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Abstract

Noise is a major challenge for the analysis of fMRI data in general and for connectivity analy-

ses in particular. As researchers develop increasingly sophisticated tools to model statistical

dependence between the fMRI signal in different brain regions, there is a risk that these

models may increasingly capture artifactual relationships between regions, that are the

result of noise. Thus, choosing optimal denoising methods is a crucial step to maximize the

accuracy and reproducibility of connectivity models. Most comparisons between denoising

methods require knowledge of the ground truth: of what is the ‘real signal’. For this reason,

they are usually based on simulated fMRI data. However, simulated data may not match the

statistical properties of real data, limiting the generalizability of the conclusions. In this arti-

cle, we propose an approach to evaluate denoising methods using real (non-simulated)

fMRI data. First, we introduce an intersubject version of multivariate pattern dependence

(iMVPD) that computes the statistical dependence between a brain region in one participant,

and another brain region in a different participant. iMVPD has the following advantages: 1) it

is multivariate, 2) it trains and tests models on independent partitions of the real fMRI data,

and 3) it generates predictions that are both between subjects and between regions. Since

whole-brain sources of noise are more strongly correlated within subject than between sub-

jects, we can use the difference between standard MVPD and iMVPD as a ‘discrepancy

metric’ to evaluate denoising techniques (where more effective techniques should yield

smaller differences). As predicted, the difference is the greatest in the absence of denoising

methods. Furthermore, a combination of removal of the global signal and CompCorr opti-

mizes denoising (among the set of denoising options tested).

Introduction

Cognitive tasks elicit the activation of multiple brain regions [1, 2]. To understand how these

regions function jointly to implement cognition, we need to investigate their connectivity.
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Connectivity measures based on structural data (i.e. [3]) and connectivity measures based on

functional data (i.e. [4]) have distinct advantages: the former enable inferences about whether

regions are directly connected, the latter have the potential to investigate task-specific changes

in the interactions between regions. Perhaps the most popular method to study interactions

using functional data is ‘functional connectivity’, an analysis technique based on computing

Pearson’s correlation between the average responses in two brain regions over time [4]. Func-

tional connectivity has been used extensively to map brain networks [5] and search for bio-

markers for patient populations [6].

Functional connectivity has served as the backbone of a vast literature, but the development

of new methods for the study of neural responses and the emergence of new questions called

for a new approach to study functional interactions between brain regions. Functional connec-

tivity is univariate in nature: it is based on correlations between spatially-averaged responses.

By contrast, it is now known that multivariate patterns of response encode rich information

that is lost by averaging [7, 8]. Furthermore, functional connectivity does not lead to a predic-

tive model that can be tested in independent data. Training a model with part of the data and

testing its accuracy in independent data has become the norm for some types of analyses (i.e.

MultiVoxel Pattern Analysis—MVPA, [9]), but it is not done in functional connectivity, and

this makes it more susceptible to noise. A technique was needed to capture interactions

between brain regions preserving multivariate information, and to implement training and

testing in independent data. To satisfy these requirements, we have recently developed Multi-

Variate Pattern Dependence (MVPD, [10]), and we have found that it is more sensitive than

univariate connectivity techniques [10].

MVPD fits a model with a set of training data and tests it in independent data, therefore it

is more robust to noise than methods lacking an independent ‘generalization’ test. However,

some sources of noise may still affect MVPD results. For this reason, it is critical to use effective

denoising techniques. Estimating the effectiveness of different denoising techniques for connec-

tivity analysis has been typically challenging. Studies comparing different denoising approaches

usually rely on simulations (i.e. [11]), because in simulations the ground truth is known. The

simulation model determines what part of the overall response is the signal and what part is the

noise, and the failure or success of the denoising methods can be determined unambiguously.

Unfortunately, applying conclusions obtained with simulation models to real fMRI data is

non-trivial. Despite efforts to generate simulations that preserve many of the statistical proper-

ties of Blood-Oxygen Level Dependent (BOLD) signal, it is very difficult to generate simula-

tions that perfectly match the statistical properties of real BOLD timecourses. This difficulty

poses a major obstacle towards developing increasingly sophisticated connectivity techniques:

more complex connectivity models might capture complex relationships between the noise in

different regions, and thus require increasingly effective denoising. The differences between

simulations and real data could thus have an even greater impact on the evaluation of denois-

ing techniques.

In this article, we developed an approach to evaluate different denoising techniques using

real fMRI data (as opposed to simulations). Our approach relies on computing interactions

between brain regions between participants, following an ‘intersubject’ approach. Intersubject

versions of univariate connectivity measures have been used in the previous literature to study

individual differences in the responses to the same stimuli (intersubject correlations, [12–14]).

We introduce here an intersubject version of MVPD (iMVPD), which predicts responses

between brain regions in different participants (source code available at https://github.com/

yl3506/iMVPD_denoise). Three key properties define iMVPD: 1) it is multivariate, 2) it trains

and tests models on independent partitions of the data, and 3) it generates predictions that are

both between subjects and between regions.

