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Abstract: Knowledge of precise camera poses is vital for multi-camera setups. Camera intrinsics
can be obtained for each camera separately in lab conditions. For fixed multi-camera setups, the
extrinsic calibration can only be done in situ. Usually, some markers are used, like checkerboards,
requiring some level of overlap between cameras. In this work, we propose a method for cases with
little or no overlap. Laser lines are projected on a plane (e.g., floor or wall) using a laser line projector.
The pose of the plane and cameras is then optimized using bundle adjustment to match the lines
seen by the cameras. To find the extrinsic calibration, only a partial overlap between the laser lines
and the field of view of the cameras is needed. Real-world experiments were conducted both with
and without overlapping fields of view, resulting in rotation errors below 0.5°. We show that the
accuracy is comparable to other state-of-the-art methods while offering a more practical procedure.
The method can also be used in large-scale applications and can be fully automated.

Keywords: camera calibration; multi-camera; extrinsic calibration; non-overlap; field of view

1. Introduction

Applications that use multi-camera setups require a good calibration between the
cameras. Multiple cameras are used for a number of different reasons, e.g., to increase the
observed area, for triangulation, and to resolve occlusions. For the latter two applications,
overlapping fields of view (FoV) are required. For the first one, however, the overlap must
be minimized or eliminated. An example of such an application is when objects or people
are tracked across cameras [1,2]. So a good alignment of the images can be needed, even
when the overlap is minimal.

Traditional calibration methods using markers like checkerboards [3] can be used
directly when calibrating cameras with a large overlap. The problem becomes more
challenging when the cameras share no overlap. In this work, we provide a solution to this
problem: a scalable technique to determine the pose of a set of cameras with no need for
overlapping views. It uses straight lines projected on a single planar surface. Each camera
must see some part of this plane, but the parts do not need to overlap. The benefit of
straight lines is that their correspondences across images can be used even when altogether
different line segments are recorded in each image.

All calibration methods for non-overlapping cameras require some extra hardware.
Our technique uses a line projector, which makes it highly suitable for calibration of
surveillance cameras in large industrial scenes: with challenging lighting, many cameras,
and minimal overlap for maximal FoV. In these scenes, the floor is the plane, as it is visible
to all cameras. Industrial floors are generally quite flat, with deviations of no more than a
few centimeters.

After an overview of the related work (Section 2), we present our algorithm (Section 3).
To test the robustness under various conditions, we perform different sensitivity analyses
using simulated images (Section 4). We also carry out two real-world experiments (Section 5).
In the end, we compare our method to four other state-of-the-art methods (Section 6).
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2. Related Work

When a multi-camera setup has overlapping views, the extrinsic calibration can be
determined from a moving marker [4] or even from matching the moving pedestrians
in view [5]. When there is no overlap, accurately determining the extrinsic calibration
becomes more challenging. A wide variety of approaches to obtain the extrinsic calibration
of cameras that share no overlap have been published [6].

A straightforward approach is to use a large physical target. They can be very simple,
like a marked stick [7] or a sphere [8]. Or more convoluted calibration targets in the form of
two checkerboards connected by a bar [9]. These objects have some disadvantages, despite
their simple nature: it can be challenging to keep (part of) the calibration target in the view
of all cameras simultaneously. The use of physical objects restricts the application to small
and medium-scale camera setups as they do not scale well.

To connect the non-overlapping fields of view, an auxiliary camera can be added [10].
Xu et al. use mirrors to show the calibration target indirectly to multiple cameras [11].
An operator is needed to correctly aim the mirrors, which can be difficult in large scale
applications. Using spherical mirrors makes aiming easier, but they reduce the image of
the calibration target to a smaller resolution. This is bad for the calibration accuracy.

High-precision measurement instruments like laser trackers [12] or theodolites can be
used for ultimate accuracy. However, they require specific know-how to operate and can
be quite expensive.

A final category of techniques uses laser projection. The different fields of view are
connected by a projection, like a laser dot or laser line. Previous methods used checker-
boards [13–15]. Multiple checkerboard poses are needed for each camera, resulting in a
laborious procedure that is hard to scale. The method we propose fits this last category,
but it offers some key advantages. Compared to existing techniques, our approach does not
require any manual intervention or expensive equipment. This makes it easily applicable
in both small and large scenes.

