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Collection and analysis of circulating tumor DNA (ctDNA) is one of the fewmethods of liquid
biopsy that measures generalizable and tumor specific molecules, and is one of the most
promising approaches in assessing the effectiveness of cancer care. Clinical assays that
utilize ctDNA are commercially available for the identification of actionable mutations prior
to treatment and to assess minimal residual disease after treatment. There is currently no
clinical ctDNA assay specifically intended to monitor disease response during treatment,
partially due to the complex challenge of understanding the biological sources of ctDNA
and the underlying principles that govern its release. Although studies have shown pre-
and post-treatment ctDNA levels can be prognostic, there is evidence that early, on-
treatment changes in ctDNA levels are more accurate in predicting response. Yet, these
results also vary widely among cohorts, cancer type, and treatment, likely due to the driving
biology of tumor cell proliferation, cell death, and ctDNA clearance kinetics. To realize the
full potential of ctDNA monitoring in cancer care, we may need to reorient our thinking
toward the fundamental biological underpinnings of ctDNA release and dissemination from
merely seeking convenient clinical correlates.
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BACKGROUND

Circulating tumor DNA (ctDNA) is extracellular DNA in plasma that originates from tumor cells
and has emerged as a useful biomarker in non-invasive liquid biopsy (1-3). ctDNA abundance shows
broad correlation with tumor burden and generally reflects the tumor DNA content such that clinical
assays are commercially available for detection of molecular/minimal residual disease (MRD) and
tumor mutational profiling (4–6). However, there are currently no ctDNA-based assays approved for
serial monitoring during treatment to assess immediate tumor response and treatment efficacy.

Serial ctDNA monitoring during treatment can provide insight into underlying biological factors
that can potentially be used to predict response, treatment efficacy, and long-term outcomes (7–11).
In practice however, ctDNA levels can appear erratic across time points and are often inconsistent
between patients with similar disease and treatment. This variability may be partially the result of
disparate sampling frequency (often within the same study), extraction methods, and analytical
approaches between studies. More likely, this variation is driven by factors that have yet to be
elucidated and may vary between patients, such as individual host physiology, tumor location, tumor
biology, and treatment modality.
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Evidence that ctDNA concentration is more dependent on
tumor cell replication rates than simply on tumor volume also
suggests that understanding tumor biology and patient
physiology are necessary to guide proper interpretation of
ctDNA dynamics (12, 13). In some studies, early spikes in
ctDNA shortly after treatment may predict a favorable clinical
response, in keeping with the hypothesis that shedding is directly
associated with treatment-induced tumor cell death (14–16). It is
unclear however, how soon after treatment initiation this spike
must occur in such cases, emphasizing the importance of
collection timing. Nevertheless, early and rapid ctDNA
clearance during treatment has consistently been shown to
correlate with objective response and outcome (17–20).
Evidence supports the idea that ctDNA release is clearly a
byproduct of tumor cell proliferation, though whether this is
through increased cell turnover and higher death rates or active
release during cellular expansion is still an open question.

This review seeks to discuss the biological sources of variability
in ctDNA abundance, with the hope that thoughtful analysis and
a mechanistic understanding of ctDNA release will allow
improved approaches to ctDNA interpretation in clinical
response and progression.

A Note on Circulating Tumor DNA Detection
and Its Implications for This Review
Typically, ctDNA is detected and characterized using methods
such as droplet digital polymerase chain reaction (ddPCR) or
next-generate sequencing (NGS) (reviewed by Heitzer et al. (2))
either targeting genomic positions based on a priori knowledge of
tumor mutations or by calling mutations de novo at novel sites
and recurrent hotspots. Although both a priori and de novo
approaches to ctDNA detection assume that molecules harboring
alternate alleles are tumor-derived, the later approach allows for
ctDNA detection without a priori knowledge of tumor-specific
mutations but is subject to much more uncertainty. The detection
of tumor-derived copy-number aberrations in cell-free DNA is
also possible and is dependent solely on read counts to detect
gains or losses found in tumor cells (21). De novo mutations can
be called from whole-genome and whole-exome sequencing, or
smaller panels targeting just a few sites or genes known to harbor
recurrent mutations. Panels intended to detect mutations at these
canonical sites are often less informative about passenger
mutations, secondary drivers, and subclonal populations. The
same may be true for tumor-informed and patient-specific panels
depending on the breadth of the panel used and the sampling bias
of the original tumor tissue used to design the panel, particularly
in the case of high intratumoral heterogeneity. These various
approaches further confound our ability to compare results across
studies, patient populations, and cancers. This problem is
particularly true for studies where ctDNA was characterized
by the prevalence of a single mutation in a single gene, where
subclonal populations driven by other genetic aberrations may be
under selective pressure during treatment. Of course, with a
broader analytical space comes greater cost and complexity
and additional challenges for implementation of accurate
ctDNA assays in a clinical setting. For example, a simple

ddPCR or amplicon-sequencing test to detect the presence of
low-abundance EGFR mutations in the cell-free DNA of lung
cancer patients is much cheaper and simpler to validate and
execute in a diagnostic laboratory than a whole-exome or a multi-
gene sequencing panel with similar accuracy and sensitivity.
However, such an assay may not be representative of the
entire tumor cell population, particularly if there are
treatment-resistant subclones that harbor distinct genotypes.
Consequently, careful evaluation of single-target vs. multi-
target approaches is necessary.