Intersubject MVPD: Empirical comparison of fMRI denoising methods for connectivity analysis
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We took advantage of the unique properties of iMVPD to test the effectiveness of different

denoising techniques on real fMRI data in the context of multivariate connectivity analyses.

Considering a set of functionally-defined regions of interest, we computed connectivity matri-

ces showing MVPD strength across each pair of regions both within subject and between sub-

jects. Since different participants are likely to exhibit variation in their head movements and

patterns of breathing or respiration, iMVPD should be less affected by these sources of noise.

As a consequence, effective denoising techniques should yield a reduced difference between

the within-subject and intersubject connectivity matrices. This gave us an index that we could

use to compare different denoising approaches.

Materials and methods

Data

All analyses in this project use the 3 tesla (3T) audio-visual fMRI dataset from the StudyForrest

project (http://studyforrest.org), which encompasses over 2 hours of scans for each of 15 par-

ticipants (all right handed, mean age 29.4 years, range 21–39, 6 females). T2�-weighted echo-

planar images (TR = 2s, TE = 30m, 90deg flip angle, parallel acquisition with sensitivity encod-

ing (SENSE) reduction factor 2) were acquired using a whole-body Philips Achieva dStream

MRI scanner with a 32 channel head coil. Each volume consists of 35 axial slices with a 10%

inter-slice gap. Each slice comprises 80 × 80 voxels, with voxel resolution = 3 × 3 × 3mm, cov-

ering a Field of view (FoV) of 240mm (see [15] for additional details).

The dataset includes localizer sessions with stimuli from multiple categories, and the view-

ing of the entire movie Forrest Gump, subdivided into 8 sections presented to participants in 8

separate functional runs. This dataset was chosen for this study as it provides complex sensory

input that follows the same timecourse between participants [16]. During the localizer session

for this experiment, participants were shown 24 unique grayscale images from each of six stim-

ulus categories: human faces, human bodies without heads, small objects, houses and outdoor

scenes comprising of nature and street scenes, and phase scrambled images [17]. During the

movie session for this experiment, participants were shown two-hour audio-visual stimuli (the

movie Forrest Gump) [18].

Preprocessing

The format and folder structure of the dataset was modified to match the BIDS standard [19],

and the data were preprocessed using fMRIPrep (https://fmriprep.readthedocs.io/en/latest/

index.html): a preprocessing tool that takes advantage of nipype (https://nipype.readthedocs.

io/en/latest/) to combine efficient algorithms for fMRI preprocessing from different software

packages, minimizing experimenter degrees of freedom and offering a controlled environment

that favors reproducibility [20]. Specifically, FSL MCFLIRT (https://fsl.fmrib.ox.ac.uk/fsl/

fslwiki/MCFLIRT) was used to estimate head motion, and each individual’s functional data

were coregistered to her/his anatomical scan. Segmentation and normalization were per-

formed with ANTs (http://stnava.github.io/ANTs/).

Regions of interest (ROIs) definition

In order to make the results easily replicable, we analyzed two networks of category-selective

brain regions that are highly reliable between participants and widely studied in the literature

(Fig 1): the face-selective network (including the occipital face area—rOFA, fusiform face area

—rFFA, anterior temporal lobe—rATL, and superior temporal sulcus—rSTS) and the scene-
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selective network (including transverse occipital sulcus—rTOS, parahippocampal place area—

rPPA, and posterior cingulate—rPC).

Given the similarity in the responses in these regions across hemispheres, we restricted our

analysis to the right hemisphere. First-level general linear models (GLM) were estimated in

each participant with FSL FEAT (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FEAT) using the inde-

pendent localizer data. Face-selective regions were identified in individual participants using

the contrast faces > scenes in an independent functional localizer. Anatomical parcels gener-

ated from a large number of independent subjects were used as a search space to identify con-

trast peaks for each of the regions. We then defined a 9mm sphere centered in the peak and

selected the 80 voxels showing strongest face-selectivity within the sphere, as assessed with the

contrast t-map. An analogous procedure was adopted for the scene regions, with the exception

that the search space mask was defined by visually determining the group-level peaks for the

contrast scenes > faces. Regions of interest were visualized on the cortical surface with Con-

nectome Workbench (https://www.humanconnectome.org/software/connectome-workbench,

Fig 1).

