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Abstract—In the evolving field of medical imaging and
machine learning (ML), this paper introduces a novel frame-
work for evaluating synthetic pulmonary imaging aiming to
assess synthetic data quality and applicability. Our study
concentrates on synthetic X-ray chest images, crucial for
diagnosing respiratory diseases. We employ SPINE (Syn-
thetic Pulmonary Imaging Evaluation) framework, a three-
fold synthetic images evaluation method including expert
domain assessment, statistical data analysis and adversar-
ial evaluation. In order to replicate and validate our method-
ology, we followed an End-to-End data and model man-
agement process which begins with a dataset of Normal
and Pneumonia chest X-rays, generating synthetic images
using Generative Adversarial Networks (GANs) and training
a baseline classifier, essential in the adversarial evaluation
axis, testing synthetic images against real data assessing
their predictive value. The critical outcome of our approach
is the post-market analysis of synthetic images. This in-
novative method evaluates synthetic images using clini-
cal, statistical, and scientific criteria independently from
traditional generation performance metrics. This indepen-
dent evaluation provides deep insights into the clinical and
research effectiveness of the synthetic data. By ensuring
these images mirror real data’s statistical properties and
maintain clinical accuracy, our framework establishes a
new standard for the ethical and reliable use of synthetic
data in medical imaging and research.
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Impact Statement—The SPINE framework revolutionizes
synthetic pulmonary imaging evaluation by ensuring syn-
thetic data’s clinical accuracy and statistical reliability, en-
hancing their ethical and practical use in medical diagnos-
tics. By integrating expert domain assessment, statistical
analysis, and adversarial evaluation, SPINE provides a com-
prehensive post-market evaluation method for synthetic
medical data accelerating medical research, profoundly im-
pacting the healthcare industry.

I. INTRODUCTION

THE integration of machine learning in medical imaging has
catalyzed significant advancements, reshaping the land-

scape of diagnostics and research. Despite these advancements,
the field faces notable challenges, particularly in the ethical
sourcing and use of large, diverse datasets. Systematic chal-
lenges such as data biases and the alignment of research in-
centives are impeding progress in this area [1]. Synthetic data
generation has emerged as a viable solution to these challenges,
addressing critical issues related to data availability, privacy
concerns and imbalances in medical datasets.

Our paper introduces SPINE framework for evaluating syn-
thetic pulmonary imaging, which is set to become an essential
tool in medical diagnostics and research. The need for this
framework is emphasized by the significant attention synthetic
data has garnered in medicine and healthcare, as it can improve
existing AI algorithms through data augmentation. However,
there remains a lack of clarity on the wider roles of synthetic data
in AI systems in healthcare, including challenges in establishing
clinical-quality measures and evaluation metrics for synthetic
data [2].

Our initiative aims to bridge the gap between the generation
of synthetic medical images and their effective utilization in
practical scenarios. While prior research has primarily focused
on creating synthetic images [3], our framework shifts towards
a more comprehensive evaluation of these datasets, adopting a
three-pronged evaluation strategy that includes domain or expert
knowledge, data statistical analysis and adversarial evaluations.
This multifaceted approach is designed to compare the utility of
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synthetic data with real-world data, particularly in the context
of predictive modeling in machine learning.

The core of our research is centered on the post-market eval-
uation of synthetic data. This critical phase involves assessing
the synthetic data after it has been deployed, ensuring it meets
the necessary standards and performs effectively in real-world
applications. To ensure comprehensive control over the entire
process, we consciously decided not to rely on pre-existing open-
source synthetic medical data. Instead, we adopted a holistic
approach tailored to the specific needs of this medical data gen-
eration case. This approach acknowledges that different medical
scenarios necessitate tailored adjustments due to the varying
data types (images, tabular, volumetric, etc.) and the specific
expert knowledge required for different medical conditions.
Nevertheless, our proposed framework, applied to lung X-ray
images for detecting or excluding pneumonia, is designed to
be versatile and adaptable to any synthetic lung X-ray imaging
scenario, demonstrating the broader applicability of our method.

Central to our validation methodology was the use of an
open-source dataset from Mendeley Data, specifically “Chest
X-Ray Images (Pneumonia)” [4]. This dataset is categorized
into two primary categories: Normal and Pneumonia, includ-
ing chest X-rays of pediatric patients aged one to five years
from Guangzhou Women and Children’s Medical Center. The
dataset was not only pivotal in generating synthetic images via
Generative Adversarial Networks (GANs) but also formed the
foundation for training our baseline classifier. This classifier
trained to differentiate between Normal and Pneumonia cases,
is integral to the adversarial evaluation phase of our framework.

This research establishes a new standard for the ethical and
reliable use of synthetic data in medical imaging and research
by implementing a rigorous evaluation process that ensures syn-
thetic images maintain clinical accuracy and mirror the statistical
properties of real data. By independently evaluating synthetic
images through clinical, statistical, and adversarial lenses, our
framework provides a robust methodology that enhances the
usability and reliability of synthetic data in clinical decision-
making and machine learning. This comprehensive approach
addresses the ethical considerations and practical challenges
associated with synthetic data, promoting more ethical, privacy-
aware, and effective data usage in medical research.

In summary, this paper introduces several contributions to the
integration of machine learning in medical imaging. The key
innovations include:

� Novel Framework for Synthetic Pulmonary Imaging: In-
troduction of a novel framework (SPINE) to evaluate
synthetic pulmonary imaging, addressing the urgent need
for ethical and effective use of synthetic data in medical
diagnostics and AI systems.

