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Structural biology of the Bcl-2 family and its mimicry by
viral proteins

M Kvansakul*,1 and MG Hinds*,2,3

Intrinsic apoptosis in mammals is regulated by protein–protein interactions among the B-cell lymphoma-2 (Bcl-2) family. The
sequences, structures and binding specificity between pro-survival Bcl-2 proteins and their pro-apoptotic Bcl-2 homology 3 motif
only (BH3-only) protein antagonists are now well understood. In contrast, our understanding of the mode of action of Bax and Bak,
the two necessary proteins for apoptosis is incomplete. Bax and Bak are isostructural with pro-survival Bcl-2 proteins and also
interact with BH3-only proteins, albeit weakly. Two sites have been identified; the in-groove interaction analogous to the pro-survival
BH3-only interaction and a site on the opposite molecular face. Interaction of Bax or Bak with activator BH3-only proteins and
mitochondrial membranes triggers a series of ill-defined conformational changes initiating their oligomerization and mitochondrial
outer membrane permeabilization. Many actions of the mammalian pro-survival Bcl-2 family are mimicked by viruses. By expressing
proteins mimicking mammalian pro-survival Bcl-2 family proteins, viruses neutralize death-inducing members of the Bcl-2 family and
evade host cell apoptosis during replication. Remarkably, structural elements are preserved in viral Bcl-2 proteins even though there
is in many cases little discernible sequence conservation with their mammalian counterparts. Some viral Bcl-2 proteins are dimeric,
but they have distinct structures to those observed for mammalian Bcl-2 proteins. Furthermore, viral Bcl-2 proteins modulate innate
immune responses regulated by NF-jB through an interface separate from the canonical BH3-binding groove. Our increasing
structural understanding of the viral Bcl-2 proteins is leading to new insights in the cellular Bcl-2 network by exploring potential
alternate functional modes in the cellular context. We compare the cellular and viral Bcl-2 proteins and discuss how alterations in
their structure, sequence and binding specificity lead to differences in behavior, and together with the intrinsic structural plasticity in
the Bcl-2 fold enable exquisite control over critical cellular signaling pathways.
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Facts

� Heterodimerization and conformational change of cellular
Bcl-2 proteins underpins the initiation and modulation of the
intrinsic apoptosis.

� Viral Bcl-2 proteins can adopt different homodimeric
configurations that allow modulation of the Bcl-2-mediated
pathway as well as NF-kB signaling.

� In contrast to cellular pro-survival Bcl-2 proteins, their viral
counterparts have lower affinities for their BH3-only binding
partners.

Open Questions

� The structural basis of full-length Bak/Bax engagement by
pro-survival Bcl-2 proteins has yet to be elucidated.

� Does the Bax/Bak oligomeric pore have a defined
architecture in the MOM?

� Is there a role for cellular Bcl-2 proteins in NF-kB signaling,
analogous to that observed for viral Bcl-2 proteins?

� What are the key cellular pro-apoptotic Bcl-2 proteins
requiring neutralization during viral infection?

Cues that initiate apoptosis, the programmed elimination of
cells no longer required, infected or dangerous to an organism
may arise from stimuli external to the cell (extrinsic or death
receptor-induced apoptosis) or intracellular (intrinsic, mito-
chondrial or Bcl-2-regulated apoptosis).1,2 The result of
activation of either mode of apoptosis is the induction of a
proteolytic cascade of cysteine aspartyl proteases (caspases)
that dismantles cells before their engulfment by phagocytes
and destruction in lysozomes.3 The final fate of cells broken
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down and packaged during apoptosis is to be recycled
through phagocytic clearance. Bcl-2 proteins may also have
a part in autophagic cellular destruction,4 though the crosstalk
between autophagy and apoptosis is not yet well understood5

and probably does not have a more general role in
programmed cell death.6 Molecular mechanisms of apoptotic
cell death are highly conserved, and the extrinsic and intrinsic
pathways intersect at the mitochondria by direct regulation of
the Bcl-2 family.

Approximately 20 proteins define the mammalian B-cell
lymphoma-2 (Bcl-2) family and regulate intrinsic apoptosis.2,7

This family has been traditionally defined by the presence of a
set of short conserved sequences (o20 residues) known as
Bcl-2 homology (BH) motifs (also commonly called domains
though they are not bona fide discreetly folded compact
entities, but rather represent conserved sequence motifs
within the Bcl-2 protein). Responding to diverse apoptotic
stimuli Bax or Bak, the two key Bcl-2 proteins, initiate cell
death by mitochondrial outer membrane permeabilization
(MOMP).8 Release of cytochrome c and other factors from the
mitochondrial intermembrane space, by an as yet ill-defined
mechanism of MOMP, initiates the critical caspase cascade.7

Bcl-2 proteins either inhibit or activate MOMP and interactions
between pro-survival and pro-apoptotic proteins of the family
adjudicate cell death. Many of these interactions have been
elucidated biochemically and there is now a well-understood
pedigree of interactions within this family.9–11