Denoising methods

We compared the effectiveness of four different denoising approaches for fMRI data: regres-

sion of slow trends [21], commonly adopted to remove ‘scanner drift’; low frequency fluctua-

tions attributed to physiological noise and subject motion [22]; regression of the six motion

parameters generated during motion correction [23], which attempts to remove noise that is

linearly related to translations and rotations of the head; removal of the global signal [24],

which discards the variability in a voxel’s responses that is shared with the fluctuation of the

Fig 1. Regions of interest. Regions of interest for one example participant shown on an inflated cortical surface. Face-

selective regions are shown in red-yellow (occipital face area—OFA, fusiform face area—FFA, superior temporal sulcus—

STS, anterior temporal lobe—ATL), scene-selective regions are shown in blue (temporo-occipital sulcus -TOS,

parahippocampal place area—PPA, posterior cingulate/retrosplenial cortex—PC).

https://doi.org/10.1371/journal.pone.0222914.g001
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average signal in the entire brain; and CompCorr [25], which extracts principal components

from the signal in the white matter and cerebrospinal fluid and regresses them out from each

voxel. All denoising methods were implemented by first generating one (i.e. in the case of

global signal) or more (i.e. in the case of motion parameters) predictors. The predictors were

then regressing out of each voxel’s responses, and the residuals of the regression were used as

the ‘denoised’ signal. Translation and rotation predictors and predictors for the removal of

slow trends were obtained from the fMRIPrep outputs. Predictors for CompCorr were com-

puted by generating an eroded mask of the white matter and cerebrospinal fluid using the seg-

mented anatomical data from individual participants, and extracting 5 principal components.

The predictor for the global signal was computed averaging the responses in all voxels in a sub-

ject-specific gray matter mask generated by fMRIPrep during segmentation In addition to test-

ing the effectiveness of denoising methods taken individually, we assessed combinations of

multiple denoising methods to identify optimal noise removal approaches. In total, we com-

pared 11 different denoising pipelines.

Data quality

The StudyForrest project (http://studyforrest.org) applied various approaches to ensure data

quality [15]. They estimated participant movement by aligning all time series images to a com-

mon participant-specific brain template and obtained good results. Besides, the temporal sig-

nal-to-noise ratio was also measured, and was found to be reliably above the level of 40 within

gray matter [17], which has been identified with simulations as the minimal level to reliably

detect effects in fMRI [26]. In addition, two strategies were employed to demonstrate that the

data captured rich and reliable signal: BOLD responses reflected the emotions presented in

the video, and BOLD responses to the audio-visual movie correlated with previously collected

responses to an audio-only version of the same movie. We analyzed data only from partici-

pants who completed all the sessions (4 runs of the object category localizer, and 8 runs of the

movie, as well as anatomical data). One more subject failed to pass the FMRIPREP preprocess-

ing pipeline and therefore it was also removed. Based on within-subject analyses (in which we

used a default denoising approach consisting of removal of scanner drift followed by Comp-

Corr), we identified and removed three outlier subjects who had low within-subject prediction

accuracy across all region pairs (see S1 Fig). After data quality control, the number of subjects

left is 11.

iMVPD: Modeling representational spaces

For both within subject MVPD, and between subject iMVPD, the data were divided into a 8

partitions; each analysis used 7 partitions for training and one for testing, iteratively. Using

only the training data, dimensionality reduction was applied to the multivariate responses in

each region using PCA. Second, a linear function was estimated to predict the responses along

the PCs in the target region from the responses in the predictor region (still using only the

training data). Finally, the testing data were projected on the PC dimensions estimated with

the training data, and the function f estimated with the training data was applied to the testing

data in the predictor region to generate a prediction for the testing data in the target region.

The proportion of variance explained by this prediction in the observed testing data in the tar-

get region was computed and used as a measure of multivariate statistical dependence between

the two regions. The key difference between MVPD and between subjects iMVPD was that in

iMVPD the target regions’ data were drawn from a different participant.

More specifically, let’s consider two participants A, B and two brain regions (a ‘predictor’

region in participant A, and a ‘target’ region in participant B). For participant A, we extracted

Intersubject MVPD: Empirical comparison of fMRI denoising methods for connectivity analysis
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multivariate timecourses of response XA
1
; � � � ;XA

n in the predictor region, and for participant B
we extracted multivariate timecourses YB

1
; � � � ;YB

n in the target region (where n = 8 is the num-

ber of runs).

The multivariate timecourse XA
i in the predictor region for participant A in run i was a

matrix of size Ti � NA
X , where Ti was the number of time points of the ith run, and NA

X was the

number of voxels in the predictor region for participant A. Analogously, the multivariate time-

course YB
i in the target region for participant B in run i was a matrix of size Ti � NB

Y , where Ti

was the number of time points of the ith run, and NB
Y was the number of voxels in the target

ROI for participant B.

