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Abstract: Targeted radionuclide therapy with 177Lu- and 90Y-labeled radioconjugates is a clinically-
established treatment modality for metastasized cancer. 47Sc is a therapeutic radionuclide that decays
with a half-life of 3.35 days and emits medium-energy β−-particles. In this study, 47Sc was investigated,
in combination with a DOTA-folate conjugate, and compared to the therapeutic properties of 177Lu-folate
and 90Y-folate, respectively. In vitro, 47Sc-folate demonstrated effective reduction of folate receptor-positive
ovarian tumor cell viability similar to 177Lu-folate, but 90Y-folate was more potent at equal activities due
to the higher energy of emitted β−-particles. Comparable tumor growth inhibition was observed in mice
that obtained the same estimated absorbed tumor dose (~21 Gy) when treated with 47Sc-folate (12.5 MBq),
177Lu-folate (10 MBq), and 90Y-folate (5 MBq), respectively. The treatment resulted in increased median
survival of 39, 43, and 41 days, respectively, as compared to 26 days in untreated controls. There were no
statistically significant differences among the therapeutic effects observed in treated groups. Histological
assessment revealed no severe side effects two weeks after application of the radiofolates, even at double
the activity used for therapy. Based on the decay properties and our results, 47Sc is likely to be comparable
to 177Lu when employed for targeted radionuclide therapy. It may, therefore, have potential for clinical
translation and be of particular interest in tandem with 44Sc or 43Sc as a diagnostic match, enabling the
realization of radiotheragnostics in future.

Keywords: 47Sc; 177Lu; 90Y; radionuclide therapy; SPECT; folate receptor; DOTA-folate; IGROV-1
tumor xenografts; preclinical therapy

1. Introduction

Presently, the standard treatment of cancer involves surgery, external beam radiation therapy,
and chemotherapy. Depending on the tumor type, more specific treatments, including hormonal therapy or
immunotherapy, are also viable options [1]. Most attention is currently drawn to the approach of personalized
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medicine, where the cancer treatment chosen is dependent on patient- and tumor-specific characteristics [2].
Among these is also the concept of tumor targeting to deliver highly toxic agents, specifically to cancer cells.
This option requires the design of tumor-specific ligands (tumor targeting agents) which do not—or only
at insignificant levels—accumulate in healthy normal tissue. The goal of this concept is to maximize the
therapeutic efficacy of the cytotoxic agent and, at the same time, reduce undesired off-target toxicity.

Tumor-targeted radionuclide therapy has emerged as a promising approach for the treatment
of disseminated cancer [3]. β−-particle-emitting radionuclides are most often used for this purpose.
The tissue range of β−-particles covers hundreds of cell diameters, hence, β−-radiation affects not only
cells expressing the target structure, but also neighboring tumor tissue. This phenomenon is known
as the “cross-fire effect” and enables the treatment of medium-sized and larger lesions, even if the
target is heterogeneously expressed [4]. Currently, 177Lu (T1/2 = 6.65 days; Eβ−av = 134 keV) is the
most commonly employed β−-particle-emitting radiometal for targeted radionuclide therapy using
peptide- or small-molecule-based targeting agents (Table 1) [5].

90Y is another radiometal applied clinically, which decays with a half-life of 2.67 days by the emission
of β−-particles of a relatively high energy (Eβ−av = 934 keV), resulting in a maximum tissue range of
10 mm (Table 1). It is, therefore, suitable for the treatment of larger metastases and has been extensively
utilized with somatostatin analogs for the treatment of neuroendocrine tumors [6,7]. On the other hand,
these properties also contribute to undesired side effects, particularly hematological and kidney toxicities
when using 90Y-labeled compounds [8,9]. 177Lu-based therapy outperformed the use of 90Y-labeled
compounds in terms of minimizing side effects [10]. The medium-energy β−-particles emitted by 177Lu
affect non-targeted tissues to a lesser extent due to its shorter tissue range (maximum tissue range:
~1.5 mm) [11]. A further advantage of 177Lu over 90Y is the co-emission of γ-radiation (Table 1), which can
be used for the monitoring of tissue distribution and for pre-therapeutic dosimetry using SPECT.

