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Scalable radiotherapy data
curation infrastructure for deep-
learning based autosegmentation
of organs-at-risk: A case study
in head and neck cancer

E. Tryggestad1*, A. Anand2, C. Beltran3, J. Brooks1,
J. Cimmiyotti 1, N. Grimaldi1, T. Hodge1, A. Hunzeker1,
J. J. Lucido1, N. N. Laack1, R. Momoh1, D. J. Moseley1,
S. H. Patel2, A. Ridgway2, S. Seetamsetty1, S. Shiraishi1,
L. Undahl1 and R. L. Foote1

1Department of Radiation Oncology, Mayo Clinic Rochester, Rochester, MN, United States,
2Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, AZ, United States,
3Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, FL, United States
In this era of patient-centered, outcomes-driven and adaptive radiotherapy,

deep learning is now being successfully applied to tackle imaging-related

workflow bottlenecks such as autosegmentation and dose planning. These

applications typically require supervised learning approaches enabled by

relatively large, curated radiotherapy datasets which are highly reflective of

the contemporary standard of care. However, little has been previously

published describing technical infrastructure, recommendations, methods or

standards for radiotherapy dataset curation in a holistic fashion. Our radiation

oncology department has recently embarked on a large-scale project in

partnership with an external partner to develop deep-learning-based tools to

assist with our radiotherapy workflow, beginning with autosegmentation of

organs-at-risk. This project will require thousands of carefully curated

radiotherapy datasets comprising all body sites we routinely treat with

radiotherapy. Given such a large project scope, we have approached the

need for dataset curation rigorously, with an aim towards building

infrastructure that is compatible with efficiency, automation and scalability.

Focusing on our first use-case pertaining to head and neck cancer, we describe

our developed infrastructure and novel methods applied to radiotherapy

dataset curation, inclusive of personnel and workflow organization, dataset

selection, expert organ-at-risk segmentation, quality assurance, patient de-

identification, data archival and transfer. Over the course of approximately 13

months, our expert multidisciplinary team generated 490 curated head and

neck radiotherapy datasets. This task required approximately 6000 human-

expert hours in total (not including planning and infrastructure development
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time). This infrastructure continues to evolve and will support ongoing and

future project efforts.
KEYWORDS

curation, artificial intelligence, deep learning, convolutional neural network,
autosegmentation, radiotherapy, head and neck cancer, organs-at-risk
Introduction

Radiotherapy (RT) clinical practice is deeply and culturally

rooted in technology and technological innovation. The RT

community has benefited from many major advances in terms

of 1) RT modalities (fundamental types of electromagnetic

radiation or subatomic particles, or radiation delivery

technique used); 2) the 3D imaging used as the basis for RT

planning and delivery; and 3) the supporting computational

infrastructure requirements for treatment planning, delivery and

monitoring. The modern era of Big Data and outcomes-driven

medicine promises an increasingly nimble, patient-centered RT

approach. However, this requires increasingly sophisticated and

integrated tools for cancer diagnosis and staging, RT treatment

planning, delivery, monitoring and plan adaptation. At the same

time, many inefficiencies persist in current RT workflows related

to disjoining technologies, our human-expert (physician,

physicist , dosimetrist , therapist) interventions and

interdependencies of human-expert task completion. These

inefficiencies create bottlenecks wherein our human lack of

scalability is a (if not, “the”) major limiting factor – which is

counterproductive to nimble decision-making and adaptability.

Artificial Intelligence (AI) promises to address many persistent

RT workflow bottlenecks. In the last 25 years, the RT community

has witnessed a renaissance in the evaluation and adoption of

machine learning (ML)-based solutions in many aspects of RT

patient care, from prognostic methods in the patient outcomes

research realm including radiomics, to clinical adoption of

platforms for automated or semi-automated RT plan generation

and related quality assurance (QA) (1–10). More recently, we have

benefited from a virtual explosion in the application of deep

convolutional neural networks (hereafter referred to as deep
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learning, or DL) for tackling complex imaging-related problems.

In the context of RT, arguably the best-realized example of DL has

been organ-at-risk (OAR) CT and MRI segmentation used as a

starting point for the RT planning process (1, 4, 6, 11–21).

Current ly , numerous vendors provide commercia l

autosegmentation solutions. The number of vendors is expanding

rapidly which indicates the computational practicality of

autosegmentation algorithms (14) as well as the increasing

demand for safe, effective and efficient autosegmentation solutions.

DLmodel training for OAR segmentation requires input voxel-

labeled image data, with unique labels corresponding to each organ

which is modeled independently. With current DL training

methods, the performance or accuracy of DL tools for OAR

segmentation depends critically on the quality of these inputs, i.e.,

dataset “curation,” focusing particularly on 1) how representative

the training images are of current and projected future practice; 2)

quantity of training datasets and 3) consistency of training labels.

Numerous recent publications have reiterated critical needs in

terms of dataset curation and/or general awareness of the AI

state-of-the-art and its limitations (4–6, 11, 13, 19, 22, 23).

Somewhat paradoxically, published literature is extremely sparse

in terms of describing infrastructure requirements, methods and

related best practices for data curation.

Working at an enterprise (or health system-wide) level in

our respective radiation oncology departments within Mayo

Clinic, we have recently engaged collaboratively with an

external partner to develop custom DL-based OAR

autosegmentation. Thus, working as a multidisciplinary dataset

curation team and connected across multiple campuses in the

U.S., we are actively engaged in RT dataset curation on a large

scale. The present report outlines our curation efforts and

infrastructure developed to date, focusing mainly on our first

specific use-case of preparation of expert OAR segmentations

(“contours”) for head and neck (H&N) malignancies.
Materials and methods

Personnel resources

The production of a high-quality DL model for OAR

segmentation requires careful planning, coordination of
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various personnel roles and maintenance of consistent quality.