Just as in standard MVPD [10], for each choice of a testing run i, data in the remaining

runs were concatenated, obtaining the training predictor:

XA
train ¼ ðX

A
1
; � � � ;XA

i� 1
; � � � ;XA

iþ1
; � � � ;XA

n Þ ð1Þ

The training target will be obtained by the same procedure, applied to the data from the pre-

dictor region from a different subject B:

YB
train ¼ ðY

B
1
; � � � ;YB

i� 1
; � � � ;YB

iþ1
; � � � ;YB

n Þ ð2Þ

After the generation of the training set, principal component analysis (PCA) was applied to

XA
train and YB

train:

XA
train ¼ UX;trainSX;trainVT

X;train ð3Þ

YB
train ¼ UY;trainSY;trainVT

Y;train ð4Þ

Dimensionality reduction was implemented projecting XA
train and YB

train on lower dimensional

subspaces spanned by the first kX and kY principal components respectively:

~XA
train ¼ XA

trainV
½1;���;kX �
X;train ð5Þ

~YB
train ¼ YB

trainV
½1;���;kY �
Y;train ð6Þ

where V ½1;���;kX �X;train was the matrix formed by the first kX columns of VX,train, and V ½1;���;kY �Y;train was the

matrix formed by the first kY columns of VY,train. For each region, each dimension obtained

with PCA was a linear combination of the voxels in the region, whose weights defined a multi-

variate pattern of response over voxels. Considering as an example the predictor region, the

scores of a dimension k were encoded in the kth column of ~XA
train, and represented the intensity

with which the multivariate pattern corresponding to dimension k was activated over time.

In previous work, we found that using 3 components outperformed using 1 or 2 components

[10]. To test this observation in this new dataset, we compared the MVPD results obtained

from choosing 1, 2, and 3 components using a default denoising method—removal of slow

trends + CompCorr. Consistently with prior findings [10], the model with 3 components

explained the most independent variance (see the section ‘Variance Explained’): averaging

between all region pairs we obtained the following values of ‘multivariate independent correla-

tion index’ (square root of the independent variance explained): 0.2169, 0.2560, 0.2774 respec-

tively for 1, 2 and 3 principal components. Therefore, we used 3 components for the rest of

our analyses.
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iMVPD: Modeling statistical dependence and predicting multivariate

timecourses

The mapping f from the dimensionality-reduced timecourses in the predictor region ~XA
train to

the dimensionality-reduced timecourses in the target region ~YB
train was modeled with multiple

linear regression:

~YB
train ¼Wtrain

~XA
train þ Etrain ð7Þ

where the model parameters were estimated using ordinary least squares (OLS).

The extension of multivariate analysis methods to intersubject formulations can pose

unique challenges. For example, in MVPA, classification between participants is usually poor

unless functional alignment techniques are not first used to identify a common response space

between participants [27, 28]. In the case of iMVPD, despite the brain region used as predictor

and the brain region that is the target of prediction are in different participants, the learned

prediction function is always applied to (independent subsets of) data from the same subject

during both training and testing. This ensures that the function learned during training can be

applied at the testing stage without the need of additional hyperalignment.

After the estimation of parameters Wtrain, predictions for the multivariate responses in the

left out run i were computed by 1) projecting the predictor region’s data in the test run i on

the principal components of the predictor region estimated with the other runs (the training

runs), and 2) multiplying the dimensionality-reduced testing data by the parameters estimated

using data from the other runs (the training runs). More formally, for each run i, we generated

dimensionality reduced responses in the predictor region:

~XA
test ¼ XA

testV
½1;���;kX �
X;train : ð8Þ

Then, we calculated the predicted responses in the seed region in run i:

Ŷ B
test ¼Wtrain

~XA
test ð9Þ

using the parameters Wtrain independently estimated with the training runs.

Variance explained

To compute the proportion of variance explained in the test data we adopted the following

procedure: 1) we applied principal component analysis to the test data, 2) we projected the

observed and predicted responses on the principal components obtained from the test data, 3)

we calculated the proportion of variance explained by the prediction in each component, and

4) we weighted these proportions by the proportion of variance each component explained in

the overall observed response.

More specifically, we calculated

YB
test ¼ UY;testSY;testVT

Y;test ð10Þ

(step 1 above) and we projected the predicted and observed responses on this common orthog-

onal basis set (step 2):

Ŷ proj ¼ Ŷ B
testV

½1;���;kY �T
Y;train VY;test ð11Þ

(where Ŷ B
testV

½1;���;kY �T
Y;train projects the predicted responses from the PCA space computed with

the training data to voxel space, and the product by VY,test projects them on the PCA space
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computed with the testing data) and

Yproj ¼ YB
testVY;test: ð12Þ

The proportion of variance explained in each component i was computed as

varExpli ¼ 1 �
var ðYi

proj � Ŷ i
projÞ

var ðYi
projÞ

ð13Þ

where Yi
proj denotes the i-th column of matrix Yproj, which contains the timecourse along com-

ponent i of the PCA space computed with the testing data (step 3). Finally, the total variance

explained was calculated as a weighted sum of the variance explained along each dimension

(step 4), where the weights are given by the proportion of variance explained by that dimen-

sion in the overall response (which can be calculated using the PCA eigenvalues):

varExpl ¼
XN

B
Y

i¼1

li
PNB

Y
j¼1 lj

varExpli ð14Þ

For all analyses involving comparisons between within-subject MVPD and iMVPD, we did

not compute predictions from a region to itself (i.e. values on the diagonal) because they are

not meaningful for the within-subject analyses, and thus cannot be compared across methods.

