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Abstract: Hypertension originates from early-life insults by so-called “developmental origins of
health and disease” (DOHaD). Studies performed in the previous few decades indicate that fructose
consumption is associated with an increase in hypertension rate. It is emerging field that tends to
unfold the nutrient–gene interactions of maternal high-fructose (HF) intake on the offspring which
links renal programming to programmed hypertension. Reprogramming interventions counteract
disturbed nutrient–gene interactions induced by maternal HF intake and exert protective effects
against developmentally programmed hypertension. Here, we review the key themes on the effect of
maternal HF consumption on renal transcriptome changes and programmed hypertension. We have
particularly focused on the following areas: metabolic effects of fructose on hypertension and kidney
disease; effects of maternal HF consumption on hypertension development in adult offspring; effects
of maternal HF consumption on renal transcriptome changes; and application of reprogramming
interventions to prevent maternal HF consumption-induced programmed hypertension in animal
models. Provision of personalized nutrition is still a faraway goal. Therefore, there is an urgent need
to understand early-life nutrient–gene interactions and to develop effective reprogramming strategies
for treating hypertension and other HF consumption-related diseases.

Keywords: developmental programming; developmental origins of health and disease (DOHaD);
fructose; hypertension; kidney; next-generation sequencing; reprogramming; transcriptome

1. Introduction

Fructose consumption has grown over the past several decades and its growth has been paralleled
by an increase in hypertension [1–3]. Nutrition during pregnancy and lactation exerts long-term effects
on the health of offspring. Developmental origins of health and disease (DOHaD) is an emerging
branch of science that assesses the effects of these early insults on the health of offspring [4]. Adult-onset
hypertension develops from nutritional insults in early life [5]. Because the developing kidney is
particularly vulnerable to insults of programming in early life, renal programming plays an essential
role in the developmental programming of hypertension [6]. The DOHaD concept offers a novel
approach to prevent programmed hypertension through reprogramming [7].

This review provides an overview of maternal high-fructose (HF) consumption-induced gene–diet
interactions in the offspring kidneys that affect programmed hypertension, with an emphasis
on the following areas: metabolic effects of fructose on hypertension and the kidney; effects of
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maternal HF consumption on programmed hypertension; effects of maternal HF consumption on
renal transcriptome changes; and application of reprogramming interventions to prevent maternal
HF-induced programmed hypertension.

2. Metabolic Effects of Fructose on Renal Biology and Hypertension

Fructose is a monosaccharide naturally present in honey, fruits, and vegetables. In our body,
fructose is endogenously produced from glucose through aldose reductase pathway and is also
obtained through exogenous supply [8]. Because the food industry refines fructose and adds it
to various processed foods, our fructose consumption has increased dramatically in the past few
decades [2]. Most of our daily fructose comes from HF corn syrup and refined sugar (e.g., table sugar).
Fructose is absorbed in the intestine through specific glucose transporters such as glucose transporter 5
(Glut 5) and Glut 2. The liver is the major site of fructose metabolism. Fructose is converted into
glucose, lactate, and fatty acids [8]. Fructose metabolism differs markedly from glucose metabolism
because these two sugars require different enzymes in the initial steps of metabolism. Fructose is
oxidized to CO2 and is then converted to lactate and glucose; moreover, fructose leads to ATP depletion
and uric acid production and does not induce insulin release [8].

Limited epidemiological data indicate that fructose exerts pressor effects, thus increasing blood
pressure (BP) [9,10]. Although human experimental studies have reported the acute effects of dietary
fructose on BP [11–13], its chronic effects have not been established to date. Moreover, although
the kidneys are particularly sensitive to the effects of fructose, only a few epidemiological studies
have examined the relationship between fructose consumption and renal disease [11]. Thus, human
studies have not yet established the direct cause-and-effect relationship between excessive fructose
consumption and hypertension and kidney disease. HF diets have been used to generate animal
models of hypertension and kidney disease [14–16]. Similar to the results of human studies [17,18],
results of animal studies indicate that rats fed HF diet develop various features of metabolic syndrome,
including hypertriglyceridemia, insulin resistance, obesity, hyperinsulinemia, and hypertension [16,19].
Adverse effects of fructose feeding depend on the amount and duration of fructose consumption.
Because rats express uricase (which degrades uric acid) and because they develop early phenotypes
after exposure to high fructose concentrations, most studies on rats have been performed using diets
containing 50%–60% fructose [16]. Although most studies on fructose-induced hypertension have
used fructose doses amounting to ~60% of the total energy requirement [16], evidence indicates
that 20% fructose diet significantly increases BP in rats after 8 months [20]. Fructose induces renal
hypertrophy and tubulointerstitial disease in the rat kidneys [21]. Numerous pathways have been
proposed to induce fructose-induced hypertension, including oxidative stress, increased sodium
absorption, endothelial dysfunction, nitric oxide (NO) deficiency, renin-angiotensin system (RAS)
activation, and sympathetic nervous system stimulation [16,22]. Fructose increases the reabsorption
of salt and water in the kidneys; thus, a combination of fructose and salt exerts synergistic effect on
hypertension development [23].