All this tends to require significant human-expert effort. The

H&N dataset curation team for this project was comprised of

stakeholders representing five disciplines, namely an

information technology specialist with software development

expertise [author SSe], two expert radiation oncologists (RO)

who focus on management of H&N cancer [authors RLF, SHP],

five therapeutic medical physicists [authors AA, DJM, SSh, ET],

two certified medical dosimetrists with expertise in H&N

treatment planning and normal human anatomy on CT and

MRI [authors AH, AR] and five Medical Dosimetry Assistants

(MDAs), who we define in the Rochester (Minnesota) practice

(only) as certified radiation therapists receiving specialized, in-

house training in RT-image data handling, image fusion and

OAR segmentation on CT and MRI. In preparation for this

project, the MDAs involved in this work [authors JC, NG, TH,

RM, LU] received focused training in H&N OAR CT

segmentation from an expert dosimetrist [author AH] and

expert RO [author RLF].
Curation dataset, format and objects

Summarized in Table 1 are the data/objects included in the

“curated dataset” and which were defined by a broader set of

project goals established between Mayo Clinic and our external

partner. In general, DL model training for OAR segmentation

requires 3D imaging along with OAR labels defined on the same

spatial grid (i.e., on the same imaging voxels). The training

image sets for autosegmentation were H&N planning CTs in

DICOM format (24), chosen from patients who previously

received H&N RT at Mayo Clinic. The majority of these

planning CTs were produced from iterative reconstruction

methods for metal artifact reduction, which improves image

quality in the context of dental fillings/hardware or other

metallic surgical implants (which are not uncommon in

pos topera t i ve H&N cancer pa t i en t s ) . H&N OAR

segmentations on these images were reviewed, revised or re-

created as necessary to a consistent standard by the expert
Frontiers in Oncology 03
personnel as DICOM “structure sets” [i.e., in DICOM-RT-

Struct format (25)] which are vectorized, or represented as sets

of contiguous 2D contours drawn on the defined CT slices (per

OAR). Additional DICOM CT reconstructions, acquired as part

of the same/original CT planning study were also included,

namely a “Small Field-of-View” (SFOV) reconstruction (which

had higher spatial resolution over an anatomically truncated

field-of-view and was derived from the same raw data as the

original planning CT) and an additional CT acquired post IV

contrast, if available. In some cases, a contrast-SFOV

reconstruction was also included. These alternate CT scans are

reflective of current institutional standard-of-care and are

important for accurate delineation of small anatomic H&N

structures, which tend to present with limited CT contrast.

Including the alternate CT series in the curated dataset was

necessary for evaluation and recontouring by the expert MDAs

and ROs, regardless of whether they were used in DL model

training. The curated dataset also included previously treated

radiation plans (DICOM-RT Plan) with associated 3D dose

matrices (DICOM-RT Dose) and structure set objects. This

data could facilitate the exploration of DL applied to RT

planning (although this broader topic is out of scope for the

present work).
Retrospective (representative) dataset
identification

As summarized in Table 2, the expert H&N ROs provided a

broad set of relevant disease sites (or sub-sites) for possible

inclusion in our curated dataset. Based on this information, we

identified patients for potential inclusion using an automated

web-based query of our department database of patient

demographics, diagnosis, pathology, staging, treatment

planning information and outcomes (“Outcomes Database”)

(26). We did not exclude cases based on race, sex, age or

ethnicity. The Outcomes Database query enabled us to extract

the patients’ institutional medical record numbers (MRNs) and

relevant RT treatment course information, including explicit
TABLE 1 DICOM objects comprising the curated datasets.

Description DICOM modality Required (R) vs. Optnl. (O) Typical voxel size (x,y,z) in mm

H&N Curated OARs RTSTRUCT R n/a

H&N Planning CT Recon. CT R (1.27, 1.27, ≤2.5) ≠

Small FOV CT Recon. CT O (≤0.59, ≤0.59, ≤2.5) †

Contrast CT Recon. CT O (1.27, 1.27, ≤2.5) ≠

Contrast CT Registration REG O n/a

H&N Clinical OARs RTSTRUCT R n/a

H&N Clinical RT Plan RTPLAN or RTIONPLAN R n/a

H&N Clinical RT Dose RTDOSE R (≤3.0, ≤3.0, ≤3.0)
≠ Most-frequent voxel size in z was 2 mm.
† Most-frequent voxel size was (0.59, 0.59, 1) mm.
n/a, not applicable.
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identification of the treated DICOM-RT Plan Unique Identifier

(DICOM UID). This allowed for identification and downstream

collection of associated DICOM objects prior to the automated

DICOM de-identification (DeID) process (to be described).

In addition to the DICOM files included in the curated

dataset, de-identified (DeID) H&N patient demographic data

was separately prepared to allow for DL model bias

minimization applied to our external collaborator’s process of

identification of model training subgroups (specifically, the data

partitions for training, validation and independent testing). This

information necessarily included patient age at RT, race, sex,

U.S. zip code of residence (for possible correlation with

prevalence of economic disparities) (27), diagnoses and

surgical status at RT.

Given our downstream use and sharing of only DeID data,

this project was deemed as qualifying for a human subjects’

research exemption by the Mayo Clinic Institutional Research

Board. The state of Minnesota requires Mayo Clinic patients

seen in Rochester, Minnesota (or its affiliates), to give explicit

permission to use their data for any research purposes. Note that

patients from the European Union were excluded a priori so as

not to conflict with General Data Protection Regulation (28).
OAR standardization

Table 3 summarizes the H&N OARs being included in the

curated DICOM-RT Struct (per patient), reflecting a

comprehensive total of 42 individual organs. As mentioned in

the Introduction, standardization in terms of OAR definition is

ultimately crucial for accuracy in DL-based modeling. The

benefits of OAR standardization extend well beyond DL model

training and touch on many aspects of RT quality, inclusive of

practice uniformity and multi-institutional clinical trials

research (inter-institutional RT plan and outcomes

comparability). Fortunately, Mayo Clinic has recently

standardized its definitions for OAR segmentation across its
Frontiers in Oncology 04
radiation oncology clinics. These Mayo Clinic enterprise H&N

contouring guidelines largely follow contemporaneous

consensus guidelines (29). As is not uncommon elsewhere in

the RT community, the Mayo Clinic guidelines include
TABLE 2 H&N cancer sites or histologies for cases included in our curated dataset.