Comparing denoising methods

To compare denoising models, we noted that an individual participant’s observed multivariate

responses in a region Y(t) can be decomposed as

YðtÞ ¼ YcðtÞ þ YiðtÞ þ �cðtÞ þ �iðtÞ þ ZðtÞ ð15Þ

where the term Yc(t) is the part of the true response that is common across individuals, Yi(t) is

the part of the true response that is specific to the particular individual, �c is the whole-brain

noise that is shared across individuals and �i(t) is the whole-brain noise that is specific to that

individual, and η(t) is region-specific noise.

A model of connectivity within individual can aspire to explain an amount of variance

given by

varExplwithin ¼
var ðYcðtÞ þ YiðtÞ þ �cðtÞ þ �iðtÞÞ

var ðYcðtÞ þ YiðtÞ þ �cðtÞ þ �iðtÞ þ ZðtÞÞ
ð16Þ

by contrast, an intersubject model can aspire to explain an amount of variance given by

varExplbetween ¼
var ðYcðtÞ þ �cðtÞÞ

var ðYcðtÞ þ YiðtÞ þ �cðtÞ þ �iðtÞ þ ZðtÞÞ
: ð17Þ

If a denoising method is removing in equal proportions signal and noise, (i.e. by a multipli-

cative factor 0< λ< 1), we obtain new proportions of variance explained:

varExpl�within ¼
var ðlYcðtÞ þ lYiðtÞ þ l�cðtÞ þ l�iðtÞÞ

var ðlYcðtÞ þ lYiðtÞ þ l�cðtÞ þ l�iðtÞ þ lZðtÞÞ
ð18Þ

¼
l

2varðYcðtÞ þ YiðtÞ þ �cðtÞ þ �iðtÞÞ
l

2varðYcðtÞ þ YiðtÞ þ �cðtÞ þ �iðtÞ þ ZðtÞÞ
¼ varExplwithin ð19Þ
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and similarly

varExpl�between ¼
var ðlYcðtÞ þ l�cðtÞÞ

var ðlYcðtÞ þ lYiðtÞ þ l�cðtÞ þ l�iðtÞ þ lZðtÞÞ
ð20Þ

¼
l

2varðYcðtÞ þ �cðtÞÞ
l

2varðYcðtÞ þ YiðtÞ þ �cðtÞ þ �iðtÞ þ ZðtÞÞ
¼ varExplbetween: ð21Þ

By contrast, if a denoising method disproportionately reduces within-subject whole brain

noise, we will have that the numerator of varExplwithin gets proportionally smaller than the

numerator of varExplbetween. This is because the term that is disproportionately reduced by

denoising is �i(t), which only appears in the numerator of varExplwithin. This effectively reduces

the difference

DvarExpl ¼ varExpl�within � varExpl�between: ð22Þ

Relying on this logic, we compared the alternative denoising methods using the index Δ var-

Expl, where values closer to zero indicate better denoising performance. We computed the

index Δ varExpl for each pair of brain regions, obtaining ‘connectivity-matrix-like’ figures in

which each cell depicts the Δ varExpl index for the corresponding connection.

The average Δ varExpl index across all regions provides a measure of the efficacy of a

denoising method (lower is better). Furthermore, we compared the pattern of denoising

between regions for different denoising methods calculating the correlation between Δ varExpl

matrices, obtaining a measure of similarity between denoising methods in terms of the set of

connections on which they are more or less effective.

Results

Validating intersubject MVPD

In a first analysis, we tested whether intersubject MVPD is able to identify expected patterns of

statistical dependence between different brain regions. Specifically, we tested whether inter-

subject MVPD, like within-subject MVPD, shows stronger interactions between regions that

belong to the same network (i.e. face-selective regions vs scene-selective regions). We found

that interactions among regions in the same network were indeed stronger also when using

intersubject MVPD, a comparison of connectivity matrices is shown in Fig 2 (see sections

‘Denoising methods’ and ‘iMVPD: modeling representational spaces’). To measure the simi-

larity between the patterns of interactions between regions across different region pairs for

within-subject and intersubject connectivity we computed the Pearson’s correlation between

the connectivity matrices generated with the two methods, obtaining an r value of 0.8596. In

both within-subject MVPD and iMVPD, strong statistical dependence was found across pairs

of region within a same network (defined based on response selectivity in an independent

localizer): on average, pairs of face-selective regions showed stronger statistical dependence

with other face-selective regions than with scene-selective regions, and viceversa (Fig 2). Rela-

tively accurate predictions were also observed when face-selective regions were used as predic-

tors for some scene-selective regions (in particular the rTOS), but not viceversa. This effect

was observed with within-subject and also with intersubject MVPD.