Viruses have evolved multiple strategies to subvert host cell
apoptosis in response to cellular infection.12 Viral interference
with apoptotic signaling can occur at multiple control points,
such as inhibition of death receptor activation (extrinsic
apoptosis),13 direct caspase inhibition,14 or by mimicking
pro-survival Bcl-2 family action (intrinsic apoptosis)15

(Figure 1). Here we discuss recently determined structures
in the mammalian Bcl-2 family and compare mammalian and
viral Bcl-2 proteins and viral Bcl-2 mimicry. Not all features of
mammalian Bcl-2 structure and function need be retained by
viral Bcl-2 proteins, as the essential goal is to maintain host
cell viability while permitting viral replication to proceed in the
absence of apoptosis. Indeed, there are remarkable simila-
rities between some viral Bcl-2 proteins and their mammalian
counterparts. There are also perplexing differences between
the dimers observed in the viral Bcl-2 family from those of their
mammalian equivalents.

BH Motifs—a Distinguishing Feature of the Bcl-2 Family?

Sequence analysis of the Bcl-2 family identified conserved
regions,16 later named as BH motifs. BH1 and BH2 motifs were
initially identified in Bcl-217 and the BH3 motif in Bak,18 with a
fourth poorly conserved19 motif, BH4, proposed in the N-terminal
region of Bcl-2 and the closely related Bcl-xL and Bcl-w.16,20

Searches for BH motifs in numerous genomes led to the
identification of many Bcl-2 family members21,22 and potential,
though experimentally unproven, members.23 The mammalian
Bcl-2 family can be classified into the multi-motif Bcl-2 proteins
that bear multiple BH motifs with pro-survival (Bcl-2, Bcl-xL,
Bcl-w, Mcl-1, A1, Bcl-B) and pro-apoptotic (Bax, Bak) activity.
The pro-apoptotic BH3-only proteins (Bim, Bad, Bmf, tBid, Noxa,
Bik, Puma, Hrk) bear only a single motif, a BH3.

The presence of a BH3 motif defines all pro-apoptotic
Bcl-2 proteins,24 although it may or may not be present in
pro-survival proteins. Analysis of BH3-sequence proteins
delineates a motif that bears four hydrophobic residues
spanning B2 heptads. One of these residues is an almost
invariant leucine, separated by three residues from a Xaa-Asp
dyad, where Xaa is Gly, Ala or Ser, and is a feature that
distinguishes BH3 motifs.9,25 The BH4 motif appears to be
less defining, early classifications suggested that this motif
was only present in certain pro-survival proteins but not in the
pro-apoptotic members.26 However, more recently, the BH4
was re-defined as a conserved structure-sequence motif,
f1-f2-X-X-f3-f4, found in all folded Bcl-2 proteins, where X
is any amino acid,f1,f2 andf4 are aliphatic residues andf3
an aromatic residue.27 Being present on both pro-survival,
including viral Bcl-2 homologs, and pro-apoptotic Bcl-2
proteins, it cannot distinguish them and as an isolated
parameter does not identify Bcl-2 proteins.28 Not all BH motifs
are present within a given Bcl-2 protein and several viral
Bcl-2 fold proteins lack obvious BH motifs (e.g., M11L,
N1L, F1L)27,29–32 altogether indicating BH motifs are not an
essential feature for Bcl-2-fold proteins. As structures of more
distantly related Bcl-2 family proteins emerge, our under-
standing of the sequence and structural diversity permitted in
the Bcl-2 family will be refined.

An a-Helical Fold Provides a Binding Site and Defines
Multi-Motif Bcl-2 Proteins

Structural studies have defined the Bcl-2 family interactions at
atomic resolution.33–36 The structures of the multi-motif

Figure 1 Points of intervention of viral Bcl-2 proteins in mammalian Bcl-2-
regulated apoptosis. Shown is a simplified schematic view of apoptosis induction in
mammalian cells and its inhibition by pro-survival viral Bcl-2 (vBcl-2) proteins.
Apoptosis may be initiated by activation of cell surface receptors (extrinsic apoptosis
or death receptor-initiated apoptosis7) or by intracellular mechanisms (‘intrinsic’ or
mitochondrial pathway). In either case, a proteolytic cascade of caspases is initiated
that destroys the cell. A network of interactions between Bcl-2 proteins controls
mitochondrial membrane integrity. BH3-only proteins may either inhibit pro-survival
proteins or activate the two key Bcl-2 family members, Bax and Bak, to disrupt the
mitochondrial outer membrane and release caspase-activating factors. Viral Bcl-2
proteins bind Bax or Bak or BH3-only proteins to prevent apoptosis induction.
cBcl-2, cellular Bcl-2
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proteins are highly homologous a-helical bundles. Figure 2
shows the basic fold, as exemplified by Bcl-xL, shared by both
the pro-apoptotic and anti-apoptotic multi-motif proteins.
Structures of BH3 complexes of the pro-survival proteins
show that the BH3 ligand binds as an amphipathic helix in a
hydrophobic groove formed from residues in the BH1, BH2
and BH3 motifs (or their structural equivalents where the
BH sequence motif is absent) of the pro-survival protein.35,37