Although the data available to assess ctDNA abundance as it
relates to clinical observations, treatment response, and outcome
consist primarily of mutant-allele detection and prevalence
estimates, evidence suggests approaches like methylation profiling
by whole-genome or targeted bisulfite sequencing may be more
sensitive and are not dependent on the presence of genetic
aberrations (5). A serial comparison of single-nucleotide variants
(SNVs) andmethylation profiles in EGFRT790M-positive advanced
cancer patients found that methylation levels closely followed SNV
mutant allele frequency and both were predictive of long-term
treatment response (22). Silva et al. (23) reported changes in cell-
free DNA methylation over time that were associated with therapy
response and progression in prostate cancer patients. Few studies,
however, have assessed methylation dynamics in cell-free DNAwith
high-frequency sample collection during early phases of treatment,
and therefore the data presented here are biased toward somatic
mutations as a means of ctDNA detection and characterization. It
remains to be seen how broad the search space needs to be in order
to effectively monitor tumor cell populations by ctDNA, and which
reporter (i.e., mutations, methylation, etc.) will be the most
informative, but may vary by patient, tumor, and treatment.

BIOLOGICAL FACTORS THAT MOST
AFFECT CIRCULATING TUMOR DNA
ABUNDANCE
In order to utilize ctDNA monitoring during treatment we must
understand the various factors that impact ctDNA concentration
over time. Multiple sources of ctDNA have been suggested
including apoptosis, necrosis, and so called “active/passive
release” (reviewed by Aucamp et al. (24)). Apoptosis, necrosis,
and other forms of tumor cell death result in ctDNA release into
interstitial space where it moves to the lymphatic system and
blood circulation (8, 25). It is also hypothesized that extracellular
DNA can be released from living cells in various contexts that are
both energy-dependent and independent, and range in
mechanism from shedding of mis-segregated DNA to
intercellular signaling (26). Once ctDNA enters circulation, it
is subject to further degradation by DNases in the blood and is
putatively removed by the liver, spleen, and/or kidneys within
30–120 min (27). Changes in the balance of these processes due to
treatment are assumed to be reflected in ctDNA dynamics, which,
if correctly interpreted, may inform us about a patient’s disease
state and response to therapy (Figure 1). Furthermore, disruption
of biological homeostasis resulting from disease and treatment
can increase overall levels of cell-free DNA, decreasing the
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relative abundance of ctDNA and thus impacting assay
sensitivity. This can also make interpreting data from studies
that simply report mutant allele frequency challenging without
accounting for such changes in total cell-free DNA. The following
sections address how the unique biology of a cancer and host
physiology influences ctDNA abundance in the blood stream.

Cancer Type and Biology
Even before our ability to distinguish ctDNAmolecules amongst cell-
free DNA, there appeared to be a clear relationship between cell-free
DNA abundance and disease state. The more severe the patient’s
cancer, themore cell-free DNApresent in their blood (reviewed by de
Miranda et al. (28), Grabuschnig et al. (26), Aucamp et al. (24)),
suggesting that disease burden impacts cell-free DNA homeostasis.
Later work has shown that ctDNA levels, independent of non-tumor,
cell-free DNA, vary dramatically across disease type, tumor location,
and stage (29–33). In vitro assays have helped isolate the mechanistic
variables involved in cell-free DNA release, particularly with regard to
known apoptotic and necrotic processes. These experiments found
that cell-free DNA release can vary significantly between cell-lines
with different phenotypes and histologies (34–39).

Observations in human cohorts also correlate ctDNAwith tumor
histology, grade, and stage. Various studies in neoadjuvantly-treated
breast cancer patients found that ctDNA levels and mutations were
significantly different between breast cancer subtypes (9, 11, 40, 41).
Expression levels of the proliferation-associated nuclear protein, Ki-
67, have also been directly associated with ctDNA characteristics in
breast and lung cancers (42–44). Studies assessing ctDNA in non-
small cell lung cancer (NSCLC) patients found that ctDNA
concentration was correlated with tumor stage, histology, and
degree of cytological atypia (45–47).

