observed phenological events for Olea europaea under the PHENAGRI project.

BBCH Scale Description

01 Foliar buds start to swell and open
03 Foliar buds lengthen and separate from base
07 External small leaves open, not completely separated
11 First leaves completely separated
50 Inflorescence buds leaf axils completely closed
51 Inflorescence buds start to swell
55 Flower cluster totally expanded
61 Beginning of flowering
65 Full flowering, at least 50% of flowers open
68 Majority of petals fallen or faded
69 End of flowering, non-fertilized ovaries fallen
71 Fruits at 10% of final size
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Table 2. Cont.

BBCH Scale Description

75 Fruits at 50% of final size
80 Fruit becoming light green or yellowish
81 Beginning of fruit coloring
85 Increasing specific fruit coloring
89 Harvest maturity
92 Overripe with fruits that start to fall
99 At least 50% of fruits fallen
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2.2. Developmental Rate (DR) Function

A versatile way to model plant development is to regress a phase maturity rate (the
reciprocal of the phase time length) against the mean value(s) of the predictor variable(s)
experienced during that phase [36]. Here, we call the resulting equation (eq.) Develop-
mental Rate (DR) function, regardless if linear or not, while we refer to phase as the period
between two distinct phenological events.

2.2.1. Linear DR Function

As earlier suggested by [37] for cereal crops or [38] for insect populations, a DR
function for a given phase could be assumed as a linear function of mean air temperature:

DR = a + bT (1)

where DR is the developmental rate, i.e., the reciprocal of the phase time length [d−1], T is
the mean air temperature experienced during the phase [◦C], a is the intercept [d−1], and
b is the slope [◦C−1d−1] determined by the linear regression.

The intersection of the linear DR function with the x-axis returns the value for the base
temperature (T0 = −a/b, [37,38]) that represents the critical temperature below which phase
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development is assumed to be nil since the DR would assume negative values. Under the
assumption of linearity, the reciprocal of the slope corresponds to the thermal constant,
or growing degree-days’ requirement of the well-known thermal sum model, and the
base temperature is the threshold above which degree-days are cumulated [38]. Similarly,
following the approach adopted by [30] and [37], whenever an additional linear relation
exists among DR and daylength, a multiple linear regression can be considered as:

DR = a + bT + cP (2)

where P is the mean daylength during the phase expressed in hours [h] and a, b, and c
are the coefficients of the multiple linear regression. Formally, even in the case of multi-
ple linear regression, the developmental rate stops when the temperature or daylength
falls below critical values (T0m and P0m, respectively, where the subscript m stands for
“multiple”). The values of T0m and P0m can be retrieved by the intersection of the lin-
ear DR function (projected on a two-dimensional scatter plot) with the corresponding
abscissa. Examples of how simple and multiple linear regressions behave are shown in
Figures S1 and S2, respectively.

2.2.2. Nonlinear DR Function

Many different nonlinear functions have been used in literature (e.g., Poisson equa-
tion [39], second-degree polynomial [40], sigmoidal function [41]) to represent nonlinear
trends of plant developmental rates sometimes observed over the full range of tolerable
temperature conditions to which the plant is exposed.

In the present work, a second-degree polynomial was proposed, expressed in the
form of

DR = a + bT + cT2 (3)

The polynomial function expressed in Equation (3) allows us to represent curvilinear
trends of developmental rates against temperature, if any, and has the advantage of being
linear in terms of the unknown coefficient. As for linear functions, the developmental rate
stops when temperatures fall below critical values (Tp1 and Tp2). The estimation of critical
values is given by the general formula to find the intersection of a parabola with the x-axis.
An example of how the polynomial regression behaves is shown in Figure S3.

