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ABSTRACT
We report here in silico repurposing studies on 52 new pyridazinone-based small-molecules through
inverse virtual screening (iVS) methodologies. These analogues were originally designed as formyl peptide
receptor (FPR) ligands. As it is sometimes the case in drug discovery programmes, subsequent biological
screening demonstrated the inefficacy of the molecules in binding FPRs, failing in the identification of
new hits. Through a focussed drug-repurposing approach we have defined a variety of potential targets
that are suitable to interact with this library of pyridazinone-based analogues. A two-step approach has
been conducted for computational analysis. Specifically, the molecules were initially processed through a
pharmacophore-based screening. Secondly, the resulting features of binding were investigated by docking
studies and following molecular dynamic simulations, in order to univocally confirm “pyridazinone-based
ligand-target protein” interactions. Our findings propose aspartate aminotransferase as the most favour-
able repurposed target for this small-molecule series, worth of additional medicinal chemistry investiga-
tions in the field.
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1. Introduction

Heterocyclic-based small molecules possess the ability to mimic
the structure of endogenous ligands and reversibly bind various
biologically relevant targets, determining a wide range of possible
biological activities1–3. In medicinal chemistry, one important
benefit associated to heterocycles is the possibility to create such
a desired library of analogues based on a specific core, allowing
rapid screening protocols and structure-activity relationships
(SARs) for a particular target of interest4. However, very frequently

the molecular design does not correlate with positive outcomes in
biological tests. With the increase of new chemical entities discov-
ered, there is a proportional boost of the number of molecules
that fail during the twisted path of drug development. Clearly,
this raises concerns with regard to the optimisation of the use of
economic resources and time. As an example, by taking into
accounts common failures in the process, it has been estimated
that the average cost of developing a new drug ranges from two
to three billion dollars and not less than 13–15 years are required
to introduce the medicine into the market5. In line with this, only
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10% of the drugs that enter into clinical trials are approved by
regulatory agencies, while the remaining 90% fails due to toxicity
issues or inefficacy linked to limited predictive value of preclinical
studies. Specifically, more the 60% of molecules fail in phase II
and 45% fail in phase III6. There is consensus in the medicinal
chemistry community that the high percentage of failures in drug
development can be a direct consequence of the R&D efficacy in
identifying the appropriate drug response on the target of inter-
est, due to limited availability of suitable preclinical dis-
ease models7.

Lately explored strategies of “drug repurposing” (or “drug
repositioning”) have demonstrated a useful tool at the different
stages of drug development, by assessing and validating new pos-
sible therapeutic effects for existing drug candidates, as well as by
identifying alternative targets for abandoned compound series8,9.
Interestingly, repositioned drugs currently represent almost the
30% of all the new medicines that reach their first market10,11.

In this context, in silico methods, such as machine learning,
data-mining, and network-based approaches, offer an unprece-
dented and cost friendly opportunity to predict possible drug
repositioning candidates, by employing large and heterogeneous
data sources during the entire process of drug development12,13.
Thus, computer-aided molecular screening is a crucial tool in drug
design/discovery and computational techniques represent an
important resource for prompt evaluation of possible links
between compounds and biological/pharmacological effects14.
Various approaches, such as structure-based, ligand-based, virtual
screening and inverse virtual screening (iVS), are constantly
adopted in various drug discovery settings, spanning from the hit
identification to the lead optimisation stages15–17. Pyridazinone-
based small-molecules are a validated scaffold for the develop-
ment of enzyme and G-protein coupled receptor (GPCR) bind-
ers18,19. All of the 52 new molecules reported here were designed
as agonists of formyl peptide receptors (FPRs)20–22, a small family
of GPCRs. As the biological evaluation on this series demonstrated
the lack of efficacy for all the terms to establish interactions with
FPRs, we have focussed our attention on the possible repurposing
of these same molecules towards alternative biological targets. To
this end, we report here the in silico investigation carried out on
the pyridazinone-based library through a two-step iVS analysis.

The compounds were firstly screened in a pharmacophore-based
iVS against 23236 proteins covering 16159 pharmacophore models
formerly predicted as drug able binding sites. Subsequently, the
binding capabilities of the 52 terms have been processed through
docking studies. Further exploratory analyses on the binding
poses of selected hits were performed with molecular dynamic
simulations, to validate the outcomes of the docking analysis and
confirm effective ligand/protein interactions. Our findings define
the aspartate aminotransferase as a valid biological target for effi-
cient repurposing opportunities of this heterocyclic small-mol-
ecule series.