H&N Cancer site Sub-sites or Relevant histologies (if applicable)

Hypopharynx Pyriform sinus; postcricoid mucosa; posterior pharyngeal wall

Larynx Supraglottic; glottic; subglottic

Nasal cavity

Nasopharynx

Oral cavity Lip; gingiva; buccal mucosa; floor of mouth; oral tongue; retromolar trigone; hard palate

Oropharynx Tonsil; base of tongue; soft palate; posterior pharyngeal wall

Paraganglioma Carotid body; vagale; jugulotympanicum

Paranasal sinus Maxillary; sphenoid; ethmoid; frontal

Salivary gland Parotid; submandibular; sublingual; minor

Skin Squamous cell ca.; basal cell ca.; Merkel cell ca.; melanoma

Thyroid gland
TABLE 3 H&N OAR segmentation labels and their anatomic designation.

H&N OAR labels Anatomic name or designation

brachial_plex_[l,r] Brachial plexus nerve

brain

brain_stem Brainstem

carotid_artery_[l,r]

cochlea_[l,r]

constrictors_p Pharyngeal constrictor muscle

cord Spinal cord

crico_p_inlet Cricopharyngeal inlet muscle

esophagus

esophagus_cerv Cervical esophagus

ext_aud_canal_[l,r] External auditory canal

eye_[l,r]

lacrimal_[l,r] Lacrimal gland

larynx

lens_[l,r]

lips

lung_[l,r]

mandible

mastoid_[l,r] Mastoid air cells

nasal_cavity Nasal cavity (region)

optic_nrv_[l,r] Optic nerve

oral_cavity Oral cavity (region)

parotid_[l,r] Parotid gland

pituitary Pituitary gland

retina_[l,r]

semi_cir_canal_[l,r] Semicircular canal

sub_mandib_[l,r] Submandibular gland

thyroid Thyroid gland
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institution-specific modifications for certain regional-

anatomical organ groupings or organ sub-portions such as the

oral cavity, nasal cavity and the cervical esophagus, and include

OARs not included in consensus guidelines such as the mastoid

air cells and external auditory canals

Technical infrastructure for curation
efforts

Figure 1 is a schematic of our technical curation environment

for generating, storing, accessing and manipulating the DICOM

objects comprising the curated dataset. Also included in this figure

are indications of how the DICOM data flows through the system.

Partitioning exists between native and DeID DICOM storage.

Also note that DICOM studies being derived from individual

Mayo Clinic campuses (Rochester, MN [MCR], Phoenix, AZ

[MCA] and Jacksonville, FL [MCF]) are siloed until the point of

archival on Network-Attached Storage (NAS). In general, this

design, leveraging both a distributed RT Information system

(Aria™, Varian Medical Systems, Inc., Palo Alto, CA) as well as

a distributed DICOM-RT-aware distributed Picture Archiving

and Communications System (PACS) (MIM Software Inc.,

Columbus, OH), provides 1) accessibility (with opportunities for

granular access control); 2) scalability; 3) intrinsic and transparent

data organization; 4) data redundancy (in case of loss) and 5)

opportunities for automation (e.g., custom user scripts) and

custom interfacing (e.g., via DICOM adaptors).

Cloud-based data and workflow organizational
grid

Important for coordination of curation efforts and

stakeholder communication was the use of an organizational
Frontiers in Oncology 05
grid (i.e., a spreadsheet). Modern cloud-based document

management tools allow for both file access control and multi-

user file access, with real-time file updates being applied

dynamically to all users’ instances. This powerful functionality

was leveraged for this project. Within its private network, the

Mayo Clinic distributes Microsoft (MS) Office365™ web

applications (via SharePoint™) built on top of OneDrive™

cloud storage (Microsoft, Inc., Redmond, WA). In our case, a

single multiple-tabbed MS Excel™ spreadsheet was used to

coordinate progress per curated case. Excel tabs were used to

separate data coming from each campus; individual cases were

organized in rows with columns used to indicate per-case

progress through the below-described steps.
Distributed Aria™/Citrix™ environment and
automatic data extraction

As mentioned above, Mayo Clinic’s RT information system

is Aria™ (Version 15.1, Varian Medical Systems, Inc.), deployed

across the Mayo campuses via thin clients using Citrix™

technology (Citrix Systems, Inc., Fort Lauderdale, FL). For

network performance and data security reasons, each of our

three campuses has its own Aria-over-Citrix™ Application

Server farm, where the MCR infrastructure also handles the

broader Midwest Regional (Minnesota-Wisconsin) radiation

oncology practice.

Aria supports both an application programming interface

(API) to its database (for standalone applications and interfaces)

as well as an API to its treatment planning system (Eclipse™), or

ESAPI, which is user-runtime context driven. Our Mayo Clinic

Radiation Oncology IT Operations team has developed expertise

in building and developing in-house tools leveraging these Aria

APIs. For this project, a tool dubbed the “Extractavator” was
FIGURE 1

Schematic of technical curation infrastructure. (MCR, Mayo Clinic Rochester; MCA, Mayo Clinic Arizona; MCF, Mayo Clinic Florida; DeID,
de-identification; CSS, Cloud Storage Service).
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created in-house to automatically extract the set of objects

comprising the curated dataset from the Aria database for the

existing patient and DICOM Frame-of-Reference (coordinate

system) defined by the structure set loaded into context in the

Eclipse workspace. The Extractavator automatically sends this

contextually referenced data to the given MIM-PACS patient list

established for each Aria data source. This extraction operation

is executed in the background, allowing curators freedom to

resume work on other tasks within the same instance of Eclipse.