2.2.3. Using DRs to Simulate Olive Phenology

Since the developmental rate is the inverse of a given time phase length, by definition,
its integration over the phase time length must return 1. For this reason, the prediction of a
given phase time length (S) could be computed with only the inputs of the starting date of
the phenological phase and the daily predictor values as follows:

ΣS
j = 1DRj = 1 (4)

where DRj is the daily rate computed for the j-day according to:

• Equation (1) when a simple linear DR is adopted:

DRj = a + bTj (if Tj > T0) (5)

DRj = 0 (if Tjn < T0) (6)

where Tj is the daily mean air temperature of the j-day;

• Equation (2) when both temperature and daylength are explanatory variables:

DRj = a + bTj + cPj (if Tj > T0m and Pj > P0m) (7)

DRj = 0 (if Tj < T0m or Pj < P0m) (8)
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where Pj is the daily mean daylength of the j-day; and

• Equation (3) when nonlinear DR is adopted as follows:

DRj = a + bTj + cTj
2 (if Tj > Tp1 and Tj < Tp2) (9)

DRj = 0 (if Tj < Tp1 or Tj> Tp2). (10)

According to Equation (4), the end of the phase is achieved when the cumulative sum
of the daily rates reaches 1 (Summing Rates Method, [38]).

For annual crops, the starting date of the vegetative period corresponds to the sowing
date, while for tree crops the starting date could correspond to the budbreak and should be
observed in the field or estimated by a specific model. Lastly, the DOY at which the phase
reaches its maturity can be easily deduced by summing the phase time length (S) to the
DOY of the starting date.

2.3. K-Fold Cross-Validation (KfCV) and Final Model Calibration

From the whole database, counting approximately 1200 phenological observations,
we computed the average developmental rates [d−1], average air temperature [◦C], and
daylength [h] experienced during all the possible phases resulting from pairwise combina-
tions of phenological events, with a total of 171 phases inspected. Daylength was computed
according to the FAO guideline [42] on a daily basis. Phases embracing data from less than
five experimental sites were discarded to guarantee heterogeneity in the sample data, for
a total of 48 phases selected (Figure 3). The average variability of the observed phases’ time
lengths was described by computing the standard deviation for single phases.
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Figure 3. Standard deviation of olive phenological phases time length. x-axis: phenological events
defining the beginning of a phase expressed in BBCH scale (definition in Table 2); y-axis: phenological
events defining the end of a phase expressed in BBCH scale. Empty cells indicate the absence of data,
white dot markers indicate phases discarded because of data embrace in less than 5 experimental
sites.

K-fold cross-validation [33] was used on the selected phases to evaluate the ability
of DR functions in predicting phenological development. According to this methodology,
data of single phases (phase length, average air temperature, and daylength) are randomly
mixed and partitioned into K-equal-parts, where each part is called fold. One fold is used
as a validation subset, while the remaining folds are used as a training subset. A total of
K rounds of training and validation are performed through an iteration that alternatively
uses a different k-fold as validation subset and the remaining K-1 folds for the training
procedure. In our case, K was fixed at 5. In each iteration, a DR function is regressed
using ordinary least squares technique over the training subset. The obtained coefficients
are then used to simulate phenological development according to Equation (4) using the
predictor(s) data from the validation subset. Simulations, i.e., the phase time lengths, are
finally compared with the observations from the validation subset using the coefficient of
determination (r2, dimensionless), the Root Mean Square Error (RMSE, days), and Mean
Bias Error (MBE, days) [43]. The RMSE represents the standard deviations of the model
errors when the bias is null: the lower the values of RMSE, the higher the agreement
of the model prediction with the observations. MBE indicates the average bias in the
model predictions. The lower the values of MBE, the lower is the bias in the simulations.
Moreover, since the initial random split of the data set into K groups may slightly affect
the results, the KfCV was repeated N times (with N = 10) to remove potential biases
and increase the model generalization. Figure S4 provides an example of training and
validation over a single k-fold iteration. The overall ability of a DR function to predict the
corresponding phase length is summarized through the ensemble mean of K × N runs [33].
Phases resulting with overall r2 higher than 0.8 and RMSE lower than 7 days were selected
as cross-validated and subject to the final considerations on how the different kinds of
DRs (i.e., simple, multiple, and nonlinear) perform and which ones can better embody the
phenological model of olive. The adopted threshold of RMSE reflects the uncertainty of
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field measurements that could arise from surveys carried out on a weekly basis, as done
under the PHENAGRI project [34].