47Sc is a novel radionuclide with decay properties comparable to those of 177Lu, as it emits
medium-energy β−-particles (Eβ−av = 162 keV) and γ-radiation (Eγ = 159 keV) suitable for SPECT
imaging (Table 1) [12,13]. 47Sc decays with a half-life of 3.35 days, which may be suitable for
small-molecular-weight ligands, considering their rapid pharmacokinetics. The therapeutic potential
of 47Sc has been shown previously in a pilot preclinical study using 47Sc-labeled folate [14]. It can
be used towards a theragnostic approach in tandem with 44Sc or 43Sc as a diagnostic match.
44Sc (T1/2 = 4.04 h [15]; Eβ+

av = 632 keV) and 43Sc (T1/2 = 3.89 h; Eβ+
av = 476 keV) are radionuclides

suitable for PET imaging, due to their favorable physical properties, which makes them interesting for
clinical translation [16–18]. Preliminary data from clinical applications are available with generator-
and cyclotron-produced 44Sc, where it was used in combination with prostate specific membrane
antigen (PSMA) ligands and somatostatin analogues, respectively [19–21].

Table 1. Decay properties 1 of the therapeutic radionuclides, 47Sc, 177Lu, and 90Y.

Radionuclide Half-Life Eβ− Average Eγ (Intensity) 2 Availability

47Sc 3.35 d 162 keV 159 keV (68%) produced as part of this
research project

177Lu 6.65 d 134 keV 113 keV (6%)
208 keV (10%) commercially available

90Y 2.67 d 934 keV none commercially available

1 https://www.nndc.bnl.gov/nudat2/; 2 γ-Lines relevant for SPECT imaging.

The goal of this study was to investigate the potential of 47Sc for targeted radionuclide
therapy and to compare its therapeutic properties with those of 177Lu and 90Y. For this purpose,
we used a DOTA-functionalized folate conjugate for folate receptor (FR)-targeted radionuclide therapy
of ovarian cancer, which is known to express the folate receptor with the highest frequency (~90% of
cases) [22]. The folate conjugate was labeled with 47Sc, 177Lu, and 90Y, respectively, and the radiometal
complexes were investigated extensively in vitro and in vivo. In this study, ovarian IGROV-1 tumor
cells were used instead of the commonly-employed cervical KB tumor cells, because they overexpress
the FR at levels that reflect the clinical situation more accurately than is the case for KB cells [23].

https://www.nndc.bnl.gov/nudat2/
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The therapeutic effects of various activities of 47Sc-, 177Lu-, and 90Y-labeled folate conjugates were
investigated in vitro. Biodistribution studies were carried out in IGROV-1 tumor-bearing mice using
177Lu-folate, in order to calculate the mean absorbed dose to the tumors and kidneys of mice when
treated with 47Sc-, 177Lu-, and 90Y-folate. Subsequently, the therapy experiment was performed using
activities which resulted in equipotent tumor doses of 47Sc-, 177Lu-, and 90Y-folate.

2. Materials and Methods

2.1. Radionuclides

47Sc was produced using the 46Ca(n,γ)47Ca→47Sc nuclear reaction, as previously reported [12,14].
46Ca targets were irradiated in the high thermal neutron flux reactor at the Institut Laue Langevin (ILL;
Grenoble, France) or at the BR2 reactor at SCK.CEN (Mol, Belgium) and 47Sc separated from the target
material at the Paul Scherrer Institute (PSI; Villigen-PSI, Switzerland). In the course of these studies,
the production and separation processes of 47Sc were optimized with the use of 46CaO targets instead
of 46Ca(NO3)2 targets. 46CaO targets (46Ca, 5% enrichment, Trace Sciences, Wilmington, DE, USA)
were irradiated and the separation method was adapted to enable target dissolution and efficient
separation of 47Sc from the target material and environmental impurities (Supplementary Materials,
Figure S1). After separation, 47Sc was obtained as 47ScCl3 in HCl (0.05–0.1 M).

No-carrier-added 177Lu (177LuCl3/HCl 0.04 M) was kindly provided by Isotope Technologies
Garching (ITG GmbH, Garching, Germany) and 90Y (90YCl3/HCl 0.05 M) was obtained from Medeo
AG (Schöftland, Switzerland).

2.2. Preparation of 47Sc-Folate, 177Lu-Folate, and 90Y-Folate

The DOTA-functionalized folate conjugate (referred to as cm10), was previously developed at the
Center for Radiopharmaceutical Sciences at PSI [24]. The radiolabeling of the folate conjugate with
47Sc, 177Lu, and 90Y was carried out at pH 4.5 using HCl (0.05 M, pH 1) and Na-acetate (0.5 M, pH 8),
as previously reported for 177Lu-folate [24]. The reaction mixture was incubated for 10–15 min at
95 ◦C, followed by quality control using HPLC (Supplementary Materials). The folate radioconjugates
were obtained at high radiochemical purity (>97%) and used without additional purification. Sodium
diethylenetriaminepentaacetate (Na-DTPA) was added to the injection solution for complexation of
potential traces of unreacted radionuclide.