Tumor Volume, Growth Rate, and
Metabolism
Cell death has historically been considered the largest contributor
to ctDNA and tumor volume the most reliable predictor of
ctDNA abundance. More recently, various mechanisms and
conditions have been proposed in which living tumor cells,
particularly during mitosis, could shed DNA in both an
energy-dependent and independent manner (26, 34).
Therefore, it is likely the complex interplay between tumor cell
proliferation and death that determines ctDNA abundance. This
relationship has significant implications for how we should think
about ctDNA measurements in the context of tumor volume,
growth rate, andmetabolism. For example, one can easily imagine
a scenario where proliferation and death rates both increase but
are in balance resulting in increased ctDNA shedding but no net
change in tumor volume (48). Furthermore, although ctDNA
may be hypothetically representative of the entire cancer cell
population, it is likely subject to significant composition bias from
differential cell turnover rates across subclones (3). Examining
these variables in vitro and in vivo can shed light on which
processes contribute more to ctDNA abundance.

Tumor growth rate and metabolism are often inferred by
measuring tumor glucose uptake. Studies in metastatic melanoma
patients found a strong correlation between the tumor PET
avidity (a measure of cellular glucose uptake) and ctDNA
abundance, independent of tumor volume (49). These results
are supported by studies in resected NSCLC, where a correlation
was found between increased mitotic rates and higher ctDNA
levels measured 24 h prior to surgery, as well as increased levels of
the proliferation marker Ki-67 (42–44, 47). Indeed, in vitro
studies have consistently found that large amounts of cell-free

FIGURE 1 | The relationships between treatment, biological factors, clinical indicators and outcomes, and potential insights with regard to serial ctDNA monitoring
during treatment. MOA, mechanism of action; Tx, treatment.
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DNA can accumulate in the media of actively proliferating cell
populations independent of apoptosis or necrosis (34, 50–53).
DNA fragments resulting from mis-segregation events during
mitosis were found to be released by actively proliferating cancer
cells via the creation of micronuclei (54, 55), but their relative
contribution to overall ctDNA abundance in vivo remains
unclear. Similar to the DNA products of necrosis, it has been
assumed that these fragments would appear distinct from
apoptotic ctDNA given their larger size and that their
contribution would therefore be obvious. However, evidence is
emerging that cleavage of larger DNA fragments by extracellular
DNases may also occur (51). These DNA fragments might have
an apoptotic fragmentation pattern, yet be generated by non-
apoptotic mechanisms, such as release during proliferative states.

The relationship between tumor cell proliferation and death is
not independent. In healthy tissues, cell density homeostasis is
achieved by compensating for cell death with an appropriate rate
of cell proliferation. This process is known as “apoptosis-induced
proliferation” (reviewed by Heitzer et al. (2) and Ryoo et al. (56)),
but it is unclear how significant a role it plays in tumors. The
consequences for ctDNA shedding could be straightforward,
where increased cell death leads to increase cell birth and so
on, and both processes result in increased ctDNA levels.
However, positive feedback mechanisms like this may be
tissue-dependent and could be dysregulated in cancer,
complicating interpretation of ctDNA dynamics.

Tumor Vasculature, Blood Vessel Proximity,
and Hypoxia
Tumor vascularization and proximity to major blood vessels are
also features of tumor physiology that might be expected to
significantly impact ctDNA levels. Blood flow to a tumor is
the direct means by which ctDNA enters circulation and it
affects the metabolic activity of a tumor by providing oxygen
and nutrients (57). As a tumor grows its vasculature becomes
more irregular and dysfunctional leading to reduced oxygen
levels, hypoxia and necrosis. Necrosis, reduced nutrient levels,
and limited accesses to wider blood circulation all potentially
effect ctDNA abundance in unique ways. Vasculature can also
impact drug delivery and efficacy, which may also affect ctDNA
shedding. It is unclear howmuch ctDNA abundance is dependent
on direct access to blood vessels. Interstitial ctDNA is assumed to
passively enter circulation through nearby blood vessels, but
other processes like macrophage clearance of dead and dying
cells (see “Immune Response” and “Immunotherapy” sections
below) may also play a role in transporting ctDNA from areas
with poor vasculature to the bloodstream (8, 25, 27).