The majority of intermolecular contact residues reside in a
13-residue segment of the BH3 motif, including the
4 hydrophobic residues,25 and both molecules contribute
almost equally to the binding surface (B1000 Å2 buried
surface each). Although the topology of the pro-survival
proteins is nearly identical, each protein has a different
specificity for BH3 targets (summarized in Table 1).

The distinction between the BH3-only and the multi-motif
proteins is not only in their biological activity and sequences
but also in their structures. The BH3-only proteins are
intrinsically disordered proteins (IDPs)38,39 or become dis-
ordered after processing.40 In contrast, the multi-motif
proteins are folded entities, but bear intrinsically disordered
regions (IDRs).39 The sequence and structural differences
between the multi-motif and BH3-only proteins lead to the
conclusion that they are separate phylogenetic classes.41

Structures of full-length Bax42 and Bid43,44 have been
determined, but generally structural investigations have
focused on ‘transmembrane’ (TM)-region truncated proteins
due to their better expression and solubility properties. Bid,
the only BH3-only protein with a well-defined structure, has a

hydrophobic core structure similar to the Bcl-2 fold.43,44

Activation of Bid by proteolytic cleavage in the a1-a2 loop by
multiple proteases, including caspase-8, Granzyme B,
calpains and cathepsins,45 to form truncated Bid (tBid)
containing the BH3 region leaves it stably folded.44 Like Bak
and Bax, the Bid BH3 motif is released for binding in the
presence of a membrane environment.46 In Bax, the
C-terminal a-helix occupies a similar position to the BH3-only
binding site on pro-survival proteins and blocks the groove.
Bcl-w47,48 has a similar structure to Bax and biochemical and
kinetic evidence is consistent with the C-terminal residues of
other Bcl-2 proteins, such as Bcl-xL and Mcl-1, also occupying
the groove.47,49 These findings indicate that the binding
groove is hindered or occupied in the multi-motif proteins.

Two distinct roles are performed by BH3-motif residues:
one as a ligand, the other as part of the receptor site groove, in
each case different atomic interactions are observed for the
BH3. This BH3-in-groove interaction, where the groove is
formed by helices a2-a5 (Figure 2) and occupied by the BH3
motif is a key mechanistic aspect of Bcl-2-regulated apoptosis
and one that viral Bcl-2 proteins mimic to prevent cell death
initiation.

Bcl-2 Proteins BH3-Ligand Specificity

Investigation of the affinity and specificity of interactions
between Bcl-2 proteins9–11 (Table 1) led to proposals
for the mechanisms of apoptosis initiation. Two main
mechanisms have been hypothesized. The ‘indirect activation’

Figure 2 Structural comparison of human and viral Bcl-2 proteins and their complexes with Bak BH3 peptides. (a) Human Bcl-xL (pdb accession code: 1MAZ) with the BH-
motifs colored BH1 purple; BH2, red; BH3, green. (b) Epstein-Barr virus BHRF1 (1Q59), (c) Myxoma virus M11L (2BJX), (d) Vaccinia virus F1L (2VTY), (e) Bcl-xL:Bak (1BXL),
(f) BHRF1:Bak (2XPX), (g) M11L:Bak (2JBY), (h) Vaccinia virus N1L (2UXE). The Bak BH3 peptide is shown in orange. Structures were aligned on Bcl-xL in a. Protomers of
the F1L and N1L dimers are depicted in different colors
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or ‘displacement’ model poses that the BH3-only proteins
release Bax and Bak from regulation by the pro-survival
proteins to initiate MOMP. Whereas the ‘direct activation’
mechanism proposes two roles for BH3-only proteins: they
may act either as ‘sensitizers’ (Bad, Bmf, Noxa, Hrk, Bik) that
interact only with pro-survival proteins or as ‘activators’ (Bim,
Puma, Bid) that interact with pro-survival Bcl-2 proteins and
with Bax and Bak50 (Figure 1). The sensitizer BH3-only
proteins sequester the pro-survival proteins preventing inter-
action with Bax or Bak, leaving them to interact with the
activator BH3-only proteins to induce the conformational
changes necessary for MOMP. Composite mechanisms have
been proposed and the evidence recently reviewed.51 Bim is
the universal pro-survival Bcl-2 family antagonist,37 whereas
other BH3-only family members are more selective and the
combination of Mcl-1 and Bcl-xL potentially inhibits all BH3-
only initiated intrinsic apoptotic pathways.37