2.3. Tumor Cell Culture and Internalization Experiments

IGROV-1 cells (human ovarian carcinoma cell line) were gifted from Dr. Gerrit Jansen (Department
of Rheumatology, Free University Medical Center, Amsterdam, The Netherlands). These cells were
cultured in folate-deficient RPMI medium (FFRPMI, Cell Culture Technologies GmbH, Gravesano,
Switzerland) supplemented with 10% fetal calf serum (FCS), l-glutamine and antibiotics. Routine cell
culture was performed twice a week using trypsin-EDTA (0.25%, Gibco) for detachment of the cells.

Tumor cell uptake and internalization studies were performed using FR-positive IGROV-1 cells
as previously reported [25]. The radiofolates were prepared at a molar activity of 10 MBq/nmol and
added to IGROV-1 tumor cells in the presence and absence of folic acid, followed by incubation of
the cells for 4 h. A detailed description of the procedure is given in the Supplementary Materials.
The total uptake and the internalized fraction were calculated as a percentage of total added activity.
Each experiment was performed in triplicate.

2.4. Cell Viability Assay

47Sc-, 177Lu- and 90Y-folate, prepared at a molar activity of 10 MBq/nmol, were evaluated with regard
to their effect on cell viability using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)
assay as previously reported [25]. IGROV-1 tumor cells were seeded in 96-well plates at 2.5 × 103 cells per
well in a volume of 200 µL FFRPMI medium (with supplements). The well plates were incubated at 37 ◦C



Pharmaceutics 2019, 11, 424 4 of 13

and 5% CO2 overnight to allow cell adhesion and growth. The following day, supernatants were removed
and either only FFRPMI medium (200 µL, without supplements) or medium containing 47Sc-, 177Lu-,
or 90Y-folate, at variable concentrations (1.0–40 MBq/mL), was added to each well. The supernatants
were removed after 4 h incubation at 37 ◦C and cells were washed with PBS (200 µL). FFRPMI medium
with supplements was added to each well. After an incubation period of 6 days, the cell viability was
determined using the MTT reagent and a microplate reader (Victor X3, Perkin Elmer, Waltham, MA, USA)
to determine the absorbance of the violet color at 560 nm, as previously reported [26]. To quantify cell
viability, the percentage of the absorbance of treated cell samples was compared to the absorbance of
untreated control cell samples (= 100% viability). Graphs were prepared using GraphPad Prism software
(version 7.0) (GraphPad Software, Inc., San Diego, CA, USA).

2.5. Animal Experiments

All applicable international, national, and/or institutional guidelines for the care and use of animals
were followed. In particular, all animal experiments were carried out according to the guidelines of
Swiss Regulations for Animal Welfare. The preclinical studies have been ethically approved by the
Cantonal Committee of Animal Experimentation and permitted by the responsible cantonal authorities
(N◦ 75545, November 2013 and N◦ 79692, January 2017). Female CD1 nude mice aged 5 weeks
were purchased from Charles River Laboratories (Sulzfeld, Germany). All animals were fed with
a folate-deficient rodent diet (ssniff Spezialdiäten GmbH, Sulzfeld, Germany), starting one week prior
to the injection of the radiofolates.

2.6. Biodistribution Studies

Biodistribution studies were performed in triplicate two weeks after IGROV-1 tumor cell
inoculation (5 × 106 tumor cells in 100 µL of PBS), as previously reported for other tumor mouse
models [24]. 177Lu-folate (3 MBq, 1 nmol/mouse) was injected in a volume of 100µL into a lateral tail vein.
The animals were sacrificed at various time points between 1 h and 10 days after administration of the
radioconjugate. Selected tissues and organs were collected, weighed, and the activity was determined
using a γ-counter (Perkin Elmer, Wallac Wizard 1480). The results were listed as a percentage of the
injected radioactivity per gram of tissue mass (% IA/g), using counts of a defined volume of the original
injection solution measured at the same time.

