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Abstract: Radiation therapy (RT) is an important and potentially curative modality for head and
neck squamous cell carcinoma (HNSCC). Locoregional recurrence (LR) of HNSCC after RT is ranging
from 15% to 50% depending on the primary site and stage. In addition, the 5-year survival rate of
patients with LR is low. To classify high-risk patients who might develop LR, a deep learning model
for predicting LR needs to be established. In this work, 157 patients with HNSCC who underwent RT
were analyzed. Based on the National Cancer Institute’s multi-institutional TCIA data set containing
FDG-PET/CT/dose, a 3D deep learning model was proposed to predict LR without time-consuming
segmentation or feature extraction. Our model achieved an averaged area under the curve (AUC)
of 0.856. Adding clinical factors into the model improved the AUC to an average of 0.892 with
the highest AUC of up to 0.974. The 3D deep learning model could perform individualized risk
quantification of LR in patients with HNSCC without time-consuming tumor segmentation.

Keywords: head and neck squamous cell carcinoma; deep learning; locoregional recurrence

1. Introduction

More than 650,000 cases of head and neck cancer including head and neck squamous
cell carcinoma (HNSCC) have been reported worldwide annually, making it the seventh
most common cancer [1,2]. To treat HNSCC, radiation therapy is frequently considered [3].
The locoregional recurrence (LR) varies depending on the primary site and stage and
ranging from 15% to 50% after treatment of HNSCC [4–8]. In addition, the outcome of
patients with LR after treatment is poor, with a 5-year survival rate of 50% [4–6]. To find
high-risk patients who might suffer from LR in advance, it is necessary to develop a model
capable of predicting the LR.

To predict the LR, radiomics has been widely used and proved to be powerful for
predicting the prognosis of tumor after it is treated [8–17]. In addition, the prediction
performance can be further improved using combined radiomics and dosiomics [16].
Although tumor segmentation and feature extraction are essential parts of -omics prediction,
they are not integrated into a single model. Consequently, such -omics methods are hardly
reproducible in other institutions [17–20]. Therefore, it is necessary to deal with radiological
and radiotherapy images themselves, instead of radiomics and dosiomics.

A deep neural network (DNN) has been attracting attention as an innovative method
for image analysis, natural language processing, and various research methods [12,21–25],
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because it can learn the rules governing the underlying phenomena directly from the data.
Therefore, a solution for such problems can be solved by using a deep neural network.
Combining DNNs with radiomics shows great potential to predict cancer patient prognosis
following treatment [15,26]. One advantage of DNNs is that a DNN does not need a process
of segmentation or feature extraction because DNN can capture features from images by
training. Moreover, a DNN has the ability to extract features that cannot be described by
traditional analytic algorithms.

To predict the prognosis of HNSCC, several methods based on radiomics have been
reported [14,15]. Such methods based on radiomics have demonstrated that LR, distant
metastasis, and overall survival of HNSCC can be predicted. In these studies, predicting
models were evaluated using area under the curve (AUC) of receiver operating character-
istic (ROC) curves. Diamant et al. have reported that they could achieve an AUC of 0.92
for predicting distant metastasis [15]. However, the AUC for predicting LR has been to be
0.65 by Diamant et al. and 0.69 by Vallières et al. [14,15], indicating that predicting distant
metastasis and overall survival is more reliable than predicting LR. As AUC for predicting
LR was found to be relatively low, the performance of predicting LR remains an issue.

In this work, we proposed a convolutional neural network (CNN) to predict the LR of
patients with HNSCC following radiation therapy [1,3,12,27–30]. CNN-based deep learning
models were designed to be capable of predicting LR using CT, FDG-PET, dose distribution,
or clinical factors. In our model, medical images and does distributions were not segmented.
Their features were not extracted to avoid the issue related to reproducibility [17–20]. In
addition, five different models with different input configurations were compared. We
found that the deep learning model receiving three images and additional clinical factors
as input could predict the LR most effectively. This will be discussed below in great detail.

2. Materials and Methods

Data set: We used the data set containing FDG-PET/CT and radiotherapy planning
CT imaging data of 298 patients with HNSCC in The Cancer Imaging Archive (TCIA) [14].
After excluding incomplete data set, data of 157 patients were used for this study as
summarized in Table S1. For cross-validation, the data set was randomly divided into a
training set (134 patients) and a test set (23 patients) for 5 times as summarized in Table S1.
p-values were calculated by Fisher’s exact test to compare training and validation data sets.

Image preprocessing: CT and PET images and radiation dose distribution were
cropped and interpolated into a total size of 300 mm × 300 mm × 99 mm with a voxel size
of 3 mm × 3 mm × 3 mm. Homemade MATLAB® (The MathWorks Inc., Natick, MA, USA)
codes were used to crop and interpolate them.