Things Change at the Membrane

The least well-understood aspect of Bcl-2 family protein-
mediated apoptosis is their interactions at intracellular
(mitochondrial, endoplasmic reticulum, golgi and nuclear
envelope) membrane surfaces. Many Bcl-2 proteins bear a
hydrophobic C-terminal TM sequence, frequently assumed to
be helical, for membrane anchorage. Some are constitutively
membrane bound (Bak, Bok), whereas others (Bax, Bcl-xL,
Bcl-w, Mcl-1, A1) are partitioned between the membrane and
the cytosol and become integrated subsequent to apoptotic
stimulus.51,52 Like Bim, Noxa, Puma and Bmf, tBid is also
found to be membrane associated, though Bad is not.53 Most
Bcl-2 proteins are targeted to the MOM but Bok54 and Bik53

locate to the endoplasmic reticulum.
Pro-survival proteins appear to require their TM regions for

full pro-survival activity47 and recent evidence shows the TM
region of Bcl-xL has a role in transferring Bax between the
MOM and cytosol.55 Before apoptotic stimuli, Bax exists in
equilibrium between the cytosol and the MOM and is shuttled
between them by Bcl-xL in a process dependent on the BH3
motif of Bax, a competent BH3-binding groove of Bcl-xL and
the TM region of Bcl-xL,55,56 but structural details are not

available. Other evidence suggests certain BH3-only proteins
directly bind Bax and Bak57–61 and in the case of Bax results in
membrane integration. Some viral Bcl-2 homologs also bear a
hydrophobic TM region, suggesting that they too act at the
MOM.62,63 How pro-apoptotic Bax and Bak affect MOMP
remains uncertain. A ‘hit and run mechanism’59,64,65 has been
proposed based on a weak interaction with a BH3-only protein
inducing a poorly defined and structurally uncharacterized
membrane insertion transition. Although biochemical evi-
dence shows the BH3 motif of Bax (or Bak) is necessary for
interaction with pro-survival proteins, currently there is no
high-resolution structural data available on any complexes of
full-length Bax/Bak: pro-survival Bcl-2 proteins. Further
structures will be required to answer this question.

Bcl-2 Proteins Dimerize

Heterodimerization of Bak and Bax66 with pro-survival
proteins requires a conformational change in one or both
partners,67 as the key residues in the interacting BH3 motifs
are buried in monomeric Bax and Bak.42,68 Early in the
exploration of the Bcl-2 family, it was noted that Bax:Bcl-2
dimers form in the presence of non-ionic surfactants
(detergents)69 and the affinity was recently measured in the
presence of the surfactant Brij-35 (KdB36 nM).70 Given that
the core of the Bcl-2 fold largely comprises of hydrophobic
interactions, it is not surprising that surfactants have an effect
on the structure. Bcl-xL in dodecylphosphocholine micelles
forms a molten globule retaining secondary structure but not a
tertiary fold.71 Conformational change of the Bcl-2 proteins in
the membrane is a major feature of their action,72 and
changes have been observed for Bax and Bak through the use
of antibodies specific for epitopes that are not exposed before
membrane interaction.73,74

In addition to heterodimerization, both pro-survival and
pro-apoptotic proteins can homodimerize. Under the influence
of heat, organic solvents, pH or surfactants, Bcl-xL dimerizes75–78

to form an extended structure capable of binding BH3
peptides75,78 (Figure 3a). An a1 helix swapped dimer of
Bcl-xL retaining an ability to bind BH3 ligands has also been
observed (Figure 3b).79 Higher order oligomers of Bcl-xL can

Table 1 Summary of BH3 motif affinities for Bcl-2 proteins

Pro-death Pro-survival

SPPV14 M11L F1L BHRF1a KsBcl-2b N1Lb* Bcl-2 Bcl-w Bcl-xL Mcl-1 A1a

Bad 42000 41000 NB 42000 41000 41000 16 30 5.3 4100 000 15 000
Bid 341±16 100 NB 109 112 152 6800 40 82 2100 1
Bik 42000 41000 NB 42000 41000 n/a 850 12 43 1700 58
Bim 26±4 5 250 18 29 72 2.6 4.3 4.6 2.4 1
Bmf 67±6 100 NB 42000 41000 n/a 3 9.8 9.7 1100 180
Hrk 63±6 41000 NB 41000 41000 n/a 320 49 3.7 370 46
Noxa 42000 41000 NB 42000 41000 n/a 4100 000 4100 000 4100 000 24 20
Puma 65±1 41000 NB 70 69 n/a 3.3 5.1 6.3 5 1
Bak 46±3 50 4300 150 o50 71 41000 500 50 10 3
Bax 32±5 75 1850 1400 980 n/a 100 58 130 12 n/a

aIndicates affinities determined by isothermal calorimetry
bIndicates affinities determined by florescence polarization
Interactions were determined using SPR methods except where stated. Sources: SPPV14,115 M11L,31 F1L,27 BHRF1,107 KsBcl-2,132 N1L,30 Bcl-2,9,133,134