After the cross-validation was completed, the best DR functions for single selected
phases were calibrated using all the available data.

3. Results

Of the 48 selected phases, those broadly ranging from the budbreak (i.e., BBCH 01
and 07) to flowering (i.e., BBCH 61 and 65) had wide dispersions in the time phase length,
as shown by the standard deviations (Figure 3). A large dispersion was also evident in
phases ranging from BBCH 71 to 85. In general, the observed wide dispersion in budbreak
to flowering was mostly due to the great variability in the DOY of budbreak (Figure 2,
boxplot for BBCH 07), as the dates of flowering were rather synchronized around the
middle of May (Figure 2, boxplot for BBCH 61). Similarly, great variability in the DOY
of fruit maturity (Figure 2, boxplot for BBCH 81) seemed to explain the relatively high
dispersion observed in the time phase length of the latter phases (Figure 3), namely, those
broadly ranging from fruit development to fruit maturity. Again, Figure 2 shows that the
variability in the DOY of the main phenological events (interquartile range of boxplots in
Figure 2) reflects the variability of air temperature (grey shadows in Figure 2), which, in
turn, over Italy is larger in winter and narrower in late spring.

Among selected phases, the KfCV showed meaningful results only for six phases (here-
inafter, cross-validated phases) despite different types of DRs tested (i.e., Equations (1)–(3)). Cross-
validated phases and related statistics are summarized in Table 3. Results showed that
neither the introduction of daylength nor the use of polynomial function led to any sub-
stantial improvements to the results. Hence, the scatter plot between simulations and
observations reported in Figure 4 only refers to simple, linear DRs.

Linear DR functions were able to simulate with high performance the phenological phases
ranging from BBCH 01 and 07 to BBCH 61 and 65 (r2 = 0.93–0.95; RMSE = 4.7–5.7 days), good
performance those from BBCH 51 to BBCH 61 and 65 (r2 = 0.93; RMSE = 5.7–6.6), while for
the remaining phases no appreciable results were found.

Overall, flowering can be predicted with high accuracy from BBCH 01 and 07
(r2= 0.93–0.96, RMSE = 3.9–5.6 days) and tolerable accuracy from BBCH 51 (r2 = 0.93,
RMSE =5.7–6.6 days). Moreover, the RMSEs of the predicted phases listed in Table 3
were lower than the observed standard deviations of phases’ time length (Figure 3 and
Table 3) and were also comparable with the observed intra-sites’ standard deviations of
flowering, which ranged from 1.0 to 7.8 days (not shown). MBE denotes almost no bias
(MSE < 1 day) from linear DRs for phases ranging from BBCH 01 and 07 to BBCH 61
and 65 and a moderate bias from nonlinear DRs over all the phases (MSE from −2.89 to
−5.42 days) as well as from linear DR in BBCH 51–61 (MSE ranging from −1 to −2 days).

The final calibration of linear DRs for the cross-validated phases are shown in
Figure 5, while the scores of coefficients and the related statistics are shown in Table 4.

When using all the available data, the temperature alone did explain up to 85–89% of
the observed, site-enlarged variability in the phases’ time length, ranging from budbreak
to beginning of flowering (BBCH 61), and 79–81% in the phases ranging from budbreak
to full flowering (BBCH 65). The variability explained by temperature alone decreased to
62–74% in the remaining phases.
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Table 3. Statistical evaluation of simple DRs (Equation (4)) obtained from the KfCV for selected phases. S * = mean observed
phase time length; RMSE = Root Mean Square Error [d]; r2 = coefficient of determination (* = adjusted r2); MBE = Mean Bias
Error [d].