Results from studies directly comparing tumor
vascularization, angiogenesis, and ctDNA abundance, are
inconsistent between studies. Post-excision pathology by
Abbosh et al. (4) found lymphovascular invasion to be
predictive of ctDNA detection in early-stage lung cancer. Two
other studies in lung cancer found vascular invasion to be
marginally (47), or not at all (46), correlated with ctDNA
detection. Interestingly, when only looking at patients with
EGFR mutations, ctDNA was significantly correlated with

vascular invasion in the former study by Cho et al. (47). In
liver cancer, microvascular invasion was correlated with
preoperative ctDNA levels (58). In recent preliminary data
collected from a large cohort of colorectal cancer (CRC)
patients, ctDNA was found to be strongly associated with
lymphovascular invasion (59). In neurological malignancies,
which typically have less detectable ctDNA, Nabavizadeh et al.
(60) found that tumor vessel size was correlated with detectable
ctDNA. Notably, previous work by the same group and others
found that the amount of microvascular proliferation was not
significantly correlated to ctDNA in glioblastoma (GBM)
specifically (61, 62). The nature of such studies makes it
challenging to discern if these correlations are independent of
tumor stage and volume. Proving a causal link may only be
possible with further evaluation of preclinical models, tumor
pathology, and imaging.

Hypoxia is in many ways a measure of tumor cell access to
functional vasculature (63). As a tumor grows, cells become more
isolated from functional vasculature, despite upregulated
angiogenesis that is characteristic of many cancers. This
process selects for cells that are more tolerant of low-oxygen
conditions while the remaining population become necrotic (64).
There is a clear link between hypoxia and necrosis and some
studies have suggested that ctDNA is primarily derived from
necrotic processes (1, 35, 65, 66). This suggests that as a tumor
grows and vasculature becomes more distant and dysfunctional,
wider ctDNA abundance could either increase due to further
necrosis, or decrease due to reduced access to that vasculature.
Since both forces are not equal in all tumors, the overall effect on
ctDNA levels from this process may not be neutral. In vitro
experiments with CRC cells have found that hypoxic conditions
induced cell-free DNA production during the first 24 h but
decreased dramatically over the following 48–72 h (37). These
results are also consistent with previous findings in both tumor-
injected and tumor-free mice where hypoxia induced cell-free
DNA release (67). Deprivation of the metabolite, folate, has been
found to induced double-strand DNA breaks and mis-
segregation events, which may also lead to ctDNA shedding in
nutrient-starved tumors as well (68).

Organ Encapsulation
The free movement of cell-free DNA between tissue and blood
may be restricted in some organs. Blood-tissue barriers have
been identified throughout the body, such as the thymus,
testes, retina, and intestines, but it is unclear what role they
might play in cell-free DNA exchange (69). The blood-brain
barrier (BBB) is often cited as the primary reason that
neurological malignancies, particularly gliomas, produce less
detectable ctDNA than other cancer types (29). In a 2018
review on ctDNA kinetics, Khier and Lohan speculate that
physiological barriers, like the BBB, restrict the movement of
cell-free DNA throughout the body while also acknowledging
the exception of placental cell-free DNA, which has been
shown to move quite freely throughout the mother (8, 70).
Notably, disruption of the BBB that results in increased
permeability and risk of metastasis also resulted in
increased levels of ctDNA in patients with GBM (60).
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Several studies have shown that disrupting the BBB in animal
models using focused ultrasound techniques leads to increase
blood levels of ctDNA and other biomarkers (71, 72).
Therefore, it is possible that changes in tissue-blood barrier
permeability, particularly during treatment, might
significantly affect ctDNA dynamics.

Immune Response
Although there may be a significant role for inflammation and
infection (e.g., sepsis) in cell-free DNA release, this review is
primarily interested in the extent to which they directly impact
ctDNA release from cancer cells. Early studies exploring the
origins of cell-free DNA found that macrophages may play a
significant role in cell-free DNA release though phagocytosis of
dead and dying cells (73). Phagocytes have been shown to digest
apoptotic cells and release the resulting cell debris and
fragmented DNA (24, 73, 74). In the GBM study mentioned
earlier, ctDNA levels were strongly associated with the density of
macrophages around the tumor (60). In healthy individuals cell
turnover is a tightly regulated process where apoptotic cells are
quickly removed by phagocytes, however, this process appears to
be dysfunctional in tumors resulting in excess cell debris
(including DNA) that accumulates locally and in circulation
(27, 66). The extent to which ctDNA levels might be directly
affected by tumor cell targeting and/or clearance by immune cells
is still an open question. Evidence for this phenomenon however,
might be found in studies where ctDNA levels spike within
2 weeks of immune-therapy initiation in metastatic melanoma
patients, if and only if, the tumors were responsive (75).