3. Algorithm

The proposed method finds the extrinsic parameters of a set of n cameras. The intrinsic
parameters of the cameras must be known. Intrinsic camera calibration is a well-known
problem, and many good solutions already exist [3,16].

The calibration process is illustrated in Figure 1. There are five main steps:

Step A: In the first step, laser lines are projected onto a plane and image sequences are
captured by all cameras (Section 3.1).

Step B: The calibration algorithm needs line correspondences between the different cam-
eras. This can be a practical challenge, as it requires some form of synchronization
between the cameras and the line projector. Our approach solves this problem by
projecting the lines with different frequencies. Each line can then be isolated from the
others by its specific frequency (Section 3.2) and is then detected in the image.

Step C: A first estimate of the plane is made in optimization with only two degrees of
freedom (Section 3.4). This results in a first estimate for the plane and the camera
poses.

Step D: Starting from this estimate, a refinement optimization is done (Section 3.5).

Step E: The poses can only be determined up to a scale factor. Therefore, scaling may be
needed (Section 3.6).
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2D line 
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Pose estimates
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Figure 1. Block diagram of the proposed calibration method.
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The cost function for the optimizations in Steps C and D is explained in Section 3.3.

3.1. Line Projection

The calibration algorithm is based on corresponding lines captured by the different
cameras. Depending on the scene, the lines can be projected using different methods: line
lasers, a rotating laser, a laser projector, a standard image projector, ... High power laser
projectors are readily available as disco projectors, and they are designed to be easy to
program. They use galvanometers to project any shape of the line and can be used at very
large distances. For a fixed laser power, the intensity of the projected line decreases when
the projection distance increases, due to the inverse-square law. However, the projected
line does not need to be very bright. By modulating the laser lines (see Section 3.2), they
can be reliably detected even if they are relatively dim.

The images must be captured in a way that allows the matching of the corresponding
lines. There are different valid ways to accomplish this, of which we list three:

Manual: A simple—but tedious—approach would be to project and capture one line at a
time.This requires lots of manual intervention and may take quite some time. While
this may be fine for a proof of concept, it may not be suited to calibrate many cameras
in an active industrial environment where down-times must be kept to a minimum.

Triggered: The cameras could be synchronized electronically with the projector. This
means there must be a connection between the projector and the capturing system.

Modulated: By modulating the different lines, the line projector can be a stand-alone de-
vice that can be moved around easily to different poses. Low modulation frequencies—
in the range 1 to 3 Hz—can be used. This allows for simple projector hardware and
works with all common camera frame rates. It works with all cameras—monochrome
or RGB—that can record the projected wavelength.

We favor the approach with modulated lines because of its advantages, though the
others are also valid. The choice of line capturing method, with equal carefulness, does
not influence the calibration accuracy. However, it is a trade-off: more automation requires
more technical complexity but speeds up capturing lines from many cameras. A more man-
ual approach is easier to get started with, at the cost of a more laborious capturing process.

In our real-world experiments, we use two projection devices. We built a low-cost
(under €25) laser projector with five standard 5 mW line lasers and an Arduino Micro,
as shown in Figure 2. It can be powered by a small 9 V battery or a USB power bank.
We also used an LED DLP projector (see Section 5.2) with a pre-generated video file of
modulated lasers.

Figure 2. Example of a low-cost laser projector.
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3.2. Line Correspondence by Frequency Separation

The intensity of each line is modulated in a square wave at a specific frequency per
line. Other waveforms, like a sine, could also be used. A Fast Fourier Transform (FFT) will
be used to separate the lines, so the detectable frequencies will be a multiple of ∆ f = fs

N
with a maximum of fs

2 , where fs is the camera sample frequency and N is the total number
of captured frames.

A perfect square wave only has odd-numbered harmonics. However, transient effects,
non-linearities, and discretization effects in both the laser projector and the camera will
result in even-numbered harmonics as well. Therefore the highest frequency is chosen to
be smaller than double the lowest frequency to stay below the harmonics of the lowest
frequency. We chose N = 100 and fs = 5 Hz. The used frequencies are 1, 1.2, 1.4, 1.6,
and 1.8 Hz.

Each camera records the images independently. By applying a per-pixel FFT (built-in
optimized implementation of MATLAB [17]), an image of each individual line can be
determined. This is illustrated in Figure 3.