Distributed MIM™/Citrix™ environment
MIM Maestro™ (MIM Software, Inc., Cleveland, OH)

deployed over Citrix™ extended access to DICOM data stored

on a central MIM–PACS server. This distributed MIM

environment served as the main hub for our data curation

processes once the DICOM data was extracted from Aria.

MIM has several relevant capabilities, namely: 1) its user-

friendly and feature-rich DICOM image display and

manipulation toolset, particularly as it relates to image

registration; 2) its DICOM-RT specific toolset, allowing users

to display and manipulate RT objects such as DICOM-RT Dose,

(DICOM-RT Plans) and DICOM-RT Structs; 3) its in-built

support of customized automation, where this capability can

be initiated by users within the users’ runtime environment

using a flexible combination of MIM Workflows™ (i.e., user

scripts using MIM-supported operations or methods) and MIM

Extensions™ (i.e., user code leveraging an API), or by the MIM-

PACS server via the MIM Assistant™ service. The latter allows

for MIM administrators to define DICOM-data-driven

“Assistant Rules” that can be triggered in numerous fashions

from user-defined criteria. Assistant Rules can also incorporate

MIM Extensions™ directly or can execute MIM Workflows by

instantiating a non-interactive instance of MIM Maestro™ in

the background.

We emphasize that use of both MIM and Aria in our

curation environment provides expert curators with added

flexibility to perform CT segmentation work in either system.

This is an important aspect given the multi-campus scope of this

project. For example, currently at MCF, ROs tend to perform

their segmentation for initial RT planning preparation within

MIM, whereas MSR and MCA tend to rely more heavily on Aria

tools for segmentation.

Automated DICOM De-identification
Careful DeID of DICOM data (i.e., removal of patient

identifiers from the DICOM metadata or “tags”) is essential

for maintaining patient privacy and this capability was

embedded directly into our curation infrastructure. Our DeID

requirements were as follows: 1) per institutional guidance, the

methods and output needed to strictly follow guidance from the

United States Department of Health and Human Services,

inclusive of independent Expert Determination (30); 2) we
Frontiers in Oncology 06
required the ability to customize DeID behavior (in terms of

specifying certain operations such as redaction, removal, or

replacement to be performed to given DICOM tags, leaving

certain tags either totally or partially intact); 3) DICOM objects

needed to retain their connectivity (i.e., DICOM object

referencing needed to survive DeID translation) and this was

achieved by enforcing strict DICOM unique identifier (UID)

DeID transformational reproducibility (meaning a given

DICOM UID value always mapped to a given DeID UID

value) and lastly 4) we needed the DeID process to be

traceable (meaning we needed to be able to retrospectively

decode which DeID data corresponded to which actual/

original patient data).

Given that existing vended solutions for DeID tend to fall

short of one or more these requirements, a custom DICOM

DeID tool was desired. Fortunately, our IT-Operations team had

previously developed a DeID tool meeting these requirements in

the context of retrospective studies with our Outcomes Database.

For the current project, a new adaptor to this custom DeID tool

was built and replicated for each campus-specific curated data

storage silo, with each instance allowing patient-identifiable data

to flow in from the given MIM-PACS patient list and with

scrubbed output data to flow to a given, associated DeID MIM-

PACS list (as depicted in Figure 1). Critically, the tool can handle

multiple DICOM associations (multiple objects and/or multiple

patients being transferred from the sending node) and maintains

a persistent and query-able database with a published interface

(MS Windows application) allowing curators to supply a patient

MRN and receive the corresponding DeID-MRN in response.

Local network archival
A Mayo Clinic supported NAS was partitioned as our

“AISandbox.” Subsequently, our IT Operations team created a

high-throughput DICOM adaptor (capable of multiple/parallel

DICOM associations) that was connected to MIM to receive

outgoing (finalized, curated) DeID data. The output, pushed to

the AISandbox fromMIM, was organized per DeID patient, with

the customized adaptor creating a single parent subdirectory per

DeID patient as a container for all DICOM files corresponding

to that given patient. This NAS solution is convenient for

accessibility across different users and platforms internal to the

Mayo Clinic network; related activities may be either within or

outside of the scope of curation efforts described herein. We

foresee two main use cases, namely 1) long-term curated dataset

archival and 2) as a convenient and accessible staging area

intermediary to any future automated QA step or

methods development.

Cloud storage for dataset sharing and
collaboration

Due to convenience, accessibility, security and scalability,

Cloud storage is the contemporary gold standard for sharing
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data, whether for applications internal or external to Mayo

Clinic. For this project, our external partner requisitioned a

storage bucket on a secure CSS for data ingest, which was

accessed by Mayo stakeholders using Open Source software.
Curation workflow

Figure 2 is illustrative of our current data curation workflow;

we will attempt to describe each high-level step in relevant detail.

It is important to recognize that this workflow evolved and

solidified over the course of the reported experience. Also, there

were variations in process related to the provenance of the data –

specifically whether it was derived from the MCA or MCR

practice. One major difference was the lack of MDA support at

MCA. Therefore, for MCA cases prepared for curation in the

earlier stages of this H&N project, dosimetrist effort was heavily

relied upon; later, the preparation of cases from Arizona was

performed by MDAs from the MCR practice.