Bcl-w,9,133,134 Bcl-xL,9,133,134 Mcl-1,9 A1135

Bcl-2 mimicry
M Kvansakul and MG Hinds

4

Cell Death and Disease



be formed and there appear to be differences between dimers
formed using surfactant and pH, the acid-formed dimers bind
BH3 peptides, whereas surfactant-induced dimer did not,
though structural details are lacking.77 A TM-truncated Bcl-w
dimerizes on crystallization, forming a structurally distinct
dimer to that of surfactant-induced Bcl-xL with reduced ability
to bind BH3 peptides.80 Surfactant treatment of Bax followed
by dilution or removal of surfactants gives a surfactant-free
dimer with a similar structure to surfactant-induced Bcl-xL

dimer, where the central a5 and a6 helices form a single
contiguous helix61 (Figure 3c). A truncated GFP-tagged Bax
retaining only the central a2-a5 region forms a dimer with a
different structure in the absence of surfactant (Figure 3d).
Bak has also been reported to dimerize before MOMP.81 The
functional role, if any, of Bcl-2 protein homodimerization
remains unclear, and kinetically pore formation appears to be
dependent on monomeric Bax.82

Although the multi-motif Bcl-2 monomers are topologically
near-identical, the dimers are not, having different architec-
ture depending on the protein and how dimerization was
induced (Figure 3). The interaction of proteins with
crystallization co-solvents83 or surfactants84 is complex and
surfactant-generated forms may be artifacts of their

preparation.85 Co-solvents such as methylpentanediol or
isopropanol employed in Bax61 and Bcl-xL

78 dimer crystal-
lization, respectively, may contribute to dimer formation. In
contrast to the mammalian counterparts, some viral Bcl-2
proteins appear to be constitutive dimers and have
architectures structurally unique to those observed for
mammalian proteins (Figures 2 and 3).

Alternate Functions for Bcl-2 Proteins?

Although the main protagonists of the Bcl-2 family now have
well-understood roles in apoptosis signaling, even if the exact
details of MOMP are not understood, others are less well
characterized. This includes Bcl-2 proteins such as A1,86

Bcl-B37 and Bok.54 Structurally Boo, the mouse homolog of
human Bcl-B (Bcl-2L10), has a Bcl-2 fold87 but only binds
the known BH3-only proteins with very weak affinity,87,88

suggesting that the human and mouse homologs have
diverged functionally. The main difference between Bcl-B
and other multi-motif proteins is the presence of an
unstructured loop between helices a5 and a637 shown to be
important for regulating its protein levels in cells through
ubiquitylation and proteasomal degradation.89

Figure 3 Structures of Bcl-2 dimers. Dimers may be induced by treatment with heat, pH, surfactant or BH3-ligand. (a and b) Bcl-xL dimers; (c and d) Bax dimers. (a) Bcl-xL

dimer (2B48). The BH motifs are indicated in color as Figure 1 and the helices indicated with the alternate protomer helices denoted with a prime (0) (b) Beclin-1: Bcl-xL

heterotetramer (2P1L). (c) Octylmaltoside-induced Bax dimer (4BD7) (c) CHAPS-induced alternate dimeric Bax core (4BDU) that contains only the central helices (a2–a5) of
Bax and lacks both N-terminal residues and the C-terminal TM region. For clarity, the GFP-fusion tag on each chain is not shown. BH motifs have been colored as in Figure 1.
The structures depicted in a and c have been structurally aligned with Bcl-xL in the same orientation as Figure 1 and the Bcl-xL dimer in b was aligned over helices a5–a8 on
the structure in a

Bcl-2 mimicry
M Kvansakul and MG Hinds

5

Cell Death and Disease



Bcl-2 proteins may modulate biochemical pathways other
than mitochondria-regulated apoptosis.90 Bcl-xL, Bcl-2 and
Bax interact weakly with the tumor repressor and transcription
factor p53.78,91–93 NMR studies have shown weak specific
interaction between p53 and Bcl-xL

91 with a Kd of 370 nM78

that is released on Puma binding Bcl-xL in the groove,78

providing a potential allosteric mechanism for p53 activation of
apoptosis. Bcl-2 family proteins may be involved in regulating
mitochondrial remodeling through fusion and fission.94,95

It has been proposed that Bcl-xL regulates autophagy through
interaction with Beclin-1 in a BH3-like interaction (KdB2mM).79

Other potential pathways regulated include energy
metabolism41 and cell cycle progression,96 but details are
yet to emerge on interactions and structures. At present, the
molecular details of these processes are not firmly estab-
lished, with many likely to be indirect effects.