2.7. Dosimetric Calculations

Dosimetric calculations were performed for all three radiofolates using the experimentally-determined
tissue distribution data of 177Lu-folate, under the assumption that the radiofolates would distribute equally
irrespective of whether 47Sc, 177Lu, or 90Y was coordinated. The data of the 177Lu-folate biodistribution were
converted to non-decay-corrected values using the half-lives of 47Sc, 177Lu, and 90Y, respectively. The mean
specific absorbed dose (Gy/MBq) to the tumor xenografts and kidneys was calculated by multiplication
of the time-integrated activity concentration with the emitted electron energy per decay, the absorbed
fraction of the emitted electron energy, and a factor of 1.6 × 10−7 for converting the unit into Gy/MBq [27].
The absorbed fractions for the tumors (40−50 mg) at the time of injection and the kidneys (~125 mg) were
assessed by Monte Carlo simulations using PENELOPE-2014 [28]. Uniform activity distribution within
the kidneys and the tumors was assumed for the simulations. The average electron energy emitted per
decay for 177Lu was 147 keV, for 47Sc 162 keV, and for 90Y 934 keV, according to the National Nuclear
Data Center, Brookhaven National Laboratory USA (https://www.nndc.bnl.gov/mird/, accessed in 2017).
The contributions of the emitted photons to the absorbed doses were neglected [29].

2.8. Tumor Therapy Studies

The mice were subcutaneously inoculated with 5 × 106 IGROV-1 tumor cells (in 100 µL PBS) into
the right shoulder region 4 days prior to the injection of the radiofolates. Each group consisted of
6 animals. Control animals were injected intravenously with saline. The mice received 12.5 MBq (1 nmol)

https://www.nndc.bnl.gov/mird/
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47Sc-folate, 10 MBq (1 nmol) 177Lu-folate, and 5 MBq (1 nmol) 90Y-folate, respectively. Tumor volumes
and body weights of mice were monitored three times a week throughout the study. Endpoint criteria
were defined as weight loss of >15% of the initial body weight (at Day 0), tumor volume >1000 mm3,
ulceration or bleeding of the tumor xenograft or abnormal behavior indicating pain or unease of the
animal. The tumor volume (V) was determined with the equation [V = 0.5 × (L ×W2)], where L is the
longest axis and W is the perpendicular axis to L, as previously reported [30]. The results of the tumor
growth were presented as the average of absolute tumor volumes of each group. The body weight
was presented as a relative body weight (RBW), calculated according to the equation RBW = Wx/W0;
with Wx = body weight at Day x and W0 = body weight at Day 0. The relative tumor volume (RTV) was
calculated according to the equation RTV = Vx/V0; with Vx = tumor volume at Day x and V0 = tumor
volume at Day 0. The therapeutic efficacy was expressed as the percentage of tumor growth inhibition
(%TGI), calculated according to the formula: %TGI = 100 − (RTVT/RTVC × 100); where RTVT is the
mean relative tumor volume of treated mice and RTVC is the mean relative tumor volume of untreated
control mice determined at Day 18, when the first control mouse was euthanized. Tumor growth delay
indices (TGDI) were calculated according to the formula: TGDI = TGDT/TGDC. This was defined
as the mean tumor growth delay ratio of treated (TGDT) and untreated animals (TGDC) which was
required to increase the RTV 2- and 5-fold, as previously reported [25,31]. The data sets were analyzed
for significance using a one-way ANOVA with Tukey’s multiple comparison post-test using GraphPad
Prism software (version 7). A p-value of <0.05 was considered as statistically significant.

2.9. Determination of Blood Plasma Parameters

Blood was sampled from the retrobulbar vein under isoflurane inhalation anesthesia prior to
euthanasia of the mice when they had reached an endpoint criterion. Blood samples were centrifuged
(4 ◦C, 20 min, 1600 rpm) and the supernatant (blood plasma) was analyzed using a Fuji Dri-Chem
4000i analyzer (Polymed Medical Center AG, Glattbrugg, Switzerland) measuring creatinine (CRE),
blood urea nitrogen (BUN), alkaline phosphatase (ALP), and total bilirubin (TBIL). Data were analyzed
for significance using a one-way ANOVA test (GraphPad Prism software, version 7.0). A p-value of
<0.05 was considered as statistically significant.