To evaluate the effectiveness of denoising techniques, we did a matched t-test on the

mean of the discrepancy metric before applying any denoising techniques and after applying

denoising techniques. Since our work includes an intersubject analysis, the different pairs of

subjects are not all independent, because two different subject pairs might have one subject in
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common. Therefore, to estimate the variance and the mean while ensuring independence

across pairs, we bootstrapped subsets of the subject pairs that are independent of each other.

This bootstrapping approach leaves us with a very low number of degrees of freedom, there-

fore we only tested the difference between the most promising approach (removal of global

signal and CompCorr) vs lack of denoising. Despite the low degrees of freedom, we still found

significant differences in the mean of the discrepancy metric before and after denoising (one-

tailed t(4) = 3.07, p = 0.0186), providing evidence removal of global signal and CompCorr sig-

nificantly reduces the noise.

In addition, to evaluate the impact of the amount of data on the results, we computed the

differences between the discrepancy metric obtained with no denoising, and the discrepancy

metric obtained with removal of global signal and CompCorr using half of the data (4 runs)

and one quarter of the data (2 runs). As expected, using less data yielded noisier estimates of

the differences between the denoising methods (see S2 Fig). Furthermore, when using only

two runs (one for training and one for testing MVPD), the differences in the discrepancy met-

ric were lower (S2 Fig), suggesting that MVPD generated poorer predictions overall when

using only one run for training.

Single denoising methods

After determining that iMVPD yielded similar patterns of statistical dependence across region

pairs as within-subject MVPD, we proceeded to assess the efficacy of different denoising

approaches (when considered individually) using the difference between the proportion of

variance explained in the within-subject analysis minus the proportion of variance explained

in the intersubject analysis (Δ varExpl, see Section ‘Comparing denoising methods’).

As a sanity check, we calculated Δ varExpl without applying any denoising method, and

indeed we observed a higher value of Δ varExpl than the ones observed after applying any of

the other denoising methods (Fig 3A and 3F). Additionally, we observed differences in the Δ
varExpl index across the denoising methods, with CompCorr achieving the best performance

(as assessed by Δ varExpl).

Fig 2. MVPD within- and between-subject. Amount of raw variance explained (as defined in Section ‘Variance

explained’) for within-subject MVPD (A) and between-subject MVPD (B). Each element in a matrix represents the

average between participants and cross-validation iterations of the proportion of the variance explained by predicting

the multivariate responses in the target region from the the multivariate responses in the predictor region. The

similarity between the two matrices was assessed with Pearson’s correlation, yielding r = 0.8596.

https://doi.org/10.1371/journal.pone.0222914.g002
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Different denoising methods varied not only in terms of the average value of Δ varExpl, but

also in the pattern of Δ varExpl across different region pairs. In order to perform a quantitative

evaluation of the similarity between denoising methods in terms of their pattern of Δ varExpl

across region pairs (that is, in terms of whether they removed noise from similar or distinct

sets of connections), we calculated the Pearson’s correlation between the Δ varExpl matrices

obtained for the different methods. This analysis revealed largely similar patterns for the

removal of slow trends and the regression of translation and rotation parameters. The pattern

of noise removal for CompCorr was also relatively similar, but the pattern for removal of

global signal was markedly distinct, affecting different pairs of brain regions (Fig 4).

Comparing combinations of denoising methods

Multiple denoising methods can be used jointly to improve the efficacy of noise-removal.

However, using too many denoising predictors may lead to the risk of removing meaningful

variability in the signal. Therefore, we aimed to test different combinations of denoising meth-

ods to identify a minimal and effective noise-removal procedure which reduces Δ varExpl

without including unnecessary predictors.

To this end, we compared several combinations of denoising methods. Since the removal of

slow trends is widely used as a denoising method, we investigated the performance obtained

by combining it with the other methods we assessed in the previous analyses (Fig 5A–5C).

First, we observed that adding motion regressors (translation and rotation) did not improve

denoising appreciably (compare Figs 5A to 3C). Note that this is not a trivial consequence of

Fig 3. Difference in variance explained within and between participants for different denoising methods. Matrices showing the

difference between the variance explained for within-subject MVPD minus the variance explained for iMVPD (Δ varExpl) of A) data

without any denoising applied, B) removal of global signal, C) removal of slow trends, D) regression of head translation and rotation

parameters (motion parameters), E) CompCorr. Figure F) shows the mean Δ varExpl and the bootstrapped standard deviation of the

previous five denoising methods in descending order.

https://doi.org/10.1371/journal.pone.0222914.g003
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the high correlation between the Δ varExpl matrices for these two methods, because distinct

denoising methods might remove non-overlapping variance in similar amounts from the same

set of brain regions, thus yielding high correlations between Δ varExpl matrices without redun-

dancy in their denoising contribution. For example, two different denoising methods might

remove two noise sources that are independent of each other in the timecourse of response

within a region, but these independent noise sources might nonetheless have a similar distri-

bution in terms of the proportion of noise they generate across region pairs.