Viral Bcl-2 Proteins: Keeping Cells Alive when Hosting a
Pathogen

Molecular mimicry through expression of sequence, structural
and functional orthologs of Bcl-2 proteins is an important
survival strategy of viruses.97 The significance of successful
subversion of host cell apoptosis has been demonstrated
by construction of deletion mutants for several viruses.
Adenovirus,98 murine cytomegalovirus,99–101 Epstein-Barr
virus (EBV),102 g-herpesvirus,103 myxomavirus104 and vacci-
nia virus63 trigger apoptosis during infection in the absence of
functional viral Bcl-2 proteins. By retaining key structural, but
not necessarily sequence features, viral Bcl-2 homologs can
inhibit both BH3-only and Bax-like death signals. Readily
identifiable viral Bcl-2-like proteins include those found in
adenovirus (vBcl-2),105 Kaposi sarcoma-associated herpes-
virus (KS-Bcl-2),106 Epstein-Barr virus (BHRF1),107,108

murine g-herpesvirus 68 (gHV68-vBcl-2),109 herpesvirus
saimiri ORF16110 and the recently identified FPV039 from
Fowlpox virus,111 CNPV058 in canarypox virus112 and
vNR13, a Bcl-B homolog from avian a-herpesvirus.113

However, in general, the sequence divergence of vBcl-2
proteins from recognized Bcl-2 proteins has made them
difficult to identify by sequence comparison alone. Structures
of these vBcl-2 molecules show they are highly similar to
mammalian family members. KS-Bcl-2106 and BHRF1107,108

adopt Bcl-2 folds comprising 8 alpha helices and have a TM
region indicating that membrane interaction and perhaps
interactions in the membrane are necessary for their activity.

More recently, a number of viral Bcl-2 members were
identified in pox viruses that, while displaying virtually no
sequence identity with mammalian Bcl-2 members adopt a
Bcl-2 fold. These include myxoma virus M11L31,32 and
vaccinia virus F1L27 and N1L.29,30 These three proteins
comprise only seven alpha helices, with helix 7 (numbering
based on the structure of Bcl-xL; Figure 2) being absent.
Solving the structures of N1L and F1L demonstrated the
considerable structural diversity to the Bcl-2 fold. N1L and F1L
adopt dimeric configurations; with F1L forming a domain-
swapped dimer mediated by an exchange of a1 helices
between two F1L protomers. Intriguingly, the topology of the
F1L dimer is reminiscent of the Bcl-xL:Beclin-1 BH3 domain-
swapped dimer observed by Oberstein et al.,79 where

truncating the a1-a2 loop results in helix a1 no longer being
accommodated within the Bcl-2 fold but located in a
neighboring protomer. In contrast, N1L forms a dimer by
association of two independently folded N1L chains.29,30

Lacking a TM region, N1L has a cytosolic location114 and no
mammalian Bcl-2 protein has been shown to associate in a
similar configuration (Figures 2 and 3).

Biochemical interaction studies revealed significant varia-
tions in the ligand-binding profile of vBcl-2 proteins with
respect to the range and nature of their ligands as well as their
affinities. Vaccinia virus F1L has been shown to engage Bim,
Bak and Bax only and with moderate affinities.27 In contrast,
SPPV14 interacts with several BH3-only proteins (Bim, Bid,
Bmf, Hrk and Puma) as well as Bak and Bax115 at
considerably higher affinities (Table 1). In the case of vaccinia
virus, expression levels of F1L are high and driven by a strong
early/late latency promoter. All vbcl-2 are single genes without
splice sites and there is some level of conservation of the
location within the genome in the pox viruses, indicating
common progenitors. Another contrast with the mammalian
Bcl-2 family is that no inhibitors of Mcl-1-specific binders
(Noxa) have been found. Immunoprecipitation analysis has
indicated N1L associates with Bad and ORFV125 binds Noxa,
but no affinities have been determined with purified
proteins.116 Expression of Bcl-xL and Mcl-1 potentially
neutralizes all pro-apoptotic proteins.37 Viral blocking of the
Mcl-1-specific inhibitor Noxa does not appear to be required to
maintain host cell viability and Mcl-1 may not be a significant
survival signal in the cell types infected.

Recently a structure of the inhibitory peptide from cytome-
galovirus Bcl-2 homolog, viral mitochondrial localized inhibitor
of apoptosis (vMIA), in complex with Bax demonstrated a
unique binding location distinct from the canonical BH3-biding
site. Binding was mapped to inter-helical loop regions a1-a2,
a3-a4, a5-a6 with residues contributed from a9 and the
C-terminus (equivalent to the lowermost loops in Bcl-xL of
Figure 2). Electrostatic interactions have a significant role in
the interaction and the affinity was measured at Kd of
22 nM.117 In contrast to other Bcl-2 members that inhibit
recruitment of Bax to mitochondria, vMIA recruits Bax to
mitochondria independent of the Bax TM helix and does not
rely on the a1 site.117