2. Results and discussion

2.1. Heterocyclic small-molecule dataset

The dataset of compounds is composed by 52 terms (Tables 1–3)
which have been obtained through standard synthetic methodolo-
gies (see Section 1, Supporting Information). The experimental
procedures and characterisation data of all new intermediates and
final compounds are reported in Supporting Information
(Section 2)18,23–34.

2.2. Computational repurposing

As representative compounds, 17 compounds (1–3a, 5a, 7–9,
10b,g, 11, 13a, 15a,f, 17a, 20, 21a, 21d) were selected for follow-
ing molecular modelling studies. The compound library was firstly
screened in a pharmacophore mapping strategy based on a
PharmMapper (http://lilab-ecust.cn/pharmmapper/) to identify
potential molecular targets for the synthesised compounds35,36.
PharmMapper is backed up by a large, in-house repertoire of
pharmacophore database extracted from all the targets in differ-
ent database such as TargetBank, DrugBank, BindingDB and PDTD.
16159 receptor-based pharmacophore models were used during
our PharmMapper screening. The results of the pharmacophore
map iVS are reported in Tables S1–S17 (Supporting Information).
With the aim of finding a common target for our dataset of com-
pounds, only the best 50 targets identified for each molecule are
included here and only the best 10 results for each molecule were

Table 1. Structures of analogues 1–9.

Compd R1 R2 R3 R4
1a C6H4-OCH3 (p) C6H4-O(CH2)3CH3 (p) OCH3 H
1b C6H4-OCH3 (m) C6H4-O(CH2)3CH3 (p) OCH3 H
2a C6H4-OCH3 (p) Cl C6H4-O(CH2)3CH3 (p) H
2b C6H4-OCH3 (m) Cl C6H4-O(CH2)3CH3 (p) H
3a CO-NH-C6H4-F (p) H H CH3

3b CO-NH-C6H4-3,4-methlyenedioxy H H CH3

4a C6H5 NO2 COCH3 C6H5

4b C6H4-CN (m) NO2 COCH3 C6H5

5a C6H5 Cl COCH3 C6H5

5b C6H4-CN (m) Cl COCH3 C6H5

6a C6H5 Br COCH3 C6H5

6b C6H4-CN (m) Br COCH3 C6H5

7 C6H5 COCH3 NH2 C6H5

8 CO-NH-C6H4-Br (p) CH2-C6H4-(m)CO-NH-C6H4-Br (p) H CH3

9 CO-NH-C6H4-Br (p) N-(C6H4-OCH3)2 (p) H CH3
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further analysed (see results in Table S18, Supporting Information).
Interestingly, various targets were highlighted as common targets
for different molecules. In particular, cytoplasmic aspartate
aminotransferase, protein MG296 homologue, sensor protein fixL,
ATP-dependent protease hslV, dehydrogenase and superoxide dis-
mutase, demonstrated common targets for 4–6 molecules
between the 10 best fitting targets of the pharmacophore-based
iVS (Table S18, Supporting Information). The cytoplasmic aspartate
aminotransferase (AST) resulted a shared target by 6 different
compounds (i.e. 35% of the molecular dataset). This protein is a
liver pyridoxal phosphate dependent enzyme involved in gluco-
neogenesis and amino acid metabolism. Increased levels of activ-
ity of AST has been observed in a number of conditions, such as
liver metabolic syndrome, atherosclerosis and diabetes (type I and
II), and the use of small molecule that can inhibit the protein
activity is under evaluation for the treatment of diabetes37.

Table 2. Structures of analogues 10–12.

Compd R R1
10a Ph

11 Ph

10b Ph

10c Ph

12 Ph

10d Ph

10e Ph

10f CH3

10g CH3

Table 3. Structures of analogues 13–21.