3. Effect of Maternal Fructose Consumption on Programmed Hypertension

Although numerous studies have assessed the effect of fructose on adult metabolism, limited
studies have explored the effects of maternal fructose consumption on fetus and disease risk in
offspring. Thus far, only a limited number of human studies have shown an association between
excessive sweetened food and beverage consumption and poor pregnancy outcome [24]. Animal
studies have shown that fructose alone alters fetal and offspring metabolism [24]. However, several
animal studies have often used fructose as a part of diet along with sucrose, fat, and salt.

Several studies have shown that HF diet induces hypertension in adult rats, which have been
well reviewed elsewhere [16,22,25]. However, limited data are available at present on the effects of
maternal fructose consumption on the BP of adult offspring. Studies listed in Table 1 indicate that
consumption of HF alone or as a part of diet by rodent mothers induces programmed hypertension
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in adult offspring [26–33]. We found that adult offspring of mothers exposed to 60% HF diet during
pregnancy and lactation developed hypertension [26], which is consistent with the results of earlier
studies involving fructose-fed adult rats [16,19]. “Western diet” is characterized by the high intake
of high-sugar drinks, high-fat products, and excess salt. Therefore, it is important to consider the
potential interactions and programmed processes between fructose, fat, and salt. Animal studies
examining the combined effects of maternal fructose consumption and other key components of the
Western diet (e.g., high fat and high salt) have shown their synergistic effects on the elevation of BP in
adult offspring [29,30].

Table 1. Maternal high-fructose (HF) consumption exerts programming effects on blood pressure (BP)
in rodent models.

Types of Fructose Intake Strain Programming Effects
Age at Which the

Effects Were
Measured

References

10% w/v fructose plus 4% NaCl in
drinking water 28 days before
conception and throughout gestation
and lactation

Male Sprague–
Dawley rats ↑ systolic BP, ↑mean arterial BP At 9 weeks of age [26]

60% HF diet throughout pregnancy
and lactation

Male Sprague–
Dawley rats ↑ systolic BP, ↑mean arterial BP At 12 weeks of age [27–29]

60% HF diet throughout pregnancy
and lactation

Male and female
Sprague–
Dawley rats

↑ systolic BP At 12 weeks of age [30]

60% HF diet throughout pregnancy
and lactation plus 1% NaCl in
drinking water from weaning to 3
months of age

Male Sprague–
Dawley rats

↑ systolic BP, ↑mean arterial BP;
postnatal high-salt aggravates
prenatal HF-induced
programmed hypertension

At 12 weeks of age [31]

56.7% HF/high-fat diet throughout
pregnancy and lactation

Male Sprague–
Dawley rats ↑mean arterial BP At 16 weeks of age [32]

10% w/v fructose in drinking water
throughout pregnancy and lactation C57BL/6J mice ↑mean arterial BP, obesity,

metabolic dysfunction At 12 months of age [33]

Studies have been tabulated according to the age at which the effects were measured.

In adult rats, HF intake for >8 weeks induces renal damage [16]. However, our recent data indicate
that rats receiving HF diet do not develop renal damage until 3 months of age. Unlike fructose-induced
uric acid generation that induces oxidative stress and NO deficiency in adult rats [14,16,22], maternal
HF consumption-induced programmed hypertension does not induce these abnormalities in adult
offspring [27]. These data suggest that mechanisms underlying maternal HF consumption-induced
programmed hypertension in offspring are different from those underlying fructose feeding-induced
programmed hypertension adult rats.