Once the images are separated per line, each line has to be detected accurately from
its image. This can be done using any robust line detection technique. We use a standard
two-step method. First, a RANSAC 2D line estimation [18] is done on the 1% brightest
pixels with 1000 iterations using a sample size of two points per iterations. The N inliers of
this estimation are then used in the second step: a weighted least-squares refinement. This
is a closed-loop solution that minimizes

N

∑
i=1

v2
i · |pil|2 (1)

with vi the intensity value of a pixel and |pil| the perpendicular distance between this pixel
and the line.

Image at 0.0 s Image at 0.2 s Image at 0.4 s
Image at 0.6 s Image at 0.8 s Image at 1.0 s

…

1.0 Hz 1.2 Hz 1.4 Hz 1.6 Hz 1.8 Hz

Series of recorded images

Separate line images

Fast Fourier Transform

Figure 3. Different lines are projected at different frequencies in a square wave. 100 frames are
recorded with a sampling period of 0.2 s. A per-pixel Fast Fourier Transform (FFT) is used to separate
the lines.

3.3. Bundle Adjustment Cost Function

The calibration process, illustrated in Figure 1, has two steps where bundle adjustment
is used: the plane optimization in Step C (Section 3.4) and the pose refinement in Step D
(Section 3.5). These optimizations use the same core cost function that takes a proposed
plane and camera poses and returns a scalar cost value.

After Step B: Detect lines the 2D line projections in each camera image are known,
as well as their endpoints. These are the endpoints of the line segment visible to the
camera, so they may or may not lie on the image border. For a proposed plane and set of
camera poses, the observations of one camera are projected back onto the assumed plane
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and then projected into the image of the other cameras. This reprojection is illustrated in
Figure 4. If the assumed plane and poses approach the ground truth, then the reprojected
lines will closely match the observed lines. The “distance” between two arbitrary 2D lines
is ill-defined. Therefore, we choose to reproject the endpoints instead of the lines: the
point-line distance has a clear geometrical meaning.

The involved cameras are assumed to be calibrated. This yields rectified image pixels
(ui, vi) (that is, corrected for lens distortion), and known calibration matrices K1, K2, ... for
the individual cameras. A reference camera is chosen, named Camera 1. Each endpoint
pi = (ui, vi) in the Camera 1 image is reprojected onto the proposed plane π ↔ ax + by +
cz + d = 0 in point Pi. The world point Pi is calculated:

(xi, yi, 1)> = K−1
1 · (ui, vi, 1)> (2)

Pi = (Xi, Yi, Zi) = q(xi, yi, 1) with q =
−d

axi + byi + c
(3)

Pi is then projected onto the Camera k image: point p′i = (u′i, v′i). First, Pi is transformed to
Camera k coordinates via Tk = (Rk|tk) and then projected using the intrinsic matrix Kk of
Camera k:

wi(u′i, v′i, 1)> = KkTk(Xi, Yi, Zi)
> (4)

The cost for this endpoint is |p′i l′i |2, the squared Euclidean distance between p′i and
the corresponding line l′i in the Camera k image. The total cost for a given plane and set of
camera poses is the sum over all cameras ∑|p′i l′i |2 for all endpoints of Camera 1 reprojected
to each Camera k.

𝑃𝑖

𝑝𝑖

𝑝𝑖
′

Camera 1

Camera 𝑘

𝐶1

𝐶𝑘𝑍′

𝑋′

𝑌′

𝑙𝑖
′

𝑇𝑘

𝐿𝑖

𝑙𝑖

𝑍
𝑋

𝑌

Figure 4. Illustration of the reprojection of an endpoint from Camera 1 to Camera k for a given plane
and relative pose Tk.

3.4. Plane Optimization

The axes of Camera 1 are used as the reference coordinate system. A plane has three
degrees of freedom (3 DoF). For the optimizations, the plane is represented using the
following independent parameters:

• α: the angle between the normal of the plane and the yz-plane.
• β: the angle between the normal of the plane and the xz-plane.
• d: the distance from the plane to the origin.
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Because monocular cameras are used, the scale can not be found in this optimization.
Therefore d is set to 1. The optimizer varies only α and β. The three-plane parameters of
the form π ↔ ax + by + cz + d = 0 can be found as such:

(a, b, c) =
n
‖n‖ with n = (tan α, tan β, 1) (5)

In Step C: Optimize plane (Figure 1) the plane is estimated using an optimization with
only two degrees of freedom (α and β). Everything will be scaled to the correct size in
Step E: Scale poses.