Cell-Free DNA Clearance
Cell-free DNA digestion and clearance, whether achieved locally
via phagocytosis or in circulation via the liver, spleen, and
kidneys, is influenced by a number of factors (8, 27, 76, 77).
As described above, cell-free DNA clearance in situ is potentially
dependent on interstitial diffusion and the presence of phagocytic
cells, however, once it is in circulation its half-life is determined
by extracellular DNase activity and organ function (8). ctDNA
half-life in the blood ranges from 30 to 120 min (27) making
blood collection timing critical. The decreased levels of DNase
activity observed in the blood of cancer patients potentially
explains the accompanying increase in cell-free DNA levels
from disruption of homeostasis (78, 79). Studies have also
suggested that cell-free DNA clearance and half-life is
dependent on proper liver and kidney function suggesting that
treatment toxicity in cancer patients could affect ctDNA
clearance rates and abundance (80, 81). The role of renal
function in ctDNA clearance is not well understood, however,
based on experiments assessing cell-free DNA levels in urine (27).
The presence of cell-free DNA in urine implies involvement of
the kidneys in clearance from circulation, however, patients with
chronic renal failure were found not to have increased levels of
cell-free DNA in their plasma (82). Methylation profiling has
suggested that cell-free DNA present in urine is derived from
white blood cells, kidney cells and urinary tract cells, but data
from stem cell transplant patients found that the majority of this
DNA was from the renal system itself and not plasma (83, 84).

THE EFFECT OF TREATMENT ON
CIRCULATING TUMOR DNA ABUNDANCE

The effect of treatment on tumor cell proliferation and death, and
thus ctDNA dynamics, is dependent on its mechanism of action,
efficacy, and tumor biology. Considering the factors described above
that influence ctDNA abundance, it is not surprising that there are
many discernable differences between the ctDNA dynamics of
responders and non-responders during treatment. Predicting their
timing and trajectories is not so simple, particularly when considering
the short half-life of ctDNA. We might at least expect that ctDNA
dynamics should reflect treatment response depending on the
mechanism of action of a given treatment, but the timing of those
effects is still unclear (Figure 2). The correlation between in vitro and
in vivo models of treatment-induced cell death remains largely
unclear, and is likely dependent on a variety of factors including
the treatment and tissue of interest. Despite the paucity of data, it is
possible that tumor cell death can occur within hours of treatment
and therefore ctDNA levels may rapidly increase as well (36, 85–87).
Serial ctDNA monitoring has been done with collection times
ranging from minutes, hours or days after administration of
treatment, to weeks and months. Some guidance may be gleaned
from these studies, but the optimal time for sampling may be unique
to cancer type and therapy and may need to be determined
empirically. The following sections outline the expected effects of
cancer treatment modalities on ctDNA dynamics, and what existing
evidence, if any, tells about these hypotheses.

Chemotherapy and Radiation
Cytotoxic chemotherapies and radiation therapy (RT) are often used
independently or in combination as first-line treatment in many
cancers. Chemotherapy agents function by disrupting mitosis or
causing DNA damage leading to cell-cycle arrest, mitotic catastrophe,
and apoptosis. Radiation therapy kills cells by DNA damage as well,
but it also elicits an immune response and vascular damage, which
can result in subsequent rounds of tumor cell death. Mitotic arrests
and DNA damage are thought to cause tumor cell death within
6–72 h of administration in vivo, so detecting ctDNA shedding in
response to effective treatmentmay require immediate sampling (87).
Unfortunately, very few studies sample ctDNAwithin the first 72 h of
chemotherapy. It has also been suggested that treatment-induced
mitotic catastrophe can cause delays in cell death from chemotherapy
and RT for up to a week (36, 62, 88). These various mechanisms of
action may result in multiple shedding events, where one may be
more informative about treatment response over another.

Limited studies assessing ctDNA levels immediately after
treatment are conflicting. In castration-resistant prostate cancer
patients receiving docetaxel-based therapy, early ctDNA levels
were found to increase rapidly within 1 h of administration with a
corresponding decrease in total cell-free DNA (89). This observation
is consistent with increased tumor cell sensitivity to cytotoxic agents
compared to healthy tissue. Contrary to these findings, however, CRC
patients receiving FOLFOX did not exhibit a spike in ctDNA at any
point within the first 48 h of treatment, despite high-resolution
sampling at 3, 9, 18, 23, 26, 42, and 47 h (90). Another study
involving metastatic CRC patients receiving FOLFIRI looked at
ctDNA levels before and 7 days after each of the first two
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treatment cycles and again at progression (91). Interestingly, this
study found that temporary increases in ctDNA while on treatment
were predictive of progressive disease and worse survival rates, and
suggested ctDNA monitoring within the first week of treatment to
evaluate treatment efficacy.While ctDNA levels were decreased at the
time of radiological assessment compared to baseline for all patient,
patients with temporary spikes in ctDNA appeared to have more
sustained ctDNA burden than those with favorable response (see
Figure 2: “Early spike + no clearance”). Clonal composition was also
found to vary during treatment suggesting a differential response to
treatment among tumor cell subpopulations. Increases in cell-free
DNA methylation levels of tumor suppressor genes (APC and
RASSF1A) 24 h after receiving cisplatin-based chemotherapy were
correlated with improved tumor response and overall outcome in
advanced lung cancer patients (92). The same study showed that
methylation levels of those genes in lung cancer cells also peaked 24 h
after cisplatin exposure, however, it is unclear if the hypermethylated
DNA was tumor-derived in patients. Notably, this study also found
that elevated methylation of APC and/or RASSF1A in tumor-bearing
mice were associated with tumor cell death as determined by biopsy
shortly after treatment and blood collection. This finding might
suggest that the methylated cell-free DNA originated from these
dying tumor cells. In pancreatic cancer patients sampled for 4 weeks
following treatment with gemcitabine, decreases in ctDNA were
correlated with tumor response (93). In our work and others’,
decreases in or complete clearance of ctDNA levels during low-
resolution sampling (i.e., weeks to months) of neoadjuvantly-treated
breast cancer patients were associated with pathological complete
response at the time of surgery (9–11).