� Three-Pronged Evaluation Strategy: This paper adopts a
comprehensive and versatile evaluation approach, blend-
ing domain expertise, statistical data analysis and ad-
versarial evaluations. While this strategy is meticulously
applied to chest X-rays in the current work, its underlying
logic and methodology are designed to be universally
applicable across various categories of medical data. This

adaptability allows for the effective comparison of syn-
thetic and real-world data’s utility in predictive medical
machine learning modeling, ensuring broad applicability
and potential for future extensions in different medical
imaging domains.

� Post-Market Evaluation of Synthetic Data: Focus on post-
generation analysis, moving beyond mere creation of syn-
thetic images to ensure their practical utility and relevance
in various medical scenarios.

The rest of the paper is organised as follows: In Section II an
overview of existing literature is provided. Then, in Section III,
we delve into the specific methods and criteria used for each
evaluation axis of our study. Section IV, reports on our experi-
mental results, subdivided into the system configuration, dataset
description, evaluation metrics used and the results obtained. An
ablation study is detailed in Section V and the paper concludes
with Section VI summarizing our key findings and suggesting
potential areas for future research.

II. RELATED WORK

The evaluation of synthetic medical data is a crucial aspect
of this field, yet it has received comparatively less focus in the
literature. Current studies primarily focus on the generation of
synthetic data, with less emphasis on comprehensive evaluation
frameworks. For instance, Goncalves A. et al. [5] highlight
the diverse methods for generating synthetic data, noting the
difficulties in directly comparing these methods due to the use
of different datasets and evaluation metrics. This underscores a
significant gap in the literature: a lack of standardized guide-
lines or discussions on how to compare and evaluate different
synthetic data generation methods to select the most appropriate
one for a given application.

Most existing evaluation approaches for synthetic medical
data are fragmented, primarily focusing on individual aspects
like statistical accuracy, fidelity to real-world data or privacy
preservation. For example, Chao Y. et al. [6] points out that
while various synthetic data generation techniques, particularly
GANs, have been extensively proposed, their systematic bench-
marking and evaluation remain underdeveloped. This lack of
comprehensive evaluation is further highlighted by the absence
of a unified set of metrics to assess synthetic data, leading to
inconsistencies in model comparisons and evaluations based on
Khaled E. et al. [7]. Moreover, according to Lan L. et al. [8],
the evaluation often neglects the diverse use cases of synthetic
data, thereby failing to ascertain the conditions ideal for specific
simulation models. This scenario underscores the need for a
holistic framework offering a more thorough and multifaceted
assessment of synthetic medical datasets.

Reflecting on the extensive research in this field, it becomes
apparent that the proposed framework in our work, integrating
domain expert knowledge, data statistics and adversarial evalua-
tion, represents a novel approach. To our knowledge, no existing
studies have presented a framework that unites these three axes in
the evaluation of synthetic medical data, not only for pulmonary
imaging but generally in the context of medical synthetic data.
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Fig. 1. SPINE development schema.

This marks our framework as a significant and innovative con-
tribution to the field, potentially setting new benchmarks for the
evaluation of synthetic medical datasets.

III. METHODOLOGY

Our development schema is structured to address the unique
challenges and requirements of evaluating synthetic medical
datasets, particularly in the context of chest X-rays used for dis-
tinguishing between normal patients and those with pneumonia.
The core of our task, called SPINE in Fig. 1, involves the devel-
opment of an evaluation framework encapsulating three axes:
expert/domain knowledge evaluation, data statistics evaluation,
and adversarial evaluation.

To replicate and validate our SPINE framework, we employed
an End-to-End data and model management process. This pro-
cess comprises two preparatory tasks, as shown in Fig. 1. The
first task is Data Synthesis, where we employ a Generative Ad-
versarial Network (GAN) to create a synthetic dataset. This pro-
cess is vital to generate the synthetic data that SPINE framework
will evaluate. The second task, called Classifier Development,
involves developing a baseline classifier trained to differentiate
between normal and pneumonia cases in chest X-rays. This step
is essential for the adversarial evaluation axis of SPINE, where
the classifier tests synthetic images against real data, assessing
their predictive value.

Our comprehensive, step-by-step approach prioritizes control
and specificity in the evaluation of synthetic medical datasets.
From data synthesis and classifier development to a multi-
faceted evaluation framework, each step is designed to meet the
unique demands of our research, contributing to the advance-
ment of medical data analysis and synthetic data evaluation.

A. Preparatory Task 1: Data Synthesis

Generative Adversarial Networks (GANs), first introduced by
Goodfellow I. et al. [9], represent a groundbreaking approach

in the field of generative models. GANs consist of two neural
networks, the generator and the discriminator, which are trained
simultaneously through adversarial processes. The generator
creates data samples, while the discriminator evaluates them
against real data, fostering a continuous improvement in the
quality of generated samples. Extending the capabilities of
GANs, conditional Generative Adversarial Networks (cGANs)
were introduced, adding a conditional aspect to the generative
process. In cGANs, both the generator and the discriminator
receive additional label information, allowing the generation of
targeted data samples based on specific conditions or categories.
This modification, as detailed by Mirza M. et al. [10], signifi-
cantly enhances the control over the data generation process.

In our study, we developed a custom cGAN model aiming
to generate synthetic chest X-ray images for distinguishing be-
tween normal and pneumonia cases. The generator of our cGAN
model begins with two separate inputs: the dimensionality of the
latent space and the number of classes for labels. Firstly, it creates
a label input pathway. This starts with an input layer for the label,
which is processed through an embedding layer to transform it
into a dense representation. The output is then fed into a dense
layer to expand its dimensions, followed by a reshape operation
to form a 32 × 32 feature map. Simultaneously, a noise input
pathway is created. This takes a latent space input and passes