For each tested set of plane parameters, all transformations are estimated from the
homography between the plane lines Li and the image lines l′i . This homography can be
found using a Direct Linear Transform [19] based on the homogeneous line coordinates:
(Fi, Gi, 1) for Li and ( f ′i , g′i , 1) for l′i . Once we find the 2D representation of the endpoints Pi
in the plane π, we can easily find (Fi, Gi, 1).

One way to implement this is the following. First, a rigid transformation Txy is
determined that makes the plane π parallel to the xy-plane in Camera 1 coordinates.
When Pi are transformed by Txy, their z-coordinate will be constant. From the endpoints
Pi, the homogeneous line parameters (Fi, Gi, 1) in the plane are found in the form Li ↔
Fix + Giy + 1 = 0. Because the line parameters ( f ′i , g′i , 1) of the projected line l′i are already
known, the homography can be determined. The camera poses can be calculated directly
from this homography. The same technique to determine the camera poses from the
homography as in [20] is used, given that the homography p′i = HPi between points
corresponds to l′i = H>Li for lines. The camera poses relative to Camera 1 are found by
transforming the resulting poses by T−1

xy .
The reprojection error ∑|p′i l′i |2 (calculated as described in Section 3.3) is minimized by

varying α and β. By optimizing only these 2 DoF, a plane is found that is optimal for all
cameras. The plane optimization also yields a first estimate for the camera poses.

The cost function ∑|p′i l′i |2 typically has multiple local minima, while there is only
one true solution. To find the global minimum, this optimization step is done using
the MultiStart algorithm from the MATLAB Global Optimization Toolbox. The local
optimizations are done as constrained optimizations with the Interior Point Algorithm
using fmincon. The initial values for α and β are −π

4 , 0, and π
4 . So 9 start points are used:(

−π
4 ,−π

4
)
;
(
−π

4 , 0
)
; . . . ;

(
π
4 , 0

)
;
(

π
4 , π

4
)
. Our experiments show that the use of MultiStart is

sufficient to find the global optimum. Although the local optimization is run 9 times now,
the plane optimization is still fast because there are only 2 DoF.

3.5. Pose Refinement

Each camera pose is refined in Step D: Refine poses (Figure 1). For n cameras, this
optimization has 2 + 6(n− 1) degrees of freedom: two for the plane and six for each of
the n− 1 cameras, as Camera 1 is the reference. Its pose is the identity transformation I4.
Despite the higher number of DoF, this optimization converges quickly thanks to the good
initial estimate. The resulting plane and poses are:

π, T2, T3, ..., Tk = argmin
π,T2,T3,...,Tk

∑|p′i l′i |2. (6)

3.6. Pose Scaling

After the pose refinement, all relative camera poses are known. For many applications
this is sufficient. Nevertheless, sometimes the poses are needed in world units. A final
scaling step can be added for those applications that need an absolute scale. We list a few
examples of the different ways to determine the scale:

• When the distance is known between one of the camera centers and the projection
plane. If the projection plane is the floor, then this distance is the height of that camera.
This is used in all simulation experiments of Section 4. Usually, the exact location
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of the camera center is known with an uncertainty of several millimeters. However,
the distance between the camera center and the plane is several orders of magnitude
larger. So the location error of the exact camera center will not contribute significantly
to the total scale error.

• If the real-world distance between two cameras is known, the scale is known. This is
used in the experiment with the translation stage in Section 5.1.

• If one or more stereo cameras are involved, its stereo baseline determines the scale.
• A marker of known size can be applied to the projection plane or two markers with a

known distance between them. Such markers can be detected either automatically
or manually in a camera image. Knowing the parameters of the calculated plane,
the image points can be reprojected to calculate the scale. When using the floor plane,
this could also be the known size between the seams of the floor tiles or an object of
known size placed on the floor.

4. Evaluation on Simulated Data

We conduct a number of experiments on simulated data, as well as on real-world
images (Section 5). All experiments are evaluated using the same metrics. The simulations
are used for a series of sensitivity analyses.