Adding CompCorr to the removal of slow trends (Fig 5B) performed better than using the

removal of slow trends in isolation (Fig 3C), however, it did not improve appreciably over

using CompCorr alone (Fig 3E), indicating that the noise eliminated by the removal of slow

trends is a subset of the noise captured by CompCorr.

A combination of removal of slow trends and removal of the global signal (Fig 5A)

improved on both methods used in isolation, suggesting that they account for independent

sources of noise.

Considering this pattern of results, we expected that using jointly CompCorr and the

removal of the global signal would yield optimal results, even as compared to models

Fig 4. Correlation between denoising patterns. Pearson’s correlation (r) of the Δ varExpl across all region pairs of the single

denoising methods showed in Fig 3.

https://doi.org/10.1371/journal.pone.0222914.g004
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additionally including removal of slow trends or removal of motion regressors. To test this we

computed Δ varExpl matrices for the combination of CompCorr and removal of global signal

and found that the combination of these two methods performs better than either CompCorr

alone (Fig 3E) or the removal of global signal alone (Fig 3B). Furthermore, by comparing Fig

5E with Fig 5D or Fig 5F, we found that adding the removal of slow trends or the removal of

motion regressors to CompCorr plus the removal of global signal did not further improve Δ
varExpl. The combination of CompCorr and removal of global signal achieved parsimonious

and effective noise removal.

Discussion

In this article we have introduced iMVPD, and have shown that it produces similar patterns

of statistical dependence between brain regions as standard MVPD [10]. We have then intro-

duced the difference between the proportion of variance explained within and between partici-

pants (hereafter referred to as the ‘discrepancy metric’) and motivated its use as a measure of

the effectiveness of denoising methods.

Other methods for studying multivariate interactions exist (i.e. informational connectivity,

[29, 30], see [31] for a review), and might have the potential to be extended to perform inter-

subject analyses. However, the unique combination of 1) attempting to capture most of the

variance in each region’s responses, and 2) testing models of connectivity in independent data

made MVPD an ideal choice for this study.

Multivariate variants of intersubject connectivity based on canonical correlation analysis

have been introduced in previous work [32]. iMVPD differs substantially from these

approaches in that 1) it tests prediction accuracy in independent data, and 2) enables modeling

Fig 5. Difference in variance explained within minus between participants for combinations of denoising

methods. Matrices showing the difference between the variance explained for within-subject MVPD minus the

variance explained for iMVPD (Δ varExpl) of A) removal of slow trends followed by removal of global signal, B)

removal of slow trends followed by CompCorr, C) removal of slow trends followed by regression of head translation

and rotation parameters (motion parameters), D) removal of slow trends followed by removal of global signal followed

by CompCorr, E) removal of global signal followed by CompCorr, F) removal of global signal followed by CompCorr

followed by regression of head translation and rotation parameters (motion parameters).

https://doi.org/10.1371/journal.pone.0222914.g005
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of statistical dependence not only between-subjects within-region, but also between-subjects

between-regions.

As predicted, we found that the discrepancy metric was greatest in the absence of denoising

(see Fig 3A and 3F). Different denoising methods varied both in terms of their overall effec-

tiveness (as measured by the average discrepancy metric across all pairs of connections), as

well as in terms of the pattern of noise removal across different region pairs. This suggests that

different pairs of regions may be differentially affected by distinct sources of noise, and that

methods that are very effective at reducing the noise in the interactions between a pair of brain

regions may be less effective at reducing noise for other pairs of regions.

In the present study, we used three principal components relying on previous observations

indicating that components after the third have a minimal impact on the proportion of vari-

ance explained. However, developing a systematic approach for data-driven selection of the

optimal number of components is an important direction for future work. Techniques such as

Bayesian PCA [33] could be used for this purpose, offering principled approaches to adaptively

select the number of components based on the available measurements.

Correlation between the discrepancy metric matrices (Fig 4) revealed that removal of the

global signal disproportionately affected a different set of connections as compared to removal

of slow trends, removal of motion regressor, and CompCorr. This finding suggests that

removal of the global signal might target different sources of noise in fMRI data. Specifically,

as compared to CompCorr, removal of the global signal disproportionately reduced the dis-

crepancy metric for pairs of regions within a same network (i.e. across pairs of face-selective

regions or across pairs of scene-selective regions).

Further studies could investigate the extent to which the different predictors generated

by different denoising methods correlate with a variety of physiological measures (i.e. head

movement, heart rate, respiration, eye movements) and susceptibility measures to determine

whether the noise removed by the global signal has an independent origin.

One possible concern is that removal of the global signal might be subtracting meaningful

variation in the fMRI responses. While it is difficult to rule out this possibility entirely, this in

itself could not account for the reduction of the discrepancy metric within network: in fact,

removal of meaningful signal would reduce both the absolute variance explained within sub-

ject as well as the total amount of variance within subject, leaving the proportion of variance

explained unchanged (see Eq 21).