Final case selection; dosimetrist/MDA data
preparation and OAR segmentation

In consultation with physicist and physician stakeholders,

dosimetrists and/or MDAs examined the output of the raw

Outcomes Database query of retrospectively identified

candidate H&N cancer patient datasets (as described

previously). This selection process, which was carried out in

Aria, can be thought of as a careful case-by-case removal of

outliers which could bias model training and negatively impact

model performance. This involved exclusion of patients that had

rare anatomical presentations or anatomy that was significantly

altered due to prior clinical intervention. Also, we tended to

remove cases with RT planning CT scans that had: 1) missing

CT-reconstructions (e.g., missing SFOV reconstruction); 2) non-

standard axial CT slice spacing or 3) prominent CT

reconstruction artifacts. Whereas, planning CTs with typical

CT reconstruction artifacts caused by dental fillings

were allowed.
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For selected cases, working within the Aria environment, RT

planning CT scans were newly organized and appropriately

relabeled for better uniformity and consistency. Beginning

from copies of the existing, clinically generated structure sets,

MDAs or dosimetrists: 1) removed ancillary (also known as

“optimization”) structures related to the RT planning process; 2)

preserved original clinical (physician-drawn) target structures;

3) reviewed and revised clinical OARs segmentations in light of

more recently adopted institution-wide standards, redrawing

structures from scratch as needed (if missing or if more

efficient than editing existing structures) and 4) made sure

labeling across the set of OAR structures was consistent.

As previously discussed, Table 3 lists the 42 H&N OARs

segmented and curated for this project. The dosimetrist from

MCR providing data preparation and segmentation effort in the

earliest phase of the project included all 42 OARs in their

purview. The dosimetrist providing effort for cases derived

from MCA included 30 of 42 OARs in their purview

(excluding brainstem, brachial plexus, carotid arteries,

pharyngeal constrictors, cricopharyngeal inlet, cervical

esophagus, nasal cavity, optic nerves and the pituitary gland).

MDAs from MCR began to contribute part way into the project.

Initially, MDAs had received specialized training to review and

segment 38 of the 42 total OARs, excluding only the brachial

plexus and carotid arteries from their segmentation scope.

During the latter phase, additional MDAs from MCR were

recruited to this project and these individuals focused on

carotid artery segmentation. For a significant portion of MDA-

prepared cases, MDAs kept track of time spent per case in the

organization grid. Once preparation work was completed,

dosimetrists or MDAs indicated readiness for MD

segmentation and review in the organizational grid.

Expert radiation oncologist OAR segmentation
and review

Once the final curation cohort had been identified and data

preparation complete, the H&N expert ROs’ primary effort was

focused on reviewing, revising and completing OAR
FIGURE 2

Schematic of dataset curation workflow.
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segmentations. As outlined in the previous section, depending

on the provenance of the case, some OARs needed to be

segmented from scratch. (Oftentimes it was deemed more

efficient to start from scratch than to start with copies of

OARs derived from the initial clinical RT planning process.)

In the organizational grid, MDs added case review notations

regarding missing or abnormal anatomy (e.g., due to surgical

resection), or any miscellaneous deviations from what might be

considered as a standard case presentation (e.g., CT

reconstruction artifacts). For a small subset of MDA-prepped

cases (N=34), the expert ROs recorded their time spent on this

segmentation and review task.

Preliminary OAR QA and data extraction
Upon completion of work by expert ROs, MDAs or

dosimetrists performed a QA step within Aria prior to data

extraction to MIM. For most cases (and all cases toward the end

of our H&N curation experience), dosimetrists or MDAs

invoked an automated QA step involving an ESAPI script run

within the Eclipse environment. Amongst other tests relevant to

clinical practice, this script automatically checks for sidedness of

bilateral OARs versus their labels (using segmentations for, e.g.,

brainstem or spinal cord to define the patient’s anatomical

midline). It also searches on a per-OAR basis for multiple,

discontiguous-2D “parts” which is useful for finding erroneous

islands (e.g., tiny “ditzels” in random locations). Relevant

findings from this script (which are displayed at run-time in a

tabular form) were notated in the organizational grid with

erroneous OARs revised if possible. Once this preliminary QA

step was completed, data extraction from Aria was invoked for

the given case by running the aforementioned Extractavator

ESAPI script from within the Eclipse workspace. Dosimetrists or

MDAs subsequently indicated completion of data extraction in

the organizational grid.

Physics curated dataset QA
Upon completion of OAR segmentation and extraction from

Aria, expert physicists performed a final, comprehensive QA

review applied to the entirety of the curated dataset. This step

was carried out within the MIM environment and was both

facilitated and safeguarded by having partitioned MIM-PACS

“patient lists” dedicated to this curation effort. To summarize,

the three main foci of this physics QA step were 1) verification of

presence of intended/required DICOM objects; 2) verification of

capture of clinical RT plan objects and 3) final QA of expert-

curated OAR segmentations. Each of these is described in more

detail below:

DICOM object QA

The goal of this step was to ensure completeness of the

curated dataset, per the definition in Table 1. Certain logic had

been coded into the Extractavator to search Aria for SFOV and
Frontiers in Oncology 08
contrast CT reconstructions; the SFOV CT always shares a

DICOM “Frame-of-Reference” with the planning CT, whereas

the contrast CT is sometimes alternatively linked to the planning

CT via a DICOM Spatial Registration object (i.e., CT image

“fusion,” dependent on workflow during CT simulation). Issues

with data completeness sometimes arose for unexpected labeling

nomenclature in Aria, or in cases where certain CT

reconstructions had not been originally included in Aria for

clinical RT management. For some cases, it was necessary to

perform additional manual DICOM extractions from Aria or

from our institutional DICOM PACs archive.