Compd R R1 R2 R3
13a Ph Ph NH2 CONHC3H7

13c Ph Ph NH2 COOcC6H11

13b Ph Ph NH2

17c 4-F-Ph Ph NHCOiC3H7 H
18 Ph CH2Ph NH2 CONHtC4H9

19 Ph H NH2 COOCH2Ph
20 Ph CH2Ph NH2 COOCH2Ph
14a Ph CH3 NH2 COCH¼ CHPh
15a Ph CH3 NH2 COCH2CH2Ph
14b Ph C3H7 NH2 COCH¼ CHPh
15b Ph C3H7 NH2 COCH2CH2Ph
14c 4-F-Ph CH3 NH2 COCH¼ CHPh
15g Ph C2H5 NH2

15i Ph C3H7 NH2

15h Ph C3H7 NH2

15l Ph Ph NH2

15f Ph Ph NH2 COCH2CH2Ph
17b Ph Ph NHCOiC3H7 H
17a Ph Ph NHCOC4H9 H
15e cC6H11 C3H7 NH2 COCH2CH2Ph
15c Ph C4H9 NH2 COCH2CH2Ph
15d Ph iC3H7 NH2 COCH2CH2Ph
16b 4-F-Ph Ph NH2 H
21a Ph CH2CONHnC3H7 H Ph
21b Ph CH2CONHiC3H7 H Ph
21c Ph CH2CONHcC5H9 H Ph
21d Ph CH2CONHnC3H7 Ph H
21e Ph CH2CONHiC3H7 Ph H

Table 4. Docking results for 7AAT.

Lig. LE BE[kcal/mol]

1a 0.2162 6.271
2a 0.2274 6.368
3a 0.3363 6.390
5a 0.2813 6.752
7 0.2791 6.699
8 0.2203 7.931
9 0.2156 7.760
10b 0.2583 7.233
10g 0.2792 6.421
11 0.2887 6.930
13a 0.2501 6.503
15a 0.2536 6.339
15f 0.2280 6.840
17a 0.2613 6.795
20 0.2311 7.164
21a 0.2718 7.068
21d 0.2539 6.602
hesperetin 0.3054 6.718
hesperidin 0.1831 7.875
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Furthermore, AST has been also proposed as a promising bio-
logical target for the development of anti-neoplastic agents38,39.

We have used docking calculations to further characterise the
activity of our set of molecules on AST. To this end, calculations
were performed with Autodock Vina, a validated software for iVS
structure-based applications40,41. Docking analysis of crystallised
ligands, with an established binding mode, were carried out in
order to obtain a minimum energy level which has been used as
the cut-off for the assessment of binding energies of the new
ligands. For the docking calculations, we adopted a previously
reported methodology based on the crystal structures of AST
(PDB ID: 7AAT) as the enzyme input files37. To validate our dock-
ing procedure, we have firstly docked two know inhibitors in the
active site and, subsequently, we have compared the results with
former data from the literature. Hesperetin and hesperidin (Ki of
51 and 682mM, respectively)37 were docked in the AST active site
(see Table 4 for calculated energies and binding efficiency; see
Figure 1 for the best poses). Among the two calculated results –
i.e. ligand efficiency (LE) and binding energy (BE) – the first value
demonstrates linearity with the experimentally obtained data for
both the hesperetin and hesperidin. Interestingly, all the 17 mole-
cules analysed for repurposing have a predicted BE lower than

that of hesperidin and analogue 3a has predicted LE higher
than hesperetin.

The active site of AST is formed by Ser-107, Gly-108, Thr-109,
Trp-140, His-143, His-189, Asp-194, Asp-222, Arg-224, Tyr-225,
Ser-255, Phe-256, Ser-257, Lys-258, Phe-360, and Arg-386. The
coenzyme PLP is covalently bonded to Lys-258 and interacts by
hydrogen bonds with different residues (Trp-140, His-143, Asp-222,
Tyr-225). Previous experimental and modelling studies indicate
that the guanidinium groups of Arg-386 interact through hydro-
gen bonds and ionic interactions with the carboxylate groups of
the substrate42. The best poses of each analysed molecule are
reported in Figure S1-S17 (Supporting Information), indicating that

Figure 1. Binding poses of the full molecular series (dark pink) in the active site
of 7AAT. The cofactor pyridoxal phosphate is reported in yellow.

Figure 2. Binding of analogue 3a after 50 ns of MD.