In patient cohorts receiving combination chemoradiation
therapy (CRT), decrease and clearance of ctDNA after

3–4 weeks was associated with tumor response in
oropharyngeal and lung cancer (94, 95). Studies employing
high-frequency sampling at time points within hours of
treatment are sparse, however, recent data from Breadner
et al. (96) found that ctDNA abundance increased in 77% of
stage III/IV non-small cell lung cancer patients shortly after
receiving CRT with peak abundance observed 7 h after
chemotherapy initiation and 2 days after the first fraction of
radiation. Early spikes in ctDNA were seen in some patients
receiving CRT for treatment of locally advanced head and neck
cancer, but were not correlated with response (16). Rather, overall
decreases in ctDNA at later time points, which were not unique to
patients who had early peaks, were more predictive of outcome.

Some of the earliest observations of cell-free DNA by Leon et al.
(97) occurred in patients receiving RT alone, finding that general
cell-free DNA levels decreased after treatment. Aucamp et al. (24)
speculate that the reason for this may have been the coincident
destruction of phagocytes needed to generate cell-free DNA.
Another consideration that may confound ctDNA measurement
from irradiated tumors is that, although mitotic arrest and
catastrophe are the primary means by which RT is thought to
kill cancer cells, they have also been found to result in mis-
segregation events (98, 99). As discussed above, this process can
result in releasing of DNA from living cells, providing another
potential source of ctDNA that does not coincide with cell death. A
recent study found that irradiation of head and neck cancer and
NSCLC cell lines induced cell-free DNA shedding after 6–24 h in
culture (36). The same study found that ctDNA levels increased
within 24 h and peaked 96–144 h after 20 Gy of irradiation in
xenograft mouse models. Interestingly, the authors found that
treatment-induced senescence that was overcome with the

FIGURE 2 | Hypothetical ctDNA dynamics from blood sampled frequently before, during, and after treatment. Characteristic ctDNA dynamics are depicted as
observed in various studies throughout the text or otherwise hypothesized. The speculated driving tumor biology is described for each plot and example outcomes are
stated. Response patterns defined by Xi et al. (14) for metastatic melanoma patients undergoing tumor infiltrating lymphocyte (TIL) immunotherapy are indicated when
relevant. Tx, treatment; TKI, tyrosine kinase inhibitors; ICI, immune checkpoint inhibitors; MRD, molecular/minimal residual disease; ChemoRT, chemoradiation
therapy.
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senolytic drug, Navitoclax, lead to apoptosis and increased ctDNA
release. In human subjects, investigation of RT alone in NSCLC has
shownmixed results.Walls et al. (100) found that 3 of 5 patients had
decreased ctDNA levels 3-day after their first RT fraction, while the
remaining 2 had increased levels of some tumor-derived variants,
but not others. Preliminary data from our lab (101) and another
study from Chen et al. (102) found that ctDNA levels were elevated
24–48 h after the first dose of stereotactic ablative radiotherapy.
These three studies in NSCLC patients used varying doses of
radiation per fraction (2.75, 12, and ~12.5 Gy, respectively),
which along with sampling time differences, may account for the
discrepancy. Chaudhuri et al. (103) also reported that mid-RT
ctDNA levels in 13 NSCLC patients were correlated with
outcomes at 2 years. A recently published study by our lab found
that a metastatic breast cancer patient had increased ctDNA levels
while receiving palliative radiation therapy. Deep sequencing using a
53-mutation panel representative of both clonal and subclonal
mutations, which were previously identified from WES of
multiple tumors, revealed differential response in ctDNA levels
for various subclones with sample collection every 48-hour
during RT (104). Differential response in subclonal ctDNA
abundance is suggestive of varying sensitivity in irradiated tumor
cell subpopulations and/or an abscopal response. First observed by
Dr. R.H. Mole in 1953, the abscopal effect is the shrinkage of a
distant, untreated tumor in response to RT of another tumor. It is
thought that the destruction of cells in the irradiated tumor elicits an
immune response that affects the non-radiated tumors elsewhere in
the body (105). In our case, radiation of a single lesion may have
induced immune-mediated responses and ctDNA shedding from
distant metastatic sites that harbored subclonal tumor cell
populations. It is also worth noting that CTCs may also be
sources of ctDNA and CTC release timing may also be similar to
tumor ctDNA shedding (106). In preliminary data in head and neck
cancer patients treated with RT, 3 of 11 patients had increased
circulating tumor cell (CTC) counts after the first fraction of RT, and
5 of 6 patients had increases CTCs after 2 weeks into therapy.(107).