2.10. Histopathological Investigations

Pathological evaluation of mice without tumors was conducted two weeks after injection of
47Sc-folate, 177Lu-folate, and 90Y-folate, respectively, at two different activity levels. A full macroscopic
examination was performed in each animal and the kidneys, bone marrow (sternum and femur),
and spleen were sampled for histological assessment. The tissues were fixed in 4% neutral-buffered
formalin and routinely embedded in paraffin wax. Before paraffin embedding, sternum and femur
tissues were decalcified at room temperature in an ethylene- diamine-tetraacetic acid (EDTA)-citrate
solution for 2 days. Sections of 3–5 µm thickness were prepared on glass slides and routinely stained
with hematoxylin eosin (HE). Histological lesions were semi-quantitatively scored by a veterinary
pathologist in a blind manner using a severity grading scheme that ranged from 0 to 5. This indicated
no lesions (score 0), minimal (score 1), mild (score 2), moderate (score 3), moderate to severe (score 4)
and severe damage (score 5). Renal microscopic changes of the glomerular, tubular, and interstitial
compartments were scored separately and the sum of the three values used to obtain a cumulative score
representing radiation nephropathy damage, as described previously [32]. Histological evaluation
of the spleen was conducted to determine radiation injury in the lymphoid cells of the white pulp
using a score of 0 (no lymphoid depletion) to a score of 5 (severe lymphoid depletion), as well as the
extra-medullary hematopoiesis (EMH) of the red pulp scoring from a score of 0 (no EMH observed)
to a score of 5 (large numbers of EMH precursors observed). The hematopoietic function was also
evaluated in the bone marrow by estimating the overall cellularity using a score of 0 (no reduction in
cellularity) to a score of 5 (severe reduction in cellularity) and the proportion of the different cellular
lineages (including granulocytic precursors, erythroid cells and megakaryocytes).
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3. Results

3.1. Radiofolate Preparation and Tumor Cell Internalization Studies

The 47Sc was obtained in dilute hydrochloric acid in sufficient quality and quantity for the
required radiolabeling and subsequent preclinical study (Supplementary Materials, Figure S1). For the
in vitro studies reported herein, the radiolabeling of the folate conjugate with 47Sc, 177Lu, and 90Y was
performed at molar activities up to 12.5 MBq/nmol, 20 MBq/nmol, and 10 MBq/nmol, respectively,
yielding the product with a chemical purity >97% (Supplementary Materials, Figure S2).

Cell uptake and internalization were studied using IGROV-1 tumor cells in culture. The total
uptake (surface-exposed FR-bound and internalized fraction) of all radiofolates after 4 h incubation
was in the range 17−21% of added activity, while the internalized fraction was 7−12%. The uptake
in IGROV-1 tumor cells which were incubated with excess folic acid was <0.1%, indicating the
FR-dependent uptake of the radiofolates (Figure 1).

Figure 1. IGROV-1 tumor cell uptake and internalization of 47Sc-folate, 177Lu-folate, and 90Y-folate
after 4 h incubation. Blockade of the folate receptor (FR) by co-incubation of the IGROV-1 tumor cells
with folic acid resulted in less than 0.1% uptake. The graph represents the average ± SD of three or four
independent experiments performed in triplicate.

3.2. Cell Viability Assay

The viability of the IGROV-1 tumor cells was reduced after treatment with the folate conjugate labeled
with each radionuclide. A concentration of 5 MBq/mL reduced the viability to 80% and 67% in the
case of 47Sc-folate and 177Lu-folate, respectively (Figure 2). Treatment of the tumor cells with the same
activity concentrations of 90Y-folate reduced the viability of the cells to 26%. A radiofolate concentration
of 20 MBq/mL reduced the viability of cells to ~35% and ~34% in the case of 47Sc-folate and 177Lu-folate,
respectively, and caused almost complete cell killing with <1% viable cells when using 90Y-folate.

Figure 2. IGROV-1 cell viability after treatment with different quantities of 47Sc-folate (green),
177Lu-folate (yellow), and 90Y-folate (blue). The average of four, five, or three independent experiments
is shown for 47Sc-folate, 177Lu-folate, and 90Y-folate, respectively.
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3.3. Biodistribution and Dosimetry