4.1. Evaluation Metrics

It is common to use the reprojection errors as evaluation metrics. While it is the correct
measure to assess the correspondence between the measurements and the reconstructed
model, it is not always indicative of the correspondence between this model and the ground
truth [21]. Furthermore, sometimes the reprojection error is inversely proportional to the
actual accuracy. This can be seen in our penultimate experiment: in Figure 12 it can be seen
that the reprojection error after refinement increases with the number of lines while the
actual rotation error decreases. We still report the reprojection error in this manuscript for
comparison and because it shows how good the optimization converged.

In our opinion, the rotation error is the most meaningful metric for accuracy. This
is the difference in rotation between the estimated camera pose and the ground truth.
The rotation error leads to translation errors proportional to the camera distance. Given the
ground truth rotation matrix Ri,GT and the calculated camera rotation matrix Ri of camera
pose i, the rotation error is the angle in the axis-angle representation of RiR−1

i,GT .
The tolerance for rotation error is application dependent. In our experience, a ‘good’

result is when the rotation error is below 0.5°. This is similar to state-of-the-art methods
as described in Section 6. In most experiments, the results are reported before and after
refinement. These are the transformations before and after Step D: Refine poses of Figure 1.

4.2. Sensitivity Analysis with Simulation

Several are performed on simulated data to evaluate the robustness of the algorithm to
different error sources. In each experiment, a different error is introduced without changing
the other parameters. In all simulations, a scene is used with no FoV overlap (Figure 5b),
and intensity noise is added to simulate sensor noise unless otherwise specified. The noise
is Gaussian with σ = 0.01, given that the pixel values lie between 0 and 1. The used scenes
are described in Section 4.3. The virtual cameras are modeled after the left camera of the
Intel RealSense D415: a horizontal viewing angle of 65° and a resolution of 1920 × 1080.
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Figure 5. The two simulation scenes: (a) Scene with 7 overlapping cameras. (b) Scene with 6 non-overlapping cameras.
The wall is shown in gray, the fields of view (FoV) of each camera is shown in its corresponding color, and the laser lines are
shown in white.

4.3. Comparison between Overlapping and Non-Overlapping Fields of View

The purpose of the proposed method is to provide a good extrinsic calibration, even
when there is no overlap in the field of view of the cameras. To validate this, two scenes
are made: one with and one without camera overlap. The scenes are made in Blender 2.82:
an open source 3D modelling and rendering package, available at www.blender.org. In the
first scene (Figure 5a) seven cameras are pointed at the same point on a wall, sharing a
considerable overlap in FoV. The distance between the cameras and the wall varies between
1 m and 5 m. In the second scene (Figure 5b) six cameras are pointed at the wall, all at a
distance of 3 m. Cameras 3 and 4 look at the wall perpendicularly. The other cameras in
this scene are angled at 15°.

The experiment was run with six lines for the first scene and 12 lines for the second
scene. The second scene needs more lines so that enough lines are shared between the
cameras. For comparability, the lines were chosen so that, on average, each camera also
sees six lines.

The results in Figure 6 confirm that no overlap is needed to obtain a good extrinsic
calibration. After the refinement, the rotation errors are all below 0.15°. The final results
with and without overlap are very similar. The large errors in the rough estimate for the
scene with no overlap demonstrate the need for a refinement step when there is no overlap.
When there is plenty of overlap, the refinement step no longer has a significant contribution.

www.blender.org
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Figure 6. Comparison between scenes with and without overlap. Rough and Refined refer to the results before and after the
refinement step. Missing maximum and median values are shown in parentheses.

4.4. Sensitivity to Sensor Noise

All cameras have some sensor noise. To verify the robustness of the method against
this noise, Gaussian noise is added to the images before line detection. The standard
deviation σ of the noise is varied between 0 and 0.1, given that the pixel values range from
0 to 1.

It can be seen in Figure 7 that there is no correlation between the image noise level
and the resulting accuracy. This is as expected: the line detection is done on the entire line.
Because many image points are used, the noise is dealt with robustly.

0 0.01 0.02 0.03 0.05 0.1
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6

7
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Translation error [mm]

Figure 7. Results when varying the standard deviation σ of the Gaussian noise.

4.5. Sensitivity to Errors in Camera Intrinsics

While camera intrinsics can be determined quite accurately, they are not always perfect.
A robust extrinsic calibration method should not be too sensitive to errors in the intrinsics.
Two intrinsic parameters are evaluated: errors in the focal length and errors in the principal
point. The focal length and the principal point of the assumed camera model are varied.
Only the effect of the horizontal coordinate of the principal point is shown here because
the effect of the vertical coordinate is analogous.