Immunotherapy
ctDNA monitoring during treatment with immune checkpoint
inhibitors (ICIs) has shown promise in multiple cancer types. A
pan-cancer analysis done by Zhang et al. (17) found that changes in
ctDNA levels during ICI treatment may be predictive of benefit.
Patients in this study with increases in ctDNA levels during
treatment had worse outcomes as compared to those that did
not. Furthermore, patients with ctDNA clearance after detectable
pre-treatment levels had the best progression-free and overall
survival. A recent study by Herbretreau et al. (75) in patients
with metastatic melanoma found that significant increases in
ctDNA levels during the first 2–4 weeks of anti-PD1 (with or
without anti-CTLA4) allowed early and highly-specific
identification of treatment-resistant patients. Furthermore,
ctDNA levels that rapidly decreased after starting PD-1
inhibitors were highly predictive of responses consistent with
pseudoprogression (108, 109). When compared to changes in
ctDNA levels later in treatment, regardless of early changes,
increases beyond 12 weeks were not necessarily predictive of
non-response, further suggesting that early sampling is more

informative (110). In NSCLC patients treated with ICI,
decreases in ctDNA 2 weeks after treatment initiation were
strongly correlated with radiographic response and progression-
free survival (111). A study investigating early response to tumor
infiltrating lymphocyte (TIL) immunotherapy in metastatic
melanoma patients identified three patterns of ctDNA dynamics
that could be used to stratify patients by overall survival (14).
Patients with an early spike in ctDNA within 5–10 days of
treatment followed by clearance showed a statistically significant
survival outcome over patients who had early peaks but latent
ctDNA burden, or no peaks with or without clearing (see Figure 2).
The study’s authors speculate that early spike it ctDNA was in part
due to the newly-transferred lymphocytes “identifying their targets
and are effective in killing [them].”

Targeted Therapy
Given the clinical implications of tumor heterogeneity, one of the
most significant unanswered questions in ctDNA analysis is
whether ctDNA observed during therapy is more
representative of resistant or responsive tumor cell
populations. In a study of lung cancer patients undergoing
EGFR tyrosine kinase inhibitor (TKI) therapy, ctDNA sampled
2 weeks after treatment initiation revealed activating mutations
not previously detected in the tumor biopsies (112). Another
study of lung cancer patients on TKIs found that clearing of
ctDNA within days of treatment was associated with response,
whereas sudden increases in ctDNA load later in treatment
correlated with rapid tumor progression and poor outcome
(113). In lung cancer patients receiving either anti-EGFR or
HER2 therapies, increases in ctDNA abundance were observed
within 4–12 h after initiation of treatment while total cell-free
DNA was relatively constant (86). Phallen and coauthors point
out that this timeframe is consistent with other studies in which
apoptosis is observed in vitro within 6–48 h of treatment with
EGFR TKIs. Patients in this study with an initial radiographic
response all had ctDNA abundance eventually decrease by more
than 95% within the first 19 days of treatment. Interestingly,
baseline levels in a study of ALK-fusion positive lung cancer
patients, pre-treatment ctDNA levels were not correlated with
treatment response, yet changes in ctDNA during treatment with
ALK TKIs were associated with progression (114).

Increases in ctDNA abundance of therapy-sensitive clones
corresponds with response, however, increases in ctDNA
abundance of therapy-resistant clones can also portend clinical
progression (2). Outgrowth of subclonal tumor cell populations
that are resistant to targeted therapy can be directly observed in
allele-specific ctDNA dynamics. For example, genomic changes
conferring resistance to targeted therapy in prostate cancer
patients were detected by increasing fractions of the
resistance-associated allele in several studies (115, 116).