The mean absorbed dose to the tumor and kidneys was calculated by taking the physical
properties of the radionuclide into account, along with the size of the tissue, and the uptake, residence,
and clearance of the radioactivity over time. For this purpose, biodistribution studies were performed
in IGROV-1 tumor-bearing mice using 177Lu-folate as a surrogate for all radiofolates, based on the
assumption that the tissue distribution profile of all radiofolates would be equal—as previously
shown for 44Sc/47Sc-labeled tumor targeting ligands and their 177Lu-labeled counterparts [14,33].
The biodistribution data of 177Lu-folate in IGROV-1 tumor-bearing mice are available in the
Supplementary Materials, Tables S1 and S2. The mean tumor absorbed doses of 47Sc-folate,
177Lu-folate, and 90Y-folate were calculated as 1.7 Gy/MBq, 2.1 Gy/MBq, and 4.3 Gy/MBq, respectively,
and calculations for the mean absorbed kidney doses revealed 1.8 Gy/MBq, 2.3 Gy/MBq, and 4.4 Gy/MBq,
respectively. In order to obtain a mean absorbed tumor dose of ~21 Gy, mice had to be treated
with 12.5 MBq, 10 MBq, and 5 MBq of 47Sc-folate, 177Lu-folate, and 90Y-folate, respectively
(Supplementary Materials, Table S3). This quantity of injected activity resulted in a mean absorbed
kidney dose of ~22−23 Gy.

3.4. Therapy Experiments

The therapeutic effect of 47Sc-folate, 177Lu-folate, and 90Y-folate was assessed in IGROV-1
tumor-bearing mice over a period of eight weeks. The quantity of applied radiofolate was adapted
for each radionuclide, in order to obtain comparable mean absorbed doses to tumor xenografts
and kidneys.

In all treated groups, the average tumor growth was delayed in comparison to untreated control
mice (Figure 3a; Supplementary Materials, Figure S3). The tumor growth inhibition (TGI) in treated
mice was all in the same range of 67% to 76%, irrespective of whether the mice received 47Sc-folate,
177Lu-folate, or 90Y-folate, respectively (p > 0.05). As an additional measure of the therapeutic effect,
tumor growth delay indices (TGDI) were calculated. The TGDI2, defined as the mean tumor growth
delay ratio of treated and untreated mice required to double the relative tumor volume (RTV), was in
the range 1.5–1.7. The TGDI calculated for the tumor volumes to increase 5-fold was highest in mice
that received 90Y-folate (1.6), followed by 177Lu-folate (1.5), and 47Sc-folate (1.3). These values revealed
a significantly increased TGDI2 and TGDI5 for the treated groups as compared to untreated controls
(p < 0.05); however, no statistically significant difference was found among the radiofolate-treated
groups (p > 0.05) (Table 2).

Table 2. Analysis of the therapy experiment.

Radioligand Activity
[MBq]

Tumor D
[Gy]

Kidney Dose
[Gy]

Euthanasia
of the First

Mouse

Median
Survival

[days]

TGI
[%] TGDI2 TGDI5

Saline - - Day 18 26 - 1.0 ± 0.3 1.0 ± 0.2
47Sc-folate 12.5 21.3 22.5 Day 32 39 69 ± 17 1 1.5 ± 0.3 1 1.3 ± 0.2 1

177Lu-folate 10 20.8 23.0 Day 29 43 67 ± 28 1 1.5 ± 0.5 1 1.5 ± 0.3 1

90Y-folate 5 21.5 22.0 Day 36 41 76 ± 15 1 1.7 ± 0.2 1 1.6 ± 0.1 1

1 values of treated mice were significantly different from values of untreated controls (p < 0.05), but no statistically
significant difference was shown among the treated groups (p > 0.05).

The survival curves reflected the results of tumor growth, as the endpoint criterion was always
due to oversized tumors (Figure 3b). The median survival of mice in each group ranged from 39 to
43 days in treated animals, which was significantly enhanced as compared to 26 days median survival
in control mice. The average relative body weight (RBW) was stable in all groups, indicating that the
treatment did not have a negative influence on the overall condition of the mice (Figure 3c). There was
one case in the 177Lu-folate-treated group that experienced more than 10% body weight loss, which can
be ascribed to the fast tumor growth which already required euthanasia at Day 29 after treatment
(Supplementary Materials, Figure S4).
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On the day of euthanasia, creatinine (CRE) levels were below the detection limit in all cases.
Blood urea nitrogen (BUN), alkaline phosphatase (ALP), and total bilirubin (TBIL) levels were
comparable among treated mice and untreated controls, irrespective of the radiofolate that was applied
(Supplementary Materials, Table S4).