Deep learning model: We developed a three-dimensional deep learning architecture
as shown in Figure 1. We proposed three types of 3D DL architectures depending on the
number of inputs (two, three, and four major inputs). Two inputs architectures were CP
(CT+PET), CD (CT+Dose), and PD (PET+Dose) models (Figure 1a and Table S2). We also
considered architectures (CPD model: CT+PET+Dose) with three inputs (Figure 1b). Finally,
the CPD-C (CT+PET+Dose+clinical factors) architectures in Figure 1c included baseline
patient characteristics such as sex, age, tumor stages, and primary disease site.

As CT and PET images with dose distribution were three dimensional (3D) images,
3D convolutional neural network (3D CNN) was used. For each model, conv3D and max
pooling layers had window sizes of 3 × 3 × 2 and 2 × 2 × 2, respectively. After passing the
first con3D and max pooling layers, hidden layers were summed to integrate information.
To perform deep extraction of various features from inputs, channels of conv3D were set to
be 16, 32, 64, 128, and 256. After setting all con3D and max pooling layers, vectors were
flattened and passed through the one multi-layer perceptron to predict LR. In the CPD-C
model, additional inputs of clinical factors were vectorized using the one-hot encoding
method. Those inputs were integrated as shown in Figure 1c.
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Figure 1. Deep learning model for predicting locoregional recurrence (LR): (a) DL model for CP 
(CT+PET) model. (b) CPD (CT+PET+Dose) model. (c) CPD-C (CT+PET+Dose+clinical factors) model. 
Architectures of DL models in detail can be found in Supporting Information. 
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A rectified linear unit (ReLU) was used for activation functions of all layers except 
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moid function. Total parameters of models in Figure 1a–c were about 911, 911, and 915 
thousand, respectively. 

To train 3D DL models, images of a total of 157 patients were randomly divided into 
a training set (134 patients) and a test set (23 patients). As the number of images was 

Figure 1. Deep learning model for predicting locoregional recurrence (LR): (a) DL model for CP
(CT+PET) model. (b) CPD (CT+PET+Dose) model. (c) CPD-C (CT+PET+Dose+clinical factors) model.
Architectures of DL models in detail can be found in Supporting Information.

A rectified linear unit (ReLU) was used for activation functions of all layers except
the last layer to predict LR. The activation function of the last layer was set to have a
sigmoid function. Total parameters of models in Figure 1a–c were about 911, 911, and
915 thousand, respectively.

To train 3D DL models, images of a total of 157 patients were randomly divided into
a training set (134 patients) and a test set (23 patients). As the number of images was
relatively small, images were flipped in left–right, anterior–posterior, and inferior–superior
directions. All combinations of flipping directions were applied to produce 8 times larger
training data sets. Such data augmentation is a useful strategy to deal with small data
set [31]. Three-dimensional DL models were optimized until the minimum validation loss
was achieved as shown in Figure S1. Five randomly divided sets were used to train and test
3D DL models. No significant difference (p-value > 0.10) was found between the training
and test sets for each data set by calculating Fisher’s exact test. Our 3D DL models were
built using the Keras and trained using a computer with an intel CPU (i7-6700) and 16 GB
of RAM.
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3. Results
3.1. Features Captured by 3D DL Models

In the case of DL model using CNN, each channel in 3D convolutional (conv3D) layers
could capture features in images. Figure 2 depicts several selected activation maps captured
by conv3D layers in the CPD-C model. A close inspection of feature map revealed the area
around the tumor (highlighted). In the first row of the first CNN layer, activation maps
resulting from CT images as input could capture overall shape and boundary. However,
the area around the tumor was highlighted in activation maps by the layer that passed PET
images. Activation maps produced by dose distributions captured a relatively complex
pattern in the dose distribution. Therefore, our 3D DL models were found to have the ability
to capture tumor related features to predict LR. As shown in Figures S2–S6, activation maps
tuned into a more abstract representation to relate LR.
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Figure 2. Visualized activation maps of the CPD-C (CT+PET+Dose+clinical factors) model. The
first, second, and third rows of activation maps in the 1st CNN layer were extracted from conv3d_1,
conv3d_2, and conv3d_3, respectively (See the architecture in Table S3). Activation maps in the 2nd
CNN layer were extracted from conv3d_4.