Figure 3. Up, binding energy (BE) of analogue 3a during the MD simulation.
Down, root-mean-square deviation of atomic positions (RMSD) of 3a during the
MD simulation. Time is expressed in ps.
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most of the terms interact with the above-mentioned amino acids
in the AST active site.

An additional molecular dynamic (MD) simulation study
(Figures S18–S26) was then conducted to verify the effectiveness
and stability of the poses of the most promising compound (i.e.
3a, with high LE). Specifically, we performed 50 ns MD simulations
starting with the result of the docking calculations (see results in
Figures 2 and 3). BE of the molecule result stable over 50 ns and
the root-mean-square deviation of atomic positions (RMSD) is less
than 2.0 Å. This suggests that after the first 20 ns 3a presence is
stabilised inside the binding pocket and confirms the finding of
the docking calculations43,44. Moreover, the total potential energy
of the system and the structure of the protein results stable over
the time of simulation (Figure S18–S26, Supporting Information).

2.3. Admet assessment

The in silico assessment has been expanded through the evalu-
ation of pharmacokinetic profiles and possible adverse side effects
for the representative 17 molecules. The ability to reach targets in
bioactive form was assessed using the SwissADME (http://swis-
sadme.ch)45 and pkCSM (http://biosig.unimelb.edu.au/pkcsm/)46

web platforms. SwissADME results are reported in Figures S27-S43
and pkCSM results are reported in Tables S19–S23. Most of the
compounds resulted orally available and from moderately to sol-
uble in water (with the exception of 8 and 9 that resulted instead
poorly soluble). None of the compounds resulted a substrate of
glycoprotein G (Pgp). Only compounds 8 and 9 violate the
Lipinski rule of 5. Additional four drug-likeness rules, namely
Ghose, Egan, Veber, and Muegee, were contextually satisfied by
the majority of the analogues (with the exception of 8 and 9, that
do not satisfy the Ghose and Muegee rules). The result of the pan

assay interference structures (designed to exclude molecules that
are most likely to show false positives in biological assays) did not
point out relevant issues. In parallel, the calculated absorption and
distribution have been graphically represented by the Edan–Egg
model reported in Figure 4 (Brain or IntestinaL EstimateD, BOILED-
Egg). The visual analysis the Edan–Egg model highlights that most
of the molecules are predicted to passively permeate the BBB,
whereas compounds 8, 9, 13a, 15f and 20 can only be passively
absorbed by the gastrointestinal tract.

With regard to the absorption parameters, the analogues pre-
sent a promising oral availability due to the optimal Caco-2 cell
permeability and intestinal absorption (>0.89 and >87%, respect-
ively) (Table S19, Supporting Information). The calculated values of
steady state volume of distribution are relatively low for 3a, 7a, 8,
13a, 15a, 15f, 17a, 20a, 21a and 21d. The whole data set shows
a significant unbound fraction in the plasma, thus proposing avail-
ability to interact with the pharmacological target (Table S20). The
calculated values of the total clearance (Table S22, Supporting
Information) indicate the majority of the compounds have a good
renal elimination and are not substrates of the renal organic cat-
ion transporter 2, with the exception of compounds 5a and 10g.
Lastly, compounds 10g, 15f, 17a, 20a, 21a and 21d did not pass
the AMES toxicity test, whereas all others did not present any rele-
vant toxicity problem that could limit the use as drugs (Table S23,
Supporting Information).

3. Materials and methods

3.1. Structure preparation and minimisation

The molecular structures of this study were built using Marvin
Sketch (18.24, ChemAxon Ltd., Budapest, Hungary). A first molecu-
lar mechanics energy minimisation was used for 3D structures

Figure 4. BOILED-Egg plot. Points located in the BOILED-Egg’s yellow represent the analogues predicted to passively permeate the BBB. Points in the egg white are
relative to the analogues predicted to face passive absorption by the gastrointestinal tract. Red dots indicate that the molecules are predicted not to be affected by P-
glycoprotein mediated extrusion from the CNS.
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created from the SMLES, and the Merck molecular force field
(MMFF94) present in Marvin Sketch was used. The protonation
states were calculated assuming a neutral pH. The PM3
Hamiltonian, as implemented in the MOPAC package
(MOPAC2016, Stewart Computational Chemistry) was then used to
further optimise the 3D structures.