Structural Plasticity of vBcl-2 Proteins Enables
Additional Functionality

Although a number of apoptosis-modulating viral Bcl-2
proteins target endogenous Bcl-2 family members, several
recently determined structures point to additional biological
activities that can be regulated by the Bcl-2 fold. Vaccinia virus
N1L is able to subvert Bcl-2-mediated host signaling.29,30

Further evidence suggests an additional role for N1L as a
modulator of NF-kB signaling,118 an important mediator of the
host innate immune response. N1L is thus endowed with dual
functionality. To date, no other viral Bcl-2 protein has been
shown to harbor both anti-apoptotic and NF-kB modulatory
activity.115,119 However, the ability to modulate NF-kB is not
limited to N1L, two additional vaccinia virus factors A52 and
B14120 have also been shown to adopt Bcl-2 folds and act on
the NF-kB pathway, but not the apoptotic pathway. Similar to
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N1L, both A52 and B14 do not harbor a transmembrane
region and appear to be located in the cytosol.121 For the
purpose of NF-kB modulation, the loop-connecting helices 4
and 5 appears to be the site of activity, at least in the case of
A52120 and the hydrophobic BH3-binding groove that
mediates Bcl-2 family member interactions is in a closed
conformation and is not involved in NF-kB signaling.
Mutagenesis data supports the alternative binding mode
with the apoptotic and NF-kB functions on independent
surfaces in N1L.122

Additional activities, other than modulation of NF-kB
signaling, have been attributed to viral Bcl-2 proteins.
Work on vaccinia virus K7 revealed a Bcl-2-like fold that was
utilized to engage RNA helicases.123 The region on K7 that
mediates helicase interactions was mapped using NMR to a
shallow groove along the a1 helix, a region that corresponds to
the N1L dimer interface. N1L dimerization was shown to be
critical for inhibition of NF-kB signaling via a surface patch that
covers the dimer interface and comprises the a1 and a6
helices.122 Non-groove-mediated functions of Bcl-2-like pro-
teins are not limited to viral members of the family and
structural evidence has emerged that Bax may also harbor an
alternative interaction site for BH3-only proteins.57 Again, a
surface region involving helices a1 and a6 was identified as
the alternative site, suggesting that this region of Bcl-2
proteins is available for functional interactions in both viral
and mammalian family members. However, the structural
data for the a1/a6 interface is still rather weak for Bax.

Comparison of Cellular with Viral Bcl-2 Family Members

Although cellular and viral Bcl-2 proteins adopt an identical
fold, a number of differences hint at the different purposes for
which these molecules evolved. Mammalian Bcl-2 members
typically comprise eight alpha helices, a feature that is also
observed for readily identifiable vBcl-2 proteins, such as
KsBcl-2106 and BHRF1.107,108 However, more distant vBcl-2
proteins, such as M11L,31 F1L27 and gHV68-vBcl-2,109 only
contain seven alpha helices leading to a reduction in chain
length required to form the Bcl-2 fold. The sequences of
mammalian multi-motif Bcl-2 proteins vary in sequence length
and are generally long due to the insertion of residues in the
inter-helical loops, whereas their viral counterparts are
typically shorter adopting a more economical compact fold
lacking long inter-helical loops and in the case of the more
distantly related vBcl-2 homologs loss of a7. N1L encodes the
entire Bcl-2 fold within 115 residues,29,30 making it the
member with the shortest primary sequence of the group,
this contrasts with human Bcl-xL that is 233 residues in length
with a 50-residue a1-a2 IDR loop.36 An exception is provided
by vaccinia virus F1L, which is encoded by 226 residues,
including a B60-residue N-terminal extension. The N-termi-
nus of F1L has recently been identified to harbor additional
biological activities, notably a caspases-9 inhibitory func-
tion124,125 as well as an unexpected inflammasome regulatory
role.126 This would establish F1L as the first vBcl-2 to
modulate inflammasome activity directly by binding NLRP1/
NALP1, in a manner reminiscent of Bcl-xL,127 pointing toward
an additional level of functional mimicry.

Viral Bcl-2 Proteins Interact with BH3 Proteins with
Relatively Low Affinity

When comparing affinities of cellular Bcl-2 proteins for their
ligands with their viral homologs, a striking feature is the
higher affinity of most cellular Bcl-2 proteins compared with
viral Bcl-2 proteins. Furthermore, cellular pro-survival Bcl-2
proteins tend to engage a much wider range of pro-apoptotic
proteins9 than the viral counterparts. Whereas Bcl-xL shows
high affinity for all pro-apoptotic Bcl-2 members except Noxa,9

vaccinia virus F1L only binds Bim, Bak and Bax,27 with
affinities that are at least 20-fold lower compared with those of
Bcl-xL. Additionally, two of the most promiscuous BH3-only
proteins Bid and Puma, are only engaged by a limited number
of viral Bcl-2 proteins (Table 1). It is conceivable that the more
selective ligand-binding profiles of a viral Bcl-2 protein reflect
the circumstance that only specific pro-apoptotic Bcl-2
proteins require targeting during viral infection. The smaller
number of ligands identified for certain vBcl-2 proteins might
also be reflected in the changes within the canonical binding
groove.