Figure 3. Results of the therapy study of mice which received ~21 Gy tumor dose. (a) Tumor growth
curves indicated as the average of IGROV-1 tumor sizes in mice treated with 47Sc-, 177Lu-, and 90Y-folate,
respectively. (b) Survival curves of mice treated with 47Sc-, 177Lu-, and 90Y-folate resulting in median
survival times of 39, 43, and 41 days, respectively. (c) Relative body weight of mice from each group
over the period of investigation.

3.5. Histopathological Assessment

The assessment of the kidneys, bone marrow, and spleen was performed two weeks after injection
of the radiofolates, applied at the same activities as in the therapy study, as well as at the doubled
quantity of the respective radiofolate (Supplementary Materials, Tables S5 and S6). The histological
examination of the renal tissue did not show evidence of radiation nephropathy in any of the groups
treated with low activity. This was also the case for the majority of animals treated with high activity
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(Supplementary Materials, Figure S5). Only two animals treated with 25 MBq 47Sc-folate exhibited
occasional glomeruli with mild reduction of the mesangial capillaries; however, no other alterations in
the tubular and interstitial compartments were detected, and the overall renal cortex did not show
signs of parenchymal shrinkage.

Control animals and mice injected with lower activity showed adequate hematopoietic cellularity
in the bone marrow, with normal proportions of erythroid cells, granulocytic precursors, and
megakaryocytes (Figure 4a). The hematopoietic cellularity was also unremarkable in all the animals
treated with high activity (Figure 4b,c), apart from two animals that received higher activity of 90Y-folate
(10 MBq), which showed mild reduction of the bone marrow cellularity accompanied by adipocyte
replacement (Figure 4d). Hematopoietic cell activity was also evaluated in the red pulp of the spleen
by determining the presence of extra-medullary hematopoiesis (EMH). The overall cellularity of EMH
varied between animals and groups; however, mice treated with 10 MBq 90Y-folate tended to have
lower values compared to the other groups. On the other hand, none of the animals showed evidence
of lymphocyte damage in the white pulp of the spleen (data not shown).

Figure 4. Representative histological findings in the bone marrow (sternum) of mice euthanized two
weeks after injection of the radiofolates. (a) Tissue of a control mouse that received saline; (b) tissue
of a mouse treated with 25 MBq 47Sc-folate; (c) tissue of a mouse treated with 20 MBq 177Lu-folate;
(d) tissue of a mouse that received 10 MBq 90Y-folate. The number of hematopoietic cells is reduced
and replaced by adipocytes (arrow).

4. Discussion

47Sc has been previously proposed as a potential therapeutic match to 44Sc, a PET nuclide with
great potential for clinical translation [14,19,20,33]. Preclinical studies to investigate 47Sc for therapeutic
application have been scarce [14], however, and a clinical application does not yet exist due to the
challenging production routes of this novel radionuclide [12,13,34–36]. In the present study, the aim
was to investigate 47Sc in a preclinical setting and compare its effect with 177Lu and 90Y, two established
therapeutic nuclides which have been extensively employed in clinics over the last two decades.

The production of 47Sc was performed via the 46Ca(n,γ)47Ca→47Sc nuclear reaction as previously
reported [12]; however, the 46CaO used in this work provides better chemical stability during irradiation,
which allows the irradiation of higher Ca-target masses. With the transfer into another chemical form,
no additional impurities were introduced, hence, identical post-irradiation γ-spectra were obtained,
as previously reported [12].

As expected, similar results were found in the uptake and internalization of 47Sc-folate, 177Lu-folate,
and 90Y-folates in ovarian IGROV-1 cancer cells. The data were in line with previously-reported results,
where 47Sc-folate was investigated with KB tumor cells [14]. Cell viability experiments, performed with
increasing quantities of 47Sc-folate, 177Lu-folate, and 90Y-folate, resulted in different effects, dependent
on the decay characteristics of the radionuclide employed. The most prominent decrease in viability
was found when using 90Y-folate, which was in line with the fact that 90Y emits β−-particles of the
highest energy. 47Sc-folate and 177Lu-folate showed similar effects on IGROV-1 tumor cells.
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Dose calculations revealed that to obtain the same mean absorbed dose to the tumor and kidneys,
slightly higher quantities of 47Sc-folate than of 177Lu-folate were necessary due to the different half-lives
of 47Sc and 177Lu. The high β−-energy of 90Y was responsible for an increased dose deposition,
which required only half of the activity of 90Y-folate to obtain the same mean absorbed dose as
for 47Sc-folate and 177Lu-folate. Treatment of IGROV-1 tumor-bearing mice with these adapted
activities had similar effects irrespective of whether 47Sc-folate, 177Lu-folate, or 90Y-folate was used.
Consistent with these findings, the median survival time of treated mice was comparable in each
group. These results were also comparable to those obtained previously in KB tumor-bearing mice,
where 10 MBq 47Sc-folate resulted in an equal median survival time of 38.5 days [14] as for the IGROV-1
tumor mouse model when treated with 12.5 MBq 47Sc-folate (median survival: 39 days).