4. HF Consumption Induces Renal Transcriptome Changes

Notably, almost entire oral fructose consumed by pregnant mother rats is converted to glucose,
glycogen, fat, and lactate in the liver and is released into circulation [8]. Because fructose can be
transported across the human placenta [34] and because human placenta generates endogenous
fructose [35], it can be suggested that the key fetal programming process is driven by both fructose
and its metabolites. Nutrigenomics has been introduced to understand existing reciprocal interactions
between genes and nutrients [36]. Among different molecular nutrition approaches, transcriptomics
provides information on mechanisms and physiological signals of a particular diet at a molecular
level [36]. Recent advances in next-generation sequencing (NGS) allow us to monitor gene-diet
interactions at a genome-wide level. The nutrigenomics approach indicates that fructose consumption
leads to significant transcriptome changes in the brain of rats [37]. However, only limited studies
have analyzed the transcriptome of the kidneys isolated from rodent models of maternal fructose
consumption. We performed NGS by using RNA isolated from a 1-day-old offspring to analyze
transcriptome changes in response to maternal HF consumption [28,38]. We found that in addition
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to genes associated with fructose metabolism, genes associated with other metabolic pathways
such as glycolysis/gluconeogenesis, fatty acid metabolism, and insulin signaling were differential
expressed (Table 2). Expression of genes encoding liver-type 6-phosphofructokinase (Pfkl), peroxisome
proliferator-activated receptor gamma coactivator 1-α (Ppargc1a), glucose transporter 1 (Slc2a1), insulin
receptor substrate 2 (Irs2), lactate dehydrogenase A (Ldha), and sterol regulatory element-binding
transcription factor 1 (Srebf1) was upregulated in the kidneys. We also examined major organs that
control BP, including the heart and brain, and observed that maternal HF consumption increased
the mRNA levels of Pfkl, hexokinase 2 (Hk2), 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3
(Pfkfb3), suppressor of cytokine signaling 3 (Socs3), NFκB inhibitor α (Nfkbia), Ppargc1a, liver glycogen
phosphorylase (Pygl), and forkhead box protein O1 (Foxo1) in the heart. However, mRNA expression
of only Slc2a1 and short/branched chain specific acyl-CoA dehydrogenase (Acadsb) was upregulated,
whereas that of Socs3 was downregulated in the brain. Moreover, in contrast to the tightly regulated
glucose metabolism in the brain, insulin signaling was perturbed in the kidneys and heart. Thus,
our data suggest that different organs react differently to developmental programming, leading to
organ-specific transcriptional modification of gene cascades.

Table 2. Changes in the expression of shared differential expressed genes (DEGs) associated with
fructose metabolism in the kidneys, brain, and heart of offspring exposed to maternal HF diet at 1 day
of age.

Gene ID Symbol Kidney Brain Heart

Fructose and mannose metabolism

ENSRNOG00000001214 Pfkl 2.3 1.5 2.2
ENSRNOG00000006116 Hk2 1.8 ND 2.1
ENSRNOG00000018911 Pfkfb3 1.8 ND 4.5

Adipocytokine signaling pathway

ENSRNOG00000002946 Socs3 1.6 0.5 3.9
ENSRNOG00000007390 Nfkbia 1.9 1.9 3.5
ENSRNOG00000004473 Ppargc1a 2.3 1.6 2.7
ENSRNOG00000007284 Slc2a1 3.0 2.3 ND
ENSRNOG00000023509 Irs2 2.1 ND 1.6

Glycolysis/Gluconeogenesis

ENSRNOG00000001214 Pfkl 2.3 1.5 2.2
ENSRNOG00000006116 Hk2 1.8 ND 2.1
ENSRNOG00000013009 Ldha 2.2 ND 1.6

Fatty acid metabolism

ENSRNOG00000020624 Acadsb 1.9 2.0 ND

Insulin signaling pathway

ENSRNOG00000002946 Socs3 1.6 0.5 3.9
ENSRNOG00000004473 Ppargc1a 2.3 1.6 2.7
ENSRNOG00000006388 Pygl 1.9 ND 3.2
ENSRNOG00000006116 Hk2 1.8 ND 2.1
ENSRNOG00000023509 Irs2 2.1 ND 1.6
ENSRNOG00000003463 Srebf1 2.1 ND 1.6
ENSRNOG00000013397 Foxo1 1.8 ND 2.2

Gene expression was quantified as reads per kilobase of exon per million mapped reads (RPKM). Genes that
changed by RPKM of >0.3 and ≥2-fold differences between HF vs. control. Significant results are highlighted in
bold. ND, not detectable.