3.2. LR Prediction Using 3D DL Models

The most accurate 3D DL model was found to be the CPD-C model with an average
accuracy of 88.7% ± 4%. In addition, our 3D DL model required only 1.2 s to predict
the LR after training using a computer with an intel CPU (i7-6700) and 16 GB of RAM.
Three-dimensional DL models were further evaluated using area under the curve (AUC)
of receiver operating characteristic (ROC) curves. The ROC curve is a graph of the false
positive rate and the true positive rate obtained by changing the threshold value, which is
the criterion for distinguishing positive and negative. Since our DL model was a binary
classifier that distinguished whether or not LR occurred, the AUC of the ROC curve was
used to compare five different 3D DL models. Results are shown in Figure 3. The CPD-C
model was found to have the largest average AUC of 0.892 ± 0.07. AUCs were gradually
increased in the order of CD (0.72 ± 0.04), CP (0.77 ± 0.07), PD (0.83 ± 0.07), and CPD
(0.86 ± 0.07) models.
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4. Discussion

Several studies have predicted the LR of HNSCC patients using various radiomics
methods as summarized in Table 1. After feature extraction from CT and PET images, a
method of finding the correlation with LR using a multivariate Cox proportional hazard re-
gression model has been reported [16]. In this method, concordance index (CI) values were
found to be 0.60, 0.66, and 0.56 for CP, CPD, and CPD-C models, respectively. Meanwhile,
Wang et al. have reported a machine learning model such as a support vector machine
using extracted features to predict LR [8]. In their study, AUCs of CP and CP-C were 0.76
and 0.77, respectively. In the group reporting the HNSCC data set to TCIA, AUC values
of 0.64 and 0.69 were reported when LR was predicted with a random forest model using
CP and CP-C [14]. Methods attempted to predict LR so far have been based on feature
extraction. Recently, Diamant et al. have reported a CNN model for predicting the LR from
central tumor slice, with an AUC of 0.65 [15].
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Table 1. Averaged AUC of test set compared to AUCs of other previous studies.

CP CP-C CD PD CPD CPD-C

Song et al. [16] 0.60 a - - - 0.66 a 0.56 a

Wang et al. [8] 0.76 0.77 - - - -
Vallières et al. [14] 0.64 0.69 - - - -
Diamant et al. [15] 0.65 - - - - -

In this study 0.77 ± 0.07 - 0.72 ± 0.04 0.83 ± 0.07 0.86 ± 0.07 0.89 ± 0.07
a Those values are concordance index (CI) values.

Radiomic features such as first-order statistics and shape features are extracted after
segmentation [16]. However, there is a risk of being missed if there is an unexpected effect
between divided areas. In addition, unexpected image distortion may in discretizing CT
and PET image with continuous values for feature extraction. Furthermore, features may
have relatively shallow information because feature values are calculated according to a
predetermined algorithm. However, features extracted by 3D DL model can be considered
as more complex features than traditional features. Moreover, features are mixed to produce
more abstract and informational features by passing through conv3D layers. After passing
through the last con3D layer, features are transformed into the most abstract representation
as shown in Figure S6.

In this study, the use of a 3D DL model was able to achieve a higher AUC than the
conventional method. In the case of CP model, the averaged AUC value was 0.77 ± 0.07,
which was higher than that of 0.76 of Wang et al. and 0.64 of M. Vallières et al. [8,14].
Such a high AUC value was achieved by skipping segmentation process and replacing
feature extraction with deep learning. Since segmentation might suffer from inter- and
intra-observer variation, it is a huge advance to avoid potentially erroneous procedures
and human intervention [17–20]. Furthermore, an additional benefit of skipping the
segmentation process is that the time needed for prediction can be dramatically reduced
to about a second. Considering the time for segmentation, our model takes a negligible
amount of time to make a prediction.

The AUC of the CPD model was larger than that of the CP model. This means that
dose distribution with information about the treatment plan plays an important role in
predicting recurrence after radiation therapy. As reported by Song and coworkers, dose
distribution plays a very important role in predicting LR [16]. As shown by Song and
coworkers, not only radiomics based on CT and PET images, but also dosiomics using the
same strategy for dose distribution in predicting LR are important.