Instead of the correct focal length fGT , a different value f is used. The same is done for
cx, the horizontal component of the principal point. Given that W is the width of the image,
the relative focal length error ε f and relative principal point error εpp are expressed as:

ε f =
f − fGT

fGT
· 100% and εpp =

cx − cx,GT

W
· 100% (7)

Our experiments show a clear correlation between the rotation error and the transla-
tion error. For conciseness, we only report the rotation error for this experiment, as this
error metric is the most indicative of the accuracy in applications.

As expected, the rotation errors increase with increasing (absolute) focal length and
principal point errors. Figure 8 shows that there is more sensitivity to principal point errors
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than to focal length errors. To keep the median rotation error below 0.5°, the absolute
focal length error must not exceed 2%, whereas the absolute principal point error must not
exceed 1%.

−5 −4 −3 −2 −1 −0.5 0 0.5 1 2 3 4 5 −5 −4 −3 −2 −1 −0.5 0 0.5 1 2 3 4 5
Focal length error in %

0

0.5

1

1.5

2

2.5

3
Rotation error [°]

Before refinement After refinement

−5 −4 −3 −2 −1 −0.5 0 0.5 1 2 3 4 5 −5 −4 −3 −2 −1 −0.5 0 0.5 1 2 3 4 5
Principal point error in %

0

0.5

1

1.5

2

2.5

3
Rotation error [°]

Before refinement After refinement

Figure 8. Results when introducing errors in camera intrinsics. Box plots are missing where the optimization did
not converge.

4.6. Sensitivity to Plane Curvature

The optimization relies on the assumption of a flat surface. A real-world surface will
have some (small) amount of curvature, which results in errors. The same experiment as
before is done where the plane has different amounts of curvature.

The simulated surface is a square, as shown in Figure 5b, and its sides measure 8 m.
A cylindrical curvature (Figure 9a) is introduced with its axis parallel to the x-axis. In
Figure 9b,c, the curvature is reported as an angle (α) in degrees. The curvature radius is
therefore R = 8 m·180◦

α·π . It must be noted that the curvature radius should be interpreted in
the context of the scene scale.

𝑅

𝛼

𝑧

𝑦

(a)

0 0.5 1 2 3 4 5 0 0.5 1 2 3 4 5

Plane curvature [°]

0

1

2

3

Rotation error [°]   (NO FOV OVERLAP)

Before refinement After refinement

(b)

0 0.5 1 2 3 4 5 0 0.5 1 2 3 4 5

Plane curvature [°]

0

1

2

3

Rotation error [°]   (WITH OVERLAP)

Before refinement After refinement

(c)

Figure 9. (a) Schematic illustration of the plane curvature. The red arc is the cylindrically curved plane in side view.
(b) Results when varying the plane curvature for the scene with no overlap and (c) for the scene with overlap.

Figure 9b,c show that the method is sensitive to plane curvature when the cameras
share no overlapping FoV. To keep the median rotation error below 0.5°, the plane curvature
should not exceed 1°. This corresponds to a curvature radius of over 450 m.

However, the method is very robust to plane curvature when the cameras share
significant overlap. The rotation error stays below 0.4° up to a plane curvature of 5°,
corresponding with a curvature radius below 100 m. It must be noted that in urban or
industrial scenes, there are many surfaces with little curvature.

4.7. Sensitivity to Line Curvature

Just like the plane, the lines are assumed to be straight. When the projected lines are
not perfectly straight, the accuracy will decrease. For this sensitivity analysis, the same
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experiment is done with different line curvatures. The line curvature is defined analogous
to the plane curvature, as shown in Figure 9a.

Figure 10 shows a strong sensitivity to line curvature. To keep the median rotation
error below 0.5°, the line curvature should not exceed 0.5° for without overlap and 2°
with overlap. The straightness requirement for the lines is stricter than that for the plane.
Fortunately, optical instruments like lasers or other projectors can easily produce lines with
no significant curvature.