Our data showed that maternal HF consumption elicited different metabolic pathways in the
developing kidney and heart. A schematic representation of maternal HF consumption-induced
transcriptome changes in fructose metabolism, glycolysis/gluconeogenesis, fatty acid metabolism,
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and insulin signaling is shown in Figure 1. Fructose and related sugars, amino acids, and fatty acids
are important cellular nutrients. Specific nutrients function as signaling molecules that transmit and
translate dietary signals into changes in gene expression through appropriate sensing mechanisms
(also known as nutrient-sensing pathway) [39]. Transcription factors are the main agents through
which nutrients influence gene expression. Nuclear receptor superfamily of transcription factors is the
most important group of nutrient sensors. For example, peroxisome proliferator-activated receptors
(PPARs) interact with other nutrient-sensing signals to trigger renal programming and hypertension
in response to maternal nutritional insults [40]. Our NGS data suggest that the nutrient-sensing
pathway is crucial for the response of different organs of offspring to maternal HF consumption for
programming differential phenotypes of metabolic syndrome, including hypertension.
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Figure 1. Schematic representation of changes in the expression of genes regulating glucose metabolism,
fatty acid metabolism, and insulin signaling in the kidneys of offspring exposed to maternal HF
diet. Solid lines with arrowheads indicate known signaling events and interactions between glucose
metabolism, fatty acid metabolism, and insulin signaling. Dashed lines with arrowheads denote
proposed mechanisms contributing to maternal HF consumption-induced programmed hypertension.
Solid square boxes indicate DEGs identified by next-generation sequencing (NGS).

Our NGS data identified 10 significantly related Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways shared by 3 different developmental windows in the kidneys of offspring exposed
to maternal HF diet [28]. These KEGG pathways include complement and coagulation cascades;
PPAR signaling; hematopoietic cell lineage; circadian rhythm; fatty acid metabolism; valine, leucine
and isoleucine degradation; cell adhesion molecules; adipocytokine signaling pathway; arachidonic
acid metabolism; and butanoate metabolism. Of these, the complement and coagulation cascade
pathway is significantly regulated by maternal HF consumption, which is consistent with the results
of a previous study involving a rat model of intrauterine growth retardation [41]. Arachidonic acid
metabolism is another significant maternal HF consumption-related KEGG pathway. Arachidonic acid
is metabolized by cytochrome P450, cyclooxygenase, or lipoxygenase to prostaglandins and related
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compounds [42]. We recently reported that arachidonic acid metabolites are the key components
involved in hypertension development in various animal models [43].

In total, 20 DEGs in the kidneys of 1-day-old offspring exposed to maternal HF diet are associated
with BP regulation [24]. Of these, Adra2b, Bdkrb2, Col1a2, Hmox1, Ptgs2, and Tbxa2r are associated
with endothelium-derived hyperpolarizing factors (EDHFs). Because EDHFs play a crucial role in
maintaining maternal and fetal circulation, our data suggest that early-life fructose exposure prevents
interrelated EDHFs from adapting during nephrogenesis, leading to programmed hypertension
in later life. Furthermore, our NGS data suggest that nutrigenomics approach can identify renal
programming-associated genes and pathways that can be used as potential therapeutic targets for
prevent maternal HF consumption-induced programmed hypertension in adult offspring.

Epigenetic regulation may induce programmed hypertension [6,7]. We used a maternal HF
consumption model to analyze five groups of epigenetic regulators in the kidneys of 1-day-old
offspring. Of these, expression of seven genes, namely, Dnmt3l, Hdac9, Hdac11, Chd2, Brdt, Brwd1, and
Myst2, were found to be significantly regulated [28]. However, additional nutrigenomics studies are
needed to determine whether fructose-induced epigenetic regulation, including DNA methylation,
histone acetylation, and microRNA interference, is involved in maternal HF consumption-induced
programmed hypertension.