DICOM RT-Plan QA

Since this aspect is out of scope for this report, we will

describe this step at a high level only. Our intent was to capture

the treated RT plan or plans pertaining to each curated case. This

was a nuanced objective given the propensity for multiple

clinical RT plans being generated (either in the case of a

sequential boost or in the case of a plan adaptation being

performed part way through treatment). The Extractavator

referred to DICOM Frame-of-Reference as well as Aria plan

status (pertaining to “treatment approval” and also requiring a

record of RT delivery) in order to determine which RT plans

were relevant for extraction. Given this nuance, our pragmatic

working goal was to package the necessary set of DICOM-RT

Plans with their RT-Dose objects that would best reflect the

intended course of RT, as opposed to reflecting “the actual”

course of RT (which may have involved other DICOM planning

CTs and hence other DICOM coordinate systems).
Curated RT-Struct QA

A “Contour QA”MIMWorkflow was supplied by engineers

at MIM Software, Inc. to be evaluated in the context of either

routine physics plan check or physician peer review. Originally,

this Workflow contained support for both candidate-problem

detection as well as for interactive correction. We modified the

Workflow to remove the latter interactive repair aspect and

standardized the location where the candidate-problem report

(.csv-formatted table) would be saved.

This Workflow performs five checks per given labeled

structure, namely: 1) whether the structure is empty (contains

no actual 2D contours); 2) whether any part of the structure is

outside the defined “body” or “external” structure (which is a

required segmentation that is used by RT planning systems to

define the bounds of the dose calculation or relevant patient

extent); 3) whether the structure contains “holes” (areas of

exclusion, such as in a doughnut shape); 4) whether the

structure contains multiple (discontiguous) parts; and 5)

whether detected sidedness is consistent with the structure

label. Note, these latter two are same or similar checks as were

performed in Aria with our previously described ESAPI QA tool.

Checks 3 and 4 were subject to a user-defined volume threshold
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which was hardcoded at 0.003 cc. This volume threshold was

smaller than that used in the previously described ESAPI tool,

making it more sensitive to finding tiny holes or islands in the

structure (“ditzels”). The Workflow recorded each per-structure

test result as a “PASS,” “FAIL” or “N/A” in the output .csv

report. These reports were copied to curator-accessible cloud

storage with corresponding file hyperlinks embedded inside the

organizational grid (in the row corresponding to the given

patient and in a column dedicated for this MIM Contour QA

step). We note that with our distributed Citrix environment this

Workflow required approximately 5 minutes to run per case;

given our per-user random-access memory allocation

(approximately 20 GB) we were able to run the Workflow on

two patients’ DICOM-RT Structs simultaneously (in separate

MIM “sessions”).

Subsequently, the generated Contour QA report was

reviewed manually by the expert physicist with the DICOM

planning CT and DICOM RT-Struct being reviewed

simultaneously within the MIM application. Depending on the

test, false failures were observed to occur with relatively high

frequency. For example, the segmentations corresponding to the

mastoid and brachial plexus commonly failed the multiple-parts

test. A hole failure was common for lung segmentations due to

airways and vessels. True failures won’t necessarily contribute to

problems with AI modeling downstream. "Ditzels" are difficult to

find manually in context and often result from accidental

“mouse clicks” or from conversion to DICOM from Aria’s

native structure set format. Since these tend to be unrelated to

the underlying anatomy or image and are stochastic (i.e., non-

reproducible), they likely have insignificant impact on AI model

training. True failures which we interpreted as needing

correction, as well as any other problems incidentally observed

during manual interactive OAR segmentation review in MIM,

were noted directly in the .csv report with a succinct description

of the issue. An indication of whether issues were found in this

process was provided by changing the color of the .csv report

link in the organizational grid to either green (for pass) or red

(for fail).

This organization allowed other expert curator stakeholders

to re-engage with OAR corrections. In our workflow, initially

dosimetrists, and later MDAs, performed the step of resolving

any potential OAR deficiencies or errors. In some cases, an

expert radiation oncologists’ re-review was required. We opted

to maintain the same “final” curated structure set in both the

MIM and Aria environments.
De-identification
Upon the completion of the above, data underwent DeID. In

our infrastructure, this required the curator to select the given

patient(s’) record(s) in MIM (all associated DICOM objects

contained in the given MIM-PACS patient list) and export

them to a defined DICOM node (daemon) corresponding to
Frontiers in Oncology 09
the custom DeID tool described previously. Supporting

parallelization via multiple DICOM associations, this tool

could handle DICOM objects from multiple patients being

sent simultaneously. Subsequently, the DeID tool’s output was

automatically forwarded to a separate MIM-PACS patient list

designated for finalized, DeID data. To verify completeness of

this step, we queried the DeID tool’s database using the

previously mentioned custom Windows application by

supplying the original patients’ MRN and receiving back the

DeID patients’ MRN (DeID-MRN). We note that multiple

MRNs could be handled in this fashion via a single query.

Accordingly, the DeID-MRNs were recorded in our data

organization grid. Thus, the MIM-PACS patient list

corresponding to the DeID patients could be searched and

reviewed for curated object correctness and completeness.

NAS archival
Following DeID, finalized curated datasets were extracted

from our MIM-PACS environment to our dedicated AISandbox

NAS using the custom DICOM adaptor described previously.

For convenience, this step tended to be completed in multi-

patient mini-batches using MIM’s built-in “advanced” DICOM

query capability which allows multiple DeID-MRNs to be

supplied via regular-expression (“regex”) syntax. For this

project, stored on the NAS along with the curated dataset

archive was relevant redacted and DeID demographic

information along with ascii-formatted “manifests” of DeID

patients as well as a full DICOM-object list (as represented by

DICOM SOPInstanceUIDs).

Upload to cloud storage
In the final step, finalized, DeID curated datasets were

uploaded in bulk at high bandwidth to the secure CSS from

the AISandbox NAS using an Open-Source, multi-threaded data

transfer utility.
Results

Over approximately one year, from August 2020 through

September 2021, our expert multidisciplinary team generated

490 curated H&N datasets. A randomly selected case is shown in

Figure 3, which demonstrates the complexity of the H&N

anatomy and delicate nature of the OAR segmentation task.