From BBCH To BBCH r2 p-Value RMSE
[days]

MSE
[days]

S * (St. Dev)
[days] N. Sites N. Data

01 61

Model of Equation (1) 0.95 2.0 × 10−5 4.7 −0.3

64 (22) 6 50Model of Equation (2) 0.96 * 2.7 × 10−6 4.3 −0.8

Model of Equation (3) 0.93 6.1 × 10−4 6.4 −3.2

07 61

Model of Equation (1) 0.93 3.6 × 10−7 5.6 −0.5

60 (22) 7 71Model of Equation (2) 0.93 * 2.9 × 10−7 5.6 −0.59

Model of Equation (3) 0.92 9.8 × 10−7 7.1 −3.1

51 61

Model of Equation (1) 0.93 1.2 × 10−8 6.6 −2.0

37 (22) 7 84Model of Equation (2) 0.89 * 2.4 × 10−7 6.9 −1.1

Model of Equation (3) 0.91 1.5 × 10−7 7.3 −2.9

01 65

Model of Equation (1) 0.96 7.7 × 10−7 3.9 −0.1

71 (21) 6 51Model of Equation (2) 0.98 * 1.6 × 10−7 3.5 −0.2

Model of Equation (3) 0.93 7.4 × 10−6 6.8 −3.7

07 65

Model of Equation (1) 0.93 4.6 × 10−7 5.6 −0.5

68 (22) 7 72Model of Equation (2) 0.93 * 5.6 × 10−7 5.6 −0.3

Model of Equation (3) 0.92 2.9 × 10−7 8.1 −4.6

51 65

Model of Equation (1) 0.93 1.8 × 10−7 5.7 −1.0

44 (21) 7 85Model of Equation (2) 0.92 * 2.0 × 10−7 5.8 −0.7

Model of Equation (3) 0.86 1.2 × 10−5 14.8 −5.4
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Table 4. Final calibration of linear DRs for cross-validated phases. T0 = base temperature
(see Section 2.2.1).

From BBCH To BBCH r2 p-Value
DR = a + bT

a b T0 = −a/b

01 61 0.85 1.8 × 10−21 −0.0180 0.0025 7.2

07 61 0.79 1.1 × 10−25 −0.0253 0.0031 8.2

51 61 0.62 5.9 × 10−19 −0.0817 0.0075 10.9

01 65 0.89 1.2 × 10−25 −0.0132 0.0020 6.7

07 65 0.81 1.7 × 10−27 −0.0187 0.0024 7.8

51 65 0.74 2.9 × 10−26 −0.0540 0.0050 10.7

4. Discussion

By exploring a large phenological database, we were able to identify the phases
where a DR function could predict olive phenological development with high perfor-
mance. Indeed, the flowering event (BBCH 61 and 65) was simulated with high accuracy
(r2 = 0.93–0.96; RMSE = 3.9–5.6 days, no bias) from budbreak (BBCH 01 and 07) and ac-
ceptable accuracy (r2 = 0.93; RMSE = 5.7–6.6 days, MBE < 2 days) from the beginning
of inflorescence (BBCH 51) by simple, linear DR functions of temperature, regardless of
the variety and/or geographical location. The model’s errors in predicting the date of
flowering (3.9–5.6 days) from budbreak were comparable with the observed intra-sites’
variability (1–7.8 days), suggesting that further accuracy might be possible only by scal-
ing down the model on a local scale and/or single variety. Furthermore, the errors on
flowering were comparable with those found elsewhere [9,11,19,29,44], which ranged from
approximately 3 to 8 days, depending on the experimental design. Therefore, the resulting
calibrations for linear DRs represent a simple yet reliable tool for regional simulations of
budbreak-flowering, allowing the possibility of a reverse modeling approach aimed at
reconstructing the budbreak dates, rarely observed, starting from the event of flowering,
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which notoriously is the most observed phenological event. To our knowledge, this poten-
tial use is a novelty among olive phenological models. By contrast, no appreciable results
were obtained in phases other than budbreak- and beginning of inflorescence-flowering,
despite the large number of phases explored (171 from a pairwise combination, of which
48 had data from at least five experimental sites) and the use of different DR functions (i.e.,
linear and nonlinear). Indeed, the KfCV showed that neither the introduction of daylength
nor the use of nonlinear DR functions led to any improvement in the results with respect
to the linear DR, both in terms of performance and number of cross-validated phases.