Testing different combinations of denoising methods revealed that the noise removed by

the regression of slow trends and by the regression of motion parameters was mostly a subset

of the noise removed by CompCorr. As a consequence, the use of regression of slow trends

and regression of motion parameters in addition to CompCorr was redundant. In addition,

CompCorr outperformed both of those methods. The effect of motion as measured by rotation

and translation parameters on the observed BOLD signal is likely dependent on the anatomical

location of voxels, and it is affected by complex phenomena like spin-history effects (in which

a voxels move to some extent between slices and spins are no longer excited at regular inter-

vals), and movement across non-uniform regions of the static magnetic field and of the radio-

frequency (RF) fields [34]. These effects induce nonlinear relationships between motion

parameters and the resulting noise, and may be better captured by CompCorr. Across all com-

binations of denoising methods tested, the discrepancy metric indicated that jointly removing

the global signal and applying CompCorr was the optimal denoising pipeline.

Prior studies using simulated data have found that motion artifact causes variable duration

of disruptions in signals [11]. [11] also found that proximal correlations are increased by arti-

fact motions more than distal correlations, and that motion regressors have a limited effect in

removing motion-related variance, even with voxel-specific regressors or when including a
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large set of motion regressors. This finding is in line with our result in Fig 3D that motion

parameters have limited efficacy in removing noise. [11] also found that mean white matter or

mean ventricle signals are of modest utility as regressors, while fractionation of these signals

via ANATICOR [35] or aCompCorr [36] or other methods may provide additional benefit.

With iMVPD and the discrepancy metric we find that aCompCorr using multiple dimensions

extracted from white matter and the cerebrospinal fluid (Fig 3E) provides considerable effec-

tiveness in removing noise as compared with motion regressors only (Fig 3D). [11] pointed

out that regressing the global signal is an effective processing step. In our findings (Fig 3B),

removal of global signal is disproportionately effective in removing noise within-network

(among face-selective region pairs or among scene-selective region pairs), and less effective in

removing noise from between-network region pairs.

While these findings advance our understanding of denoising methods for fMRI, they are

nonetheless affected by some limitations. First, optimal denoising methods are expected to

minimize the discrepancy metric, however, it is worth noting that even perfect denoising

would not reduce the discrepancy metric to zero. This is because individual differences

between participants are expected to reduce iMVPD as compared to standard within-subject

MVPD: the discrepancy metric is a result of both noise and individual differences. The dis-

crepancy metric is a useful tool to compare the performance of different denoising methods in

real fMRI data. However, it is important to note that while it provides a relative measure that

can be used to compare different denoising methods, it is not an absolute measure of denois-

ing. Therefore, the discrepancy metric cannot be used to determine exactly how much noise is

left in the data. Second, our study was necessarily restricted to a subset of the vast set of denois-

ing approaches that have been developed for fMRI. For example, we did not consider interpo-

lation [37], ANATICOR [35], group-level covariates and partial correlations. Future studies

could use the discrepancy metric to test additional denoising approaches that have not been

included in the present investigation. Another effective strategy we did not test in this study

consists in censoring motion-contaminated data. In the context of intersubject analysis, cen-

soring would require removing all timepoints that show excessive motion in either of two sub-

jects, further reducing the available data. Despite we did not test this approach in the present

study, it can be applied in conjunction with the removal of global signal plus CompCorr

approach we recommend. Finally, it will be important to extend the present results to other

datasets employing different tasks and studying different brain regions to test the generality of

the present findings.

In this study, we have used iMVPD as an instrument to define a discrepancy metric for

denoising methods in order to assess their performance on ‘real’ (non-simulated) fMRI data.

Among the methods tested, a combination of CompCorr and removal of the global signal was

the most effective. Beyond the scope of this study, iMVPD could be used for a variety of appli-

cations. In ongoing work, we are using iMVPD to study individual differences across partici-

pants. Another potential area of application for iMVPD is the analysis of imaging modalities

in which it is challenging to acquire data simultaneously from multiple regions, such as elec-

trocorticography (ECoG) or primate electrophysiology. More generally, iMVPD can be

applied as a conservative approach to study multivariate interactions between brain regions.

Supporting information

S1 Fig. Data quality control. The figure shows the within-subject prediction accuracy of all

subjects who completed all the experimental sessions and passed the FMRIPREP preprocess-

ing pipeline. Each dot shows the mean variance explained across all region pairs within a sub-

ject using a default denoising approach consisting of removal of scanner drift followed by
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CompCorr. Three outlier subjects were identified due to their low within-subject prediction

accuracy.

(TIF)

S2 Fig. Data length and experimental results. The figure shows the differences between the

discrepancy metric obtained with no denoising, and the discrepancy metric obtained with

removal of global signal and CompCorr using different amount of data. Each dot represents a

subject pair. From left to right: yellow dots show the differences using one quarter of the data

(2 runs), green dots show the differences using half of the data (4 runs), and blue dots show the

differences using full data (8 runs).

(TIF)
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