DISCUSSION

Host physiology and tumor biology affect ctDNA abundance
while changes in ctDNA levels during treatment may indicate
disease response. Cancer type and stage appear to have the most
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dramatic impact on ctDNA abundance, and significant decreases
in, or clearance of ctDNA early in treatment seems to be
predictive of response and improved outcomes. The
association of treatment response and overall decreases in
ctDNA levels during treatment is consistent with the
hypothesis that tumor burden and tumor growth rate are
reflected in ctDNA dynamics. Very early changes (1–3 h) in
ctDNA levels have been hypothesized to reflect treatment
response as well, but this appears to be less generalizable. For
example, we might expect effective chemotherapy to induce
ctDNA shedding immediately, and early, high-frequency
sampling to detect it, yet observations between NSCLC, CRC
and prostate cancer patients sampled within 1–3 h of
chemotherapy were inconsistent (89, 90, 117). Unfortunately,
there are a lack of studies sampling within this timeframe.
Immunotherapy may be less fast-acting than chemotherapy
given the time required for the body to prepare a successful
immune response. PET/CT imaging has shown tumor responses
with 4–6 weeks of treatment with ICIs in melanoma patients
(118). Sample collection at 2 weeks following treatment found
changes in ctDNA that correlated with outcome in ICI therapy of
melanoma patients, but earlier time points were not collected
(75). It possible that changes in ctDNA in response to treatment
existed sooner, again, earlier, high-frequency sampling is needed
to test such hypotheses. TKI-induced cell death appears to occur
within 6–48 h of exposure in vitro (85); a similar timeframe as cell
death from cytotoxic agents. Evidence presented in this review
suggests that ctDNA dynamics might reflect TKI-induced cell
death in this timeframe in NSCLC patients more consistently
than during chemotherapy.

One potential use of ctDNAmonitoring during treatment that
has been explored by our lab and others (96, 101), is to induce
ctDNA shedding from either inaccessible tumors or suspicious
lesions for evaluation. Radiation treatment seems particularly
suited for this task, however any method of perturbation that
elicits ctDNA shedding could be used. For example, such
approaches could improve the detection rates of ctDNA assays
like CAPP-Seq and Lung-CLiP (45) in lung cancer patients or
where low-dose CT is already in use for screening high-risk
populations. Compression of breast tissue during mammography
has been shown to temporarily increase ctDNA abundance,
which could be leveraged for non-invasive biopsy or early
detection (44). Other work has explored the use of ultrasound
to elicit better movement of blood biomarkers across the BBB in
preclinical brain tumor models (71, 72). Again, a clear
understanding of early ctDNA dynamics in response to tumor
perturbations is crucial before such approaches can be
implemented in the clinic.

Variability in ctDNA measurements between patients and
studies has been a challenge for serial monitoring. Efforts have
been made to assess the biological variability of both cell-free
DNA and ctDNA between measurements taken over short
intervals (31, 119). Several groups have attempted to
standardize criteria for evaluating differences between pre-
treatment and on-treatment ctDNA levels. O’Leary et al. (120)
created a “circulating tumor DNA ratio” or CDR, defined simply
as the ratio of on-treatment to pre-treatment levels, to evaluate

treatment response in metastatic breast cancer. Herbreteau,
Kruger et al. (2018 and 2021) (75, 93) defined a “quantitative
biological response and progression criteria” where patients were
stratified by increases or decreases in ctDNA during treatment as
compared to baseline. This approach also recognized the
variability in accuracy at each time point when evaluating
significance between measurements at different time points.
Out of similar concern, our lab has also developed a Bayesian
approach for testing statistical significance between ctDNA
mutations in NGS data from serial collections (10). Given the
variability in coverage of NGS data, which determines the limit of
detection, the allele-specific background error rate, and the
stochastic nature of mutant read detection by NGS,
sophisticated methods may be required to account for these
uncertainties in ctDNA evaluation.

Finally, attempts to model ctDNA shedding have shown
promise in predicting ctDNA abundance based on tumor size
and growth rate. Avanzini et al. (48) presented a stochastic
mathematical framework based on observations in lung cancer
patients which could extrapolate ctDNA copy counts using tumor
cell proliferation rate, death rate, shedding probability, clearance
rate, and starting tumor volume. Such modeling can reveal
unexpected behavior that may be informative of real-world
scenarios. For example, in simulations the authors
unexpectedly found that a slow growing cancer generated
more ctDNA molecules than a faster-growing cancer of the
same size when the faster growth was achieved by
proportional increases and decreases in birth and death rates,
respectively. However, if a faster growth rate is achieved by
increased birth rate and a stable death rate, the difference in
ctDNA release was negligible. By integrating these variables over
time, similar models might be useful in predicting changes in
ctDNA abundance from changes in birth and death rates
resulting from treatment.

CONCLUSION

The utilization of ctDNA in assessing treatment response will
require a better understanding of the biological factors involved.
We believe that ctDNA monitoring has the potential to truly
revolutionize personal medicine in cancer care but there remain
significant challenges that must first be overcome.
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