The absence of significant results in phases ending at events other than flowering
was consistent with and might explain the fact that almost all the existing phenological
models for olive are focused solely on flowering. Moreover, phenological observations on
events other than flowering, characterized by a higher variability (Figure 2), for instance,
the budbreak, are rarely collected, limiting the possibility of exploring further phases.

The absence of any improvement using nonlinear DR functions has already been found
elsewhere [45,46] and it might suggest, in our case, the absence of nonlinear responses.
The latter might have various explanations, one of which being the non-exposure of plants
beyond their limits of tolerance. Again, it may happen that only a few points in the sample
data show a relatively low developmental rate at high temperatures. If so, the nonlinear
approximation may closely fit the training subset. However, when such regression is used
in extrapolation, the scarce generalization of the calibration fails to predict the observations
better than the other methods. Lastly, the average of temperatures over a long period may
hide the occurrences of extremely high temperatures, if any. In all these cases, our findings
suggest linear DR function as the most robust model providing results with tolerable error.

Regarding the genotypic diversity, data on individual varieties were neither sufficient
to test a model for a single variety nor to compare the phenology between varieties. Indeed,
the study of genotypic diversity was outside the scope of the present article. However,
if we look at the three olive varieties common to all the experimental sites (i.e., Carolea,
Coratina, and Picholine), no difference seemed to arise between developmental rates over
the cross-validated phases (Figure S5). Nevertheless, a larger amount of data for single
varieties is required to draw a more robust conclusion.

Our approach was based on two underlying principles: First, the use of data collected
under heterogeneous environmental conditions and from different olive varieties to over-
come many local peculiarities to scale up the work from field to large scale, and second,
the exploration of all the possible phases to identify those in which the calibrations of DRs,
including the base temperature, which is usually extracted from literature (e.g., [4,15,19]),
were better performing. By applying these principles, our approach allowed us to minimize
the residual variability from drivers other than temperature, as those attributable to genetic
diversity, microclimate, the proximity of the meteorological stations, and farming practices.
The exploration of all possible phases to identify the suitable ones a posteriori was a novelty
among olive phenological models and it allowed us to increase our knowledge on the
phenology of olive tree. Indeed, our results confirmed the following points. (1) A strong
phenological temperature response emerged in the broad phase, ranging from budbreak
to flowering. Such a response is high enough to allow a unique site-enlarged calibration
for the Italian domain based solely on air temperature. By contrast, in phases where
a linear temperature response was weak or not present at all, the thermal sum model was
baseless, justifying some perplexities raised on its low forecasting efficiency [47] and/or the
need to differentiate calibrations among sites, as done in many studies [7,12,19,20]. A base-
less thermal sum model might also explain the large variability in the heat requirements
counted using a predetermined base temperature (i.e., not calibrated) observed among
different sites, as shown in [14]. Moreover, the strong linear temperature response in the
phase ranging from budbreak to flowering suggested the event of budbreak as the optimal
date to start cumulating the heat requirements, usually fixed at 1 January or at the end of
endodormancy (e.g., [19,20,31]), which is usually modelled without a validation since it is
intrinsically hard to be observed. As a consequence, a model able to predict the budbreak
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date rather than the end of endodormancy might be linked to the presented model, allow-
ing a better validation of the processes as well as broadening our current knowledge on the
phenology of olive. (2) Over the Italian domain, olive trees show synchrony in flowering
when the climate variability is relatively low (grey shadows in Figure 2, upper panel), but a
great variability in the budbreak, when the climatic variability is relatively high. This can be
well explained by a summing rates (thermal sum) model: At the budbreak, early varieties
find relatively lower temperatures and grow relatively slower than the late ones, which, on
the contrary, find relatively higher temperatures and, thus, grow a little faster. The same
could hold for a single variety in different locations. Once again, it follows that a reliable
calibration of the base temperature plays a fundamental role, as previously suggested
by [48,49], but it requires a strong temperature response in developmental rates. (3) Olive
developmental rates proved insensitive to daylength, as also reported before [7,14,19].
(4) The timing of phases beginning from, or after, flowering is mostly driven by variables
other than temperature or by some of their interactions that still need to be further investi-
gated to be implemented in a phenological model. In Figure S6 we showed the Pearson
correlation matrix between phase time length and average temperature (left panel) and
accumulated precipitation (right panel). In phases after flowering, the time lengths still
had a relevant yet relatively weaker correlation with the average temperature compared to
those observed from the budbreak to flowering, while accumulated precipitation showed
an important correlation with phases’ time length in the period ranging from the beginning
of fruit development to fruit maturity. The relationship between fruit development and
water availability was already recognized in [50,51]. In particular, early ripening has been
observed in years with limited precipitations and relatively warmer seasons. However,
further investigations are required to obtain a predictive model on fruit development by
considering multiple meteorological variables.