5. Reprogramming Strategy to Prevent Maternal HF Consumption-Induced
Programmed Hypertension

Several intervention strategies, including taurine, arginine, resveratrol, grape-derived polyphenols,
sardine protein, vitamin E, and α-lipoic acid, have been used to prevent the adverse metabolic
effects of excess fructose consumption in adults [44]. However, none of these strategies has been
examined as a candidate reprogramming strategy for preventing maternal HF consumption-induced
programmed hypertension.

Our data suggest that programmed processes promoting maternal HF consumption-induced
programmed hypertension are different from those promoting fructose feeding-induced programmed
hypertension in adult rats. Different mechanisms have been proposed to induce programmed
hypertension, such as epigenetic regulation, glucocorticoid effects, RAS and sodium transporter
alterations, oxidative stress, and nephron number reduction; these mechanisms can serve as
potential targets for preventing maternal HF consumption-induced programmed hypertension [7,45].
The renal transcriptome is greatly altered in the adult offspring of various models of programmed
hypertension [39,40]. We prevented hypertension development in adult offspring exposed to maternal
HF diet by using three deprogramming approaches, namely, melatonin [27], soluble epoxide hydrolase
(SEH) inhibitor [28], and renin inhibitor aliskiren.

Most reprogramming strategies have focused on restoring the balance of NO and reactive oxygen
species (ROS) to prevent hypertension [7]. Melatonin is an endogenously produced indoleamine that
exerts pleiotropic effects, including antioxidant effects [46]. We observed that maternal melatonin
treatment prevented HF consumption-induced programmed hypertension and increased NO levels in
the offspring kidneys [27]. Thus, reprogramming strategies that restore the NO–ROS balance can be
applied in a broad range of prohypertensive developmental conditions.

Our NGS data indicate that the arachidonic acid metabolism pathway is involved in maternal
HF consumption-induced renal programming and programmed hypertension [27,28]. Analysis by
using two models of programmed hypertension indicated Ephx2 expression and SEH (encoded by
Ephx2) activity played a direct role in renal programming [43]. Our recent studies indicate that early
postnatal treatment targeting the arachidonic acid metabolism pathway by using an SEH inhibitor
12-(3-adamantan-1-yl-ureido)-dodecanoic acid (AUDA) ameliorates hypertension in both maternal HF
consumption-induced and prenatal dexamethasone-induced hypertension models [29,47]. Moreover,
AUDA is effective in reprogramming BP in female spontaneously hypertensive rats (SHRs) but not in
male SHRs [48]. Thus, reprogramming interventions for preventing hypertension may affect pathways
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that are common to nutrition and genetic models. However, it would be interesting to see whether
SEH inhibition also prevents programmed hypertension in other models of nutritional programming.

RAS plays an essential role in BP control and nephrogenesis. Blockade of RAS with an
angiotensin-converting enzyme inhibitor captopril, angiotensin receptor blocker losartan, or renin
inhibitor aliskiren in young offspring from age 2 to 4 weeks of various animal models of hypertension
counteracts programming effects [49–51]. We recently found that aliskiren administration during
early postnatal life prevented maternal HF consumption-induced programmed hypertension in adult
offspring of both the sexes [30]. We also observed that maternal HF consumption induced higher
changes in the renal transcriptome of female rats than in that of male rats at 1 week of age [29].
Because sex differences exist in experimental models and human studies of hypertension [52], future
studies should be aimed at identifying fundamental sex-specific mechanisms to provide a novel
reprogramming strategy for achieving maximal optimization in both the sexes.

6. Conclusions

Diet is a major environmental factor in gene–environment interactions underlying the DOHaD
concept. Maternal nutrition and its association with nutrient–gene interactions remains a challenging
area of research. Although results obtained using animal models indicate that maternal HF
consumption plays a role in the developmental programming of hypertension, early-life fructose–gene
interactions in humans might be more complex and multifactorial. However, results of animal
studies indicate that downstream pathways are largely reprogrammable irrespective of their upstream
stimuli. This is fortunate because identification of upstream stimuli is often difficult in humans with
programmed hypertension. Applications of newly developed high-throughput tools in nutrigenomics
will allow us to identify genes or metabolites that are altered during prehypertension and will help in
characterizing pathways regulated by dietary fructose. These tools can also help in developing early
diagnostic methods and effective reprogramming strategies for treating HF diet-related diseases such
as hypertension and metabolic syndrome. These new findings should be confirmed in further studies
to develop personalized nutrition for health promotion and disease prevention.
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