0 0.1 0.3 0.5 1 2 3 0 0.1 0.3 0.5 1 2 3
Line curvature [°]

0

1

2

3

4
Rotation error [°] (NO FOV OVERLAP)

Before refinement After refinement

0 0.1 0.3 0.5 1 2 3 0 0.1 0.3 0.5 1 2 3
Line curvature [°]

0

1

2

3

4
Rotation error [°] (WITH OVERLAP)

Before refinement After refinement

Figure 10. Results when varying the plane curvature for the scene without and with overlap.

5. Real-World Experiments

For the real-world experiments, the same evaluation metrics are used as those used
for the simulations, as set out in Section 4.1. Two different experiments are performed. In
the first one, there is some overlap in the fields of view (Section 5.1). In the second one,
there is no overlap at all (Section 5.2).

Intel RealSense D415 cameras are used. They have a horizontal viewing angle of 65°
and the images are captured with a resolution of 1920 × 1080. They are stereo cameras,
but only the left camera is used.

5.1. Translation Stage for Ground Truth

To obtain exact poses, a single camera is mounted on a high-precision translation stage.
The camera is aimed perpendicular to the translation motion. A Zaber X-LRT1500AL-C-
KX14C translation stage is used, with an accuracy of 375 µm. The camera is translated to 5
different poses at equal distances of 300 mm. The translation stage movement provides the
ground truth: exact translation and no rotation (Figure 11).

Five laser lines are projected using the self-made laser projector shown in Figure 2.
The measurements are done twice with different laser line positions to obtain 10 different
lines. To test the influence of the number of lines used, the calibration is done multiple
times, each time using a different number of lines. The different camera poses have a
significant amount of FoV overlap.
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Figure 11. The five poses of the camera, the position of the plane, and the 10 projected lines.
The respective fields of view are shown in a dashed line. The arrows show the direction of travel of
the translation stage.

The rotation error goes down as the number of lines increases (Figure 12). When using
eight or more lines, the rotation errors after refinement are—for the large majority—below
0.5°.

4 5 6 7 8 9 10 4 5 6 7 8 9 10

Number of lines used

0

5

10

15
RMS reprojection error [pixels]

Before refinement After refinement

(max: 69.8)
4 5 6 7 8 9 10 4 5 6 7 8 9 10

Number of lines used

0

1

2

3

4

5

Rotation error [°]
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(max: 27.0)
(med: 7.3)

4 5 6 7 8 9 10 4 5 6 7 8 9 10
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(max: 429.2)
(med: 118.6)

(max: 18.7) (max: 278.9)

Figure 12. Box plots of the results with the translation stage as ground truth. The first row shows the results before
refinement and the second row shows the results after refinement. The calibration errors with four lines are not fully visible
because they are so much larger than the rest. Missing maximum and median values are shown in parentheses.

5.2. 360° Camera Setup

To demonstrate a real-world application with no FoV overlap, a 360° camera setup
is built, as shown in Figure 13a. Four Intel RealSense D415 cameras are mounted on a
square looking out. They have a horizontal view angle of 65°, so they do not overlap.
Using a small LED DLP projector (Optoma ML750), 9 lines are projected on a light-colored
wall (Figure 13b). The setup is positioned at a distance of about 0.6 m from the wall. Two
cameras at a time are aimed so that they both look at the wall at roughly 45°. After recording
the lines with this camera pair, the setup is rotated by about 90 degrees to aim the next
pair of cameras. In this manner, four recordings are made, one for each combination of
adjacent cameras.

The transformation between each couple of cameras is calculated with the proposed
method. The product of the four pairwise transformations should be the identity transfor-
mation I4 as the loop is closed. The rotation and translation errors are calculated from this
closed loop. The resulting RMS (Root Mean Square) reprojection error is 0.22 pixels. The



Sensors 2021, 21, 1091 13 of 15

combined rotation error of the four transformations is 1.86° and the translation error is
33.3 mm.

(a) (b)

Figure 13. (a) The 360° camera setup with four Intel RealSense D415 cameras. (b) The complete measurement setup with
cameras, projector, and projected lines.

6. Comparison to State of the Art

The state of the art in camera calibration without overlapping views is very diverse. As
a result, there is no standardized procedure that allows a truly fair comparison. We refrain
from using the reprojection errors, as explained in Section 4.1. Instead, the rotation errors
are shown in Table 1.