3.2. Molecular docking

Flexible ligand docking experiments were performed by employ-
ing AutoDock Vina software implemented in YASARA (v. 14.7.17,
YASARA Biosciences, licenced to King’s College London), using the
three-dimensional crystal structure of the Aspartate
Aminotransferase in complex with the co-factor pyridoxal-50-phos-
phate (PDB ID: 7AAT) obtained from the Protein Data Bank (PDB,
http://www.rcsb.org/pdb). All the parameters were used at their
default settings. The sequence in the structure, differently to the
PDB ID: 5AX8, has the cofactor co-crystalized. The two structures
have an overall RMSD: 0.817 Å, and an RMSD of 0.334 Å consider-
ing only the active site.

3.3. Molecular dynamics simulations

The molecular dynamics simulations of the aspartate aminotrans-
ferase/3a complex was performed with the YASARA Structure
package using the three-dimensional crystal structure of the
aspartate aminotransferase in complex with the co-factor pyri-
doxal-50-phosphate (PDB ID: 7AAT). A periodic simulation cell with
boundaries extending 5Å from the surface of the complex was
employed. The box was filled with water, with a maximum sum of
all water bumps of 1.0 Å, and a density of 0.997 g/mL with explicit
solvent. YASARA’s pKa utility was used to assign pKa values at pH
7.4, and the cell was neutralised with NaCl (0.9%) in these condi-
tions. Water molecules were deleted to readjust the solvent dens-
ity to 0.997 g/mL. The final system dimensions were approximately
71� 79 � 69 Å. The ligand force field parameters were generated
with the AutoSMILES utility, which employs semiempirical AM1
geometry optimisation and assignment of charges, followed by
the assignment of the AM1BCC atom and bond types with refine-
ment using the RESP charges and, lastly, the assignments of gen-
eral AMBER force field atom types. Optimisation of the hydrogen
bond network of the various enzyme–ligand complexes was
obtained using the method established by Hooft et al. (see
YASARA manual), to address ambiguities arising from multiple
side-chain conformations and protonation states that are not well
resolved in the electron density. A short MD was run on the solv-
ent only. The entire system was then energy minimised using first
a steepest descent minimisation to remove conformational stress,
followed by a simulated annealing minimisation until convergence
(<0.01 kcal/mol Å). The MD simulation was then initiated, using
the NVT ensemble at 298 K and integration time steps for intramo-
lecular and intermolecular forces every 1.25 fs and 2.5 fs, respect-
ively. Finally, 50 ns MD simulations without any restrictions were
conducted and the conformations of each system were recorded
every 200 ps. The binding energy (BE; Figure 3) is calculated from
the energy at an infinite distance by subtracting the energy of the
system. More positive is the binding energy, more favourable is
the interaction. The obtained binding energy values include solv-
ation events according to the Poisson-Boltzmann approach (PBS).
PBS uses a customised version of the APBS programme (see
YASARA manual) to solve the Poisson-Boltzmann equation, yield-
ing the electrostatic potential with implicit solvent and counter
ions. Accordingly, the PBS binding energy is calculated through

the following equation:

BE ¼ EpotRecept þ EsolvRecept þ EpotLigand

þ EsolvLigand– EpotComplex– EsolvComplex

4. Conclusion

We have described here computational repurposing approaches
for a newly synthesised series of pyridazinone-based small-mole-
cules. The in silico screening has been performed by pharmaco-
phore mapping and structure-based models. Our pharmacophore
iVS adopted 16159 receptor-based pharmacophore models and
the results highlighted aspartate aminotransferase as a valid target
for the compound dataset. Furthermore, docking calculations and
molecular dynamic simulations were also used to fully establish
the suitability of aspartate aminotransferase as target for this
molecular series. AST catalyses the reversible endogenous inter-
change of aspartate and a-ketoglutaric acid to glutamic acid and
oxaloacetic acid. The inhibition of this enzyme has been also
investigated for selective interference for the survival of breast
cancer and other malignant cells over normal mammalian
cells39,47. Clearly, novel inhibitors for this enzyme can be useful in
anti- cancer studies and therapies. Biological experiments are
ongoing to experimentally confirm the findings reported here and
propose a number of these pyridazine-based analogues as new
hit compounds for AST inhibition and linked pharmacological
opportunities.
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