Our work does feature some limitations that should be discussed. Firstly, phenological
phases generally reflect some ecological, managerial, or even public health interests, such
as periods when the plant is particularly vulnerable to external stressors, when it increases
the demand for nutrients or releases pollen, causing some allergies. In olive, flowering
is the most studied phenological event because olive pollen causes seasonal respiratory
allergies in Mediterranean countries [52]. Flowering is also important since an olive grove
must rely on the synchrony in the flowering dates between varieties for an effective cross-
pollination [7,53]. In our case, cross-validated phases ended on flowering. However, our
approach, if applied to other trees or crops, might also lead to significant results for phases
ending at phenological events of low agronomic or ecological interest.

Secondly, the PHENAGRI data set was built 20 years ago. Nevertheless, we adopted
it because, to our knowledge, PHENAGRI has the unique advantage of having a complete
screening of olive phenology over the whole olive-growing cycle from several varieties and
experimental sites scattered all over Italy (Central, South Italy, and islands). We believe
that the use of more recent data is more important for the analysis involving short life cycle
crops, especially if such crop varieties are subjected to continuous genetic improvement.

Thirdly, in our work, the budbreak must be known to predict flowering. Nevertheless,
in absence of budbreak’s observations, the model could be used for impact analyses using
scalar budbreak dates over its common time frame. Moreover, the use of time phase lengths
has the unique advantage of being usable for a reverse, large-scale, modelling approach,
allowing us, in our case, to trace back the budbreak dates (rarely observed) starting from the
observations of flowering (commonly observed), paving the way to a better understanding
of how the climate could induce plants to break the winter rest.

5. Conclusions

In conclusion, we presented a generalized phenological model for olive that could be
used throughout Italy for several applications. Some of these may be simulations for groves
with landraces or mixed varieties, regional phenological bulletins on flowering, flowering
predictions for decision-making support systems, and reverse modelling to reconstruct



Plants 2021, 10, 1115 13 of 15

budbreak data. Such applications may be helpful for many crop management issues, such
as scheduling crop practices, reducing climate risks, optimizing external resources, and
enhancing pest and disease control.

Our work showed that the linearity between phase developmental rate and temper-
ature is of extreme relevance for the accuracy of the thermal sum model. Indeed, when
there exists a strong linear temperature response it becomes possible to obtain a unique
calibration of the thermal sum model even on a large-scale domain and at the species level.

Nevertheless, further investigations will be necessary to develop a predictive model
for budbreak and fruit development in order to help the scientific community, decision-
makers, and farmers to manage the impacts of the ongoing climate changes.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/plants10061115/s1. Figure S1: Examples of how a linear DR may fit the data over three
phases (reported in the legend), Figure S2: As Figure S1 but for multiple linear regressions between
developmental rates, air temperature, and photoperiod, Figure S3: As Figure S1 but for polynomial
regression between developmental rates and air temperature, Figure S4: Example of training and
validation within the KfCV, Figure S5: Developmental rates vs. temperature for the cross-validated
phases from data embracing the olive varieties common to all locations, Figure S6: Correlation matrix
between time phase length, temperature, and precipitation.
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