As shown by individual rows in Table 4, the datasets were

subdivided into four separate cohorts, wherein there is no

relevant delineation between cohorts 1-3. The cohort labeled

as “Hold Out” (HO) was withheld from our external partner to

enable us to retain explicit independence in terms of

retrospective evaluation of DL model performance. This

provided a separate means for DL model validation, over and

above standard validation and testing processes associated with
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the DL model training itself. We also mention that the HO

cohort was slightly different from the other curated data in that

we intentionally enriched its diversity giving more careful

inclusion consideration for ethnicity or race and sex. The HO

cohort was also well balanced for primary tumor site and

primary RT versus postoperative RT.

Figure 4A is a summary of volumetric Dice Similarity

Coefficient (DSC, also known as Sørensen–Dice Coefficient)

comparing curated versus clinical OARs over the entire set of

H&N curated cases (NCases=490). We note that the statistics per

OARs in Figure 4 are variable to due to absence of given OARs in

either structure set (primarily the clinical structure set). DSC is a

standard quantitative volume metric describing OAR geometric

overlap and is defined on the range [0-1] with 1 corresponding

to 100% of voxels overlapping and 0 corresponding to no voxels

overlapping (23, 31). (DSC tends to overemphasize differences in

small or complex OARs while being relatively insensitive to

differences for larger OARs.) Median DSC ranged from
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approximately [0.4-1] over the set of curated OARs, with

significant variance in per-OAR DSC distributions observed.

Carotid arteries are absent because they are missing from the

clinical OARs. This finding, notably poor DSC correspondence

for a significant proportion of OARs, helps to underscore the

importance of using consistent and standardized (i.e., carefully

curated) OAR segmentations rather than retrospective clinical

OAR segmentations for DL model training. Contributing to the

observed mismatches are certainly 1) inter-observer variation; 2)

changes in H&N contouring guidelines over time; and (related to

this) 3) systematic practice differences between MCR and MCA.

Figure 4B is a comparison using a similar metric we have dubbed

“Overlap DSC” which limits the respective volume calculation to

CT slices that have contours for both OARs under comparison.

Given this definition, Overlap DSC minimizes bias to changing

OAR definitions in terms of segmented superior-inferior extent.

Four OARs, namely esophagus, esophagus_cerv (cervical

esophagus) , cord (sp ina l cord) and cr ico_p_inle t
FIGURE 3

Example of curated H&N OAR segmentations for randomly selected case. (A) Moving from left-to-right, top-to-bottom: selected axial slices moving
from superior to inferior aspect of H&N RT planning CT. (B) Anterio-posterior maximum intensity projection rendering with OAR projections
overlayed. (C) 3D perspective rendering of 2D DICOM-RTStruct-format OARs with tick-marked scales on DICOM coordinates as indicated.
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(cricopharyngeal inlet muscle) stand out as likely having poor

(standard) DSC due to an evolution in our institutional

definition for OAR extent.
Time spent per curated case

It is extremely relevant to report our experience in terms of

human effort required per curated H&N dataset. Accurate time

recording was available for a subset of cases; this is summarized

in Table 4. From this, using median values and their standard

deviations (added in quadrature), we can estimate that initial

OAR segmentation and review by MDAs (or dosimetrists) and

subsequently physicians required approximately 11.3 ( ± 2.3)
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hours per case (assuming MDAs did not assist with carotid

segmentation, as in the HO cohort).

Based on anecdotal experience, expert physics processing,

QA review and DeID required 30 minutes per case at a

minimum, also assuming no downstream OAR corrections

were needed. It is reasonable to augment this towards an

overall QA and dataset organization time requirement of

approximately 1 hour per case considering downstream

corrections, dataset navigation through the curation pipeline

and subsequent organizational efforts such as cohort aggregation

and archival. In addition, there was substantial time and effort

devoted to planning and development of the underlying

infrastructure as well as for training personnel; these inputs

are generally difficult to accurately account for.
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FIGURE 4

(A) Box and whisker plots of DSC comparing curated versus clinical H&N OARs (NCases=490; counts per OAR are variable, dependent on set of
OARs available per case). “Bulls-eyes” indicate the median values; medians are connected over all OARs with a dashed line. (B) Same
representation as in panel (A) for alternative metric Overlap DSC. The dashed line showing medians from (standard) DSC (taken from panel) (A)
is projected onto this panel for comparison.
ABLE 4 Mean, median and standard deviation of time spent per recorded case by H&N anatomy experts for OAR segmentation and related
visions, broken down per cohort subset.
MDA carotid
time (min.)
MDA other OAR
time (hr.)
Physician time
(hr.)
ohort
 NCases
 NSamples
 mean
 median
 s
 NSamples
 mean
 median
 s
 NSamples
 mean
 median
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s

251
 28
 27.7
 27.5
 6.6
 63
 6.9
 6.00
 2.9
 -
 -
 -
 -
105
 39
 24.1
 20.0
 9.2
 72
 7.1
 7.00
 0.6
 -
 -
 -
 -
99
 74
 35.3
 35.0
 8.7
 77
 7.4
 7.50
 0.6
 -
 -
 -
 -
old Out
 35
 -
 -
 -
 -
 35
 6.6
 6.75
 0.8
 34
 4.0
 4.25
 1.6
ombined
 490
 141
 30.7
 30.0
 9.8
 247
 7.1
 7.00
 1.6
 34
 4.0
 4.25
 1.6
DA time spent on carotid segmentation was recorded to the nearest 5 minutes; time spent by MDAs on other OARs, as well as physician time, was recorded to the nearest 15 minutes.
DA effort can be considered as interchangeable with dosimetrist effort.
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Frequency of OAR candidate-problems
identified by physics QA

Expert physics review and QA of curated H&N datasets was

likely an important step in the curation process. Retrospective

review of our data organization grid revealed that an expert

physicist flagged OAR segmentation issues in 170 out of 439

cases (39%) for further review and potential revision. The

majority of these likely would have had minor, if not

insignificant, impact on model training (dependent to an

extent on our external partner’s OAR QA procedures).