We selected methods with the same goal: obtaining the extrinsic calibration parameters
for cameras with no overlap. The compared experiments all use scenes of comparable scale,
where the distances between the cameras and the calibration targets are between 1 and 10
m. They all use the same metric: rotation error. To make the comparison as fair as possible,
the results from the original publications are used. Following methods are included in
the comparison:

• In the work of Liu et al. [14], laser planes are visualized in different cameras by
using line lasers and checkerboards. They use simulations as well as real-world
measurements. The rotation error for their real-world experiments shown in Table 1 is
calculated from the Euler angles they reported.

• Van Crombrugge et al. [20] use a standard LCD or DLP projector to project Gray
code. We report the median rotation errors for simulation with no overlap and three
real-world experiments, hence the range instead of a single number.

• Robinson et al. [22] use a straightforward method. The two non-overlapping cameras
each have a checkerboard in view. A third camera is temporarily added that has
both checkerboards in view. No results for real-world experiments were published,
only simulations.

• Zhu et al. [23] use “planar structures in the scene and combine plane-based structure
from motion, camera pose estimation, and task-specific bundle adjustment.” The ro-
tation error reported here is the mean pose error of 16 cameras compared to the
ground truth.

For the proposed method, we report the median rotation error after refinement.
The simulation results are those of the scene with no overlap. The real-world results
are of the translation stage experiment in Section 5.1 when using 8 lines.

The comparison in Table 1 shows that the performance of the proposed method is
similar to that of other state-of-the-art methods. It does not offer superior accuracy but
does provide a straightforward and practical calibration process that is scalable. When
comparing the ease of use of the different methods, the proposed method shows some clear
advantages. The only extra hardware needed is a device that can project straight laser lines.
The calibration process can be done entirely automatically.
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Table 1. Comparison of five state-of-the-art methods. Because the validation experiments vary
greatly between the different techniques, the results can not be compared directly. They do, however,
indicate the order of magnitude of the obtained accuracy.

Using Simulated Images Using Real-World Images

Method Rotation Error [°] Method Rotation Error [°]

Liu et al. [14] <0.005 Liu et al. [14] 0.016
Van Crombrugge et al. [20] 0.015 Van Crombrugge et al. [20] 0.121–0.362

Robinson et al. [22] 0.04 Zhu et al. [23] 0.688
Proposed method 0.045 Proposed method 0.22

In comparison, the technique of Robinson et al. [22] requires an extra camera and–
more importantly—many checkerboards or a single checkerboard that must be moved
manually. This hinders scalability, as more and larger checkerboards would be needed to
increase the number of cameras and the scene scale, respectively.

The technique of Liu et al. [14] has a more labor-intensive calibration procedure.
To obtain the light plane, a minimum of two checkerboard poses is needed. A checkerboard
must be held in the view of each camera at least six times to obtain the required three (or
more) light planes. This becomes cumbersome when a larger number of cameras is used.

Because the method of Zhu et al. [23] uses structure from motion, it can only be used
for camera setups that can be moved in one piece. The result reported here was the result
of varying the pose of the multi-camera setup 40 times. This asks much manual effort of
the operator, and the procedure can not be used for immovable camera setups.

7. Conclusions

In this article, we proposed and validated a novel technique to determine the extrinsic
parameters of a set of cameras. The technique is applicable even if the cameras share no
overlap in their fields of view. It can only be applied in cases where the cameras see a
shared planar surface. As a minimum, each camera should at least see four different lines.
For good results, we suggest using at least eight lines.

Sensitivity analysis showed good robustness against image noise. It also showed that
accurate intrinsic calibration is needed to get good extrinsic calibration results. There is
some tolerance for plane curvature, especially if the cameras share a large overlap. When
there is no overlap, the plane curvature should not exceed 1°. The straightness of the lines
is more critical, but this should not be an issue for most projectors. The accuracy was
confirmed in real-world experiments, both with and without overlap.

The main advantages of this technique compared to other calibration methods for non-
overlapping cameras are that it has a practical automated procedure and that it is scalable.
A large number of cameras can be calibrated efficiently because no manual intervention
is needed. By using projection and frequency modulation, it can also be used in large
scale scenes with challenging ambient light. This makes the method especially suitable for
surveillance networks. The accuracy is less than with most extrinsic calibration methods.
However, compared to methods that also work with no overlap, it is similar to the state
of the art. The only prerequisites are a line projector and a good intrinsic calibration of
the cameras.
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