The average AUC value of the CD model shown in Table 1 was found to be lower than
those of CP and PD models. As PET images clearly indicate the metabolic characterization
of tumoral microenvironments, PET images may play a substantial role in predicting
LR [12,32,33]. As averaged AUC values were increased in the order of CP, CPD, and
CPD-C, LR prediction was improved when the more information was given. In the case
of the CPD-C model to which the clinical factor was added, the averaged AUC value was
0.892 ± 0.07, which was the highest among all other models. In addition, the highest AUC
of 0.974 was achieved for the CPD-C model. When compared to the concordance index
(CI) value of CPD-C model of Song and coworkers (CI = 0.56) [16], the averaged AUC
value of our CPD-C model is much higher. This is because our 3D DL model can effectively
handle the clinical factors by representing them into more appropriate features in dense_1
to dense_6 layers and learning the correlations between the clinical factors and images in
dense_7 and dense_9 layers as summarized in Table S4. Considering that the AUC of the
CPD model was 0.856 ± 0.07, the improvement of AUC by clinical factors indicates that
important information for prediction is not present in medical images or dose distribution.
Additionally, the averaged AUC values of CPD-C model for each primary site and T stage
are investigated as summarized in Table S5. The averaged AUC values of oropharynx and
T2 stage were found to be highest among primary sites and T stages, respectively. This
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is because our 3D DL model was able to learn effectively based on the largest number of
datapoints of oropharynx (n = 109) and T2 stage (n = 57).

DL models are often criticized in that it is hard to understand reason for the prediction
the DL model made. This critique is called the Clever Hans effect, in which the DL model
generates a correct answer for the wrong reason [34]. However, in the case of CNNs, the DL
model shows an important part in making a prediction. Figure 4 shows the importance at
the max_pooling3d_6 layer of the CPD-C model using Grad-CAM [35]. Importance values
can be assigned by using the gradient information flowing into the last convolutional layer
of the CNN in Grad-CAM [35].
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Figure 4. Heat map of LR positive patient produced by the CPD-C model: (a) Input images of
CT. (b). Input images of PET. (c). Input images of dose distribution. (d). Contour images of CT.
(e). Contour images of PET. (f). The heatmap. The red region in the heatmap indicates where
the important region to make decision of LR. (g–i) are superimposed images of CT, PET, and dose
distribution and heatmap, respectively.

Figure 4 depicts the contour and heatmap of an LR positive patient. The CPD-C
model successfully predicted that the patient would be LR positive from images shown in
Figure 4a–c. The red region in Figure 4f indicates where the important region captured by
CPD-C model to predict LR. As shown in Figure 4g,h, the CPD-C model could recognize the
area including the tumor area. In addition, it could be seen that a larger area including the
tumor area was marked as important to predict LR. This indicates that not only the gross
tumor volume (GTV), but also surrounding tissues are important for making a decision.
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In the case of the CPD model, the CPD model accurately predicted that the patient
would be LR negative from images shown in Figure 5a–c. Similarly, the CPD model
captured a larger area including the tumor area. Figures S7 and S8 depict the heat map
of patients who are LR positive and negative, respectively. This indicates that our 3D DL
model can make a decision by referring to complex features on images. In conventional
radiomics, feature extractions were performed in the GTV area. It might miss information
for surrounding tissues of tumor. However, 3D DL models showed that our model could
overcome such issues by considering images themselves without segmentation or extracting
complex features directly from images.
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Figure 5. Heat map of an LR negative patient produced by the CPD model: (a). Input images of
CT. (b). Input images of PET. (c). Input images of dose distribution. (d). Contour images of CT.
(e). Contour images of PET. (f). The heatmap. The red region in the heatmap indicating the important
region to make decision of LR. (g–i) are superimposed images of CT, PET, and dose distribution and
heatmap, respectively.

In our model, only six clinical factors (sex, age, T stage, N stage, M stage, and primary
site) were considered to predict LR. In fact, human papilloma virus (HPV) is known to
be related to HNSCC [12,36,37]. However, the infection of HPV was not handled in our
model because information about HPV was lacking in the data set. The status of HPV
infection might be important to improve our 3D DL model. In addition, there could be
other unknown clinical factors, such as effects of chemotherapy, tobacco consumption,
and alcohol abuse, related to LR of HNSCC. Deep learning method is useful to identify
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which clinical factors are important to improve model performance. Systematic research on
finding critical clinical factors can open the opportunity to find high risk patients.

5. Conclusions

This study demonstrated the impact of deep learning on LR prediction through
pretreatment images (CT/PET scans) and treatment schemes (dose distributions). The
performance of LR prediction was increased when baseline patient characteristics were
considered. Our model allowed prediction consistency and established a cost-effective
system to meet large clinical demands with less manual intervention. The use of a non-
invasive model with pretreatment information could predict patient prognosis, which can
have a potential clinical implication on personalized therapy.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/jpm12020143/s1, Figure S1: The training procedure of CPD-C
model with set 1, Figures S2–S6: activation maps passing through the layers of CPD-C model in
Table S3, and Figures S7 and S8: Heat map of CPD-C model for the images of patient, Table S1: The
characteristics of 157 patients in head and neck squamous cell carcinoma data set., Tables S2–S4: The
architecture of deep learning models, Table S5: Averaged AUC of CPD-C model for each primary site,
T and N stage.
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