Amongst the more significant, but infrequent, errors detected

were left vs. right sidedness mislabeling, as well as accidental

inclusion of segments intended for one OAR as part of another

OAR. The automated MIM Contour QA Workflow made a

substantive impact in helping to flag these more significant

issues. We note that the above tally of physics QA

interventions excludes helpful inputs from other semi-

automated QA methods currently under development that

involve parsing DICOM data post-extraction to our

AISandbox NAS archive.
Discussion

Our study demonstrates the extent of thought, planning,

novel infrastructure development and human effort that is

required to conduct an RT data curation project at this level of

quality and at large scale. This has significant practical value for

other investigators or institutions planning to embark on similar

projects. It is difficult to find reports like ours in the literature.

Our review uncovered one prior study pertaining to curation

infrastructure for image labeling in the context of radiology (32)

and another prior study related to retrospective curation of

breast DICOM-RT data for downstream correlation with

dosimetric endpoints (33). Somewhat related, Wong et al.

described their RT patient selection and expert OAR

segmentation efforts towards DL-based autosegmentation

model evaluation, inclusive of capturing inter-expert variability

(20). In a later report, the same institution described their expert

OAR dataset preparation for model training and validation for a

different anatomical site (21). The general sparsity of prior

reporting may be indicative of a difficult peer review barrier

(or perhaps a perception of a difficult peer review barrier) – the

potential challenges being that this and similar reports could be

easily discarded as either non-hypothesis-driven or non-

hypothesis-generating, or that they might be discounted under

micro-dissection due to lack of novelty of constituent methods.

However, when viewed under a practical or macroscopic lens, we

assert that this report is substantial, unique and adds value to our

RT knowledge base.
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Our specific findings in terms of per-case time requirements

for generation of 42 expert H&N OAR segmentations of >11

hours per case (on average) are important. In the context of a

study on clinical validation of atlas-based autosegmentation

model performance, Teguh et al. mention that generation of

20 expert H&N OARs (submandibular glands, parotid glands,

chewing and swallowing muscles, spinal cord) in ten patients

required 3 hours per case (on average) (34). Wong et al. report

that preparation of expert H&N OARs (spinal cord, parotid

glands, submandibular glands, inclusive of neck CTV) required

26.6 minutes on average (20). In a review of studies reporting

time savings from H&N autosegmentation for H&N RT

planning, Lim and Leech summarize initial H&N OAR

segmentation time as requiring 2.7-3 hours (35). The relevance

of comparing these prior studies to our findings is questionable

given the much larger set of OARs generated in our H&N

curation example and the specific contexts around time

reporting elsewhere. Nevertheless, we emphasize here that

expert H&N OAR segmentation is clearly a time-

consuming process.

In our view, the curated datasets generated in this study have

potentially high value for other applications besides DL-based

model training. For example, the expert OARs can be used for: 1)

benchmarking existing autosegmentation models/solutions against

our defined clinical standards; 2) benchmarking clinician/RO OAR

segmentation performance across clinical practice; or 3) creating

independent H&N OAR QA tools based on feature extraction and

machine learning – not forcibly for autosegmentation but rather for

verifying OAR consistency on future clinical H&N planning CTs or

used as part of an automated watchdog reviewing output of

autosegmentation models (8–10, 36). With the H&N datasets

generated in this study, we have already done extensive work on

example 1 and begun exploratory work on example 3.

It must be emphasized that the infrastructure created

specifically under the scope of our first H&N dataset curation

use case has generalizable utility which can easily scale, whether

for larger or smaller RT dataset curation exercises. Work is

currently ongoing to curate datasets for brain RT with new

stakeholders (physicists and ROs) engaged in this latest effort

from across all Mayo campuses; for these efforts a portion of the

curated datasets will also be derived from MCF. Planning for

other body sites is also underway. More broadly speaking, this

infrastructure could support numerous DICOM-RT data driven

projects inclusive of clinical trials QA or research. The key

scalable and recyclable elements of this infrastructure are: 1)

MIM, as central to conveniently accessing, visualizing or

manipulating the DICOM-RT data and supporting layers of

automation; 2) automated or semi-automated data extraction

from the RT information system (Aria) to MIM (i.e., the

Extractavator); 3) automated DICOM daemons for DeID and

DICOM-RT dataset extraction from MIM; and 4) archival
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DICOM-RT storage (either NAS or cloud-based, or both). A

potential wish or need is for an ancillary DICOM storage web

service (“DICOM store”) providing a convenient ingest or egress

capability for DICOM-RT data, facilitating seamless

collaboration with external stakeholders. As an example, MIM

Software deploys MIMCloud™ as a high-value Cloud-based

companion DICOM store for MIM Maestro.

Conclusion

Mayo Clinic has recently embarked on a large-scale and

interdisciplinary RT dataset curation effort pertaining to DL-

based autosegmentation of OARs. In support of this endeavor,

we constructed a scalable, semi-automated DICOM-RT dataset

pipeline for data extraction, visualization, QA, DeID, long-term

archival and dataset sharing. We demonstrated functionality of

this infrastructure, reporting here on our first experience

leveraging these tools for curation of 490 H&N RT datasets.

This required significant human-expert effort, estimated at

greater than 12 hours per case. Due to the well-designed

infrastructure (which automated otherwise extremely tedious

and time-consuming steps), the bulk of this effort was able to be

focused on OAR segmentation, related review and QA, which

are aspects truly requiring human expertise.
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