Although the core structural features of ligand engagement
by viral Bcl-2 members are conserved with their mammalian
counterparts, some intriguing differences exist. The four key
hydrophobic interactions with BH3 motifs are retained in all
vBcl-2:BH3 motif structures, whereas the conspicuous salt
bridge formed by an aspartic acid from the BH3 motif with an
arginine residue from the accepting Bcl-2 protein is not
observed in the M11L:BakBH3 complex. This suggests that
the salt bridge may not be a defining feature for vBcl-2–BH3
interactions as it seems for their cellular counterparts. M11L
exhibits only minimal movement in the binding groove when
binding a BH3 motif ligand,27 and displays high-affinity binding
to a number of point mutants of Bak BH3 motif. In contrast,
Bcl-xL undergoes substantial changes in the binding groove
(in the order of 9 Å) on BH3 motif binding,35,128 and appears to
be unable to engage Bak BH3 point mutants.31 This suggests
that M11L engagement of BH3 ligands is more robust, and not
subject to subtle control mechanisms as required for the
modulation of apoptosis signaling by endogenous cellular Bcl-
2 proteins. The reduced binding groove movement and
robustness of ligand binding in the case of M11L could be a
consequence of high-level optimization of M11L to engage
only a small subset of pro-apoptotic Bcl-2 members.

Concluding Remarks

Bcl-2 proteins couple apoptotic stimuli with mitochondrial
membrane permeabilization to initiate the caspase cascade.
One of the most striking observations is that of the sequence
and structural similarity between the multi-motif pro-apoptotic
Bax and Bak and their pro-survival counterparts. This might
imply that the mode of action of pro-survival and pro-apoptotic
proteins are similar and that specific binding partners and
interactions define their activity. Our understanding of this
family is evolving, but current research is presenting a more
unified mechanism with the canonical BH3-binding groove
being the target in both pro-survival and pro-apoptotic proteins
with high-affinity BH3 interactions in the former and moder-
ated to low-affinity interaction observed for Bax and Bak.59–61
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The thermodynamics of these processes remain poorly
elucidated and converting the in vitro findings to a more
physiological setting is required. Many questions also remain
as to how Bax and Bak are inhibited by pro-survival proteins
from the mammalian and viral Bcl-2 family and the molecular
details of their mode of action at intracellular membrane
surfaces are currently not available.

The role of viral Bcl-2 proteins in apoptosis is probably more
restricted than the mammalian Bcl-2 family, for instance no
viral homolog of Mcl-1 has yet been found, as they only have
to keep host cell apoptosis in abeyance during replication.
Conformational change in viral Bcl-2 proteins is less important
for their function with their primary requirement being
optimized binding of their main targets, the initiators of
apoptosis. What messages can we take from Bcl-2 mimicry?
In the most parsimonious case, viral Bcl-2 proteins could
simply antagonize the pan-pro-survival antagonist Bim pre-
venting activation of Bax or Bak. The absence of observed
specificity for other BH3-only proteins, particularly Bid/tBid
and Puma, may suggest that subtle differences exist that
govern activation of Bim expression compared with Bid and
Puma. However, considering the absence of definitive
expression studies that identify differential expression of
potent BH3-only proteins during viral infections this remains
speculative.

Determination of the structures and binding properties of
Bcl-2 family proteins has been a fruitful tool in delineating
biological roles and the role of individual Bcl-2 proteins and
their viral counterparts. It has allowed predictions of possible
functional importance of the members of the Bcl-2 family in
regulating cell fate and a detailed molecular understanding is
being put to use in designing inhibitors for members of this
family to trigger tumor cell death by inactivation of pro-survival
proteins.129,130 Development of antagonists against viral Bcl-
2 proteins may prove a viable therapeutic approach to treating
diseases etiologically linked to viral infection. For example,
EBV expresses the pro-survival Bcl-2 homolog BHRF1, and
chronic EBV infection is strongly associated with development
of Burkitt’s lymphoma. Constitutive BHRF1 expression131 has
a prominent role in B-cell transformation102 and may
contribute significantly to virus-associated lymphomagenesis,
in addition to being associated with potent resistance to
chemotherapy in mouse models of Burkitt’s lymphoma.107

Viral Bcl-2 proteins only mimic select functions of mammalian
proteins, thus presenting the tantalizing prospect of easier
therapeutic amenability by limiting the number of potential off-
target effects. Given the recent advances in designing BH3
mimetics against mammalian pro-survival Bcl-2 proteins to
activate apoptosis for cancer therapies,129 such structure-
based approaches against viral Bcl-2 proteins may well be
feasible, exploiting the fact that the Bcl-2 fold is put to work in a
similar context but with a rather different purpose.
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