Due to the higher energy of 90Y and, as a consequence, an increased tissue range of the emitted
β−-particles in comparison to theβ−-particles emitted by 177Lu, 90Y-folate may have the disadvantage of
more side effects to kidneys as observed with somatostatin analogues (90Y-DOTATOC/90Y-DOTATATE)
in clinical studies [8,9,37]. Based on the more similar meanβ−-energies of 47Sc and 177Lu, kidney damage
would most likely be observed at the same dose levels for 47Sc- and 177Lu-labeled tumor targeting
agents. In this study, only sporadic and very mild glomerular changes were observed, and none of
the mice experienced severe renal side effects that would have been detectable by histopathological
investigations. It has to be critically acknowledged, however, that radionephrotoxicity is not commonly
observed at short time points after injection but rather, several months after radionuclide therapy [38].
It is, therefore, very likely that the higher activity levels of the applied radiofolates, resulting in a kidney
dose of 42–44 Gy, would manifest as signs of radiotoxicity six to eight months after treatment.

Severe side effects were not observed in other tissues and organs. Only mice treated with 10 MBq
90Y-folate showed mildly reduced extra-medullary hematopoiesis in the spleen, and two animals also
exhibited reduced cellularity in the bone marrow, which could be indicative of irradiation-related
damage. The amount of extra-medullary hematopoiesis varied between animals and groups,
which means that these changes could represent a transient condition rather than a direct radiotoxic
event. Since later time points were not investigated in this study, it remains unknown whether
hematopoietic changes would recover or, instead, progress to a more severe stage.

As expected, the application of 47Sc-folate revealed similar anti-tumor effects as that for treatment
using its 177Lu- and 90Y-labeled counterparts when the applied activity was adjusted to obtain the
same mean absorbed tumor dose. In this mouse model, differences among the single therapy groups
were not determined, indicating that 47Sc may be used under the same medical circumstances as
177Lu and 90Y, respectively. The relatively short half-life of 47Sc makes its use particularly attractive in
combination with fast-clearing tumor targeting ligands, including peptides and small molecules.

It has to be critically acknowledged that a potential advantage of 47Sc over 177Lu remains
questionable, particularly due to the higher intensity of γ-emission (47Sc: Eγ = 159 keV; I = 68%)
which may unnecessarily contribute to the patient dose. On the other hand, this characteristic may
be advantageous in cases where an exact dosimetry is required, as recently claimed for 67Cu (oral
communication), which has very similar decay characteristics to 47Sc with regard to half-life, β−-particle
emission, and intensity of γ-ray emission. Should it be the case, 47Sc would probably be preferred
over 67Cu, due to its easier coordination chemistry and, hence, the opportunity of using it with any
tumor-targeting agent that comprises a DOTA chelator.

5. Conclusions

The in vitro and in vivo evaluation of 47Sc indicated comparable efficacy in tumor therapy
to that of 177Lu and 90Y, when applied at activities that result in the same mean absorbed tumor
doses. These findings confirm the accuracy of the dose estimation to tumors, which was performed
for 47Sc-folate, 177Lu-folate, and 90Y-folate, respectively. Overall, the characteristics of 47Sc were
comparable to those of 177Lu and, hence, these two radionuclides may be interchangeable. It has to be
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critically acknowledged, however, that the production of 47Sc is costly and, hence, the radionuclide is
not currently available in large quantities that would enable clinical translation.

47Sc could be advantageous in combination with molecules of fast pharmacokinetics,
where a shorter half-life would be desirable, and in situations where an intense γ-emission was
of interest. Certainly, 47Sc could play a pivotal role for radiotheragnostic application in tandem with
43Sc/44Sc, enabling the preparation of chemically-identical radiopharmaceuticals for PET imaging and
therapeutic applications. This will be feasible as soon as the production of the Sc radioisotope family
has been fully established to make them readily available in large quantities, at high quality, and at
a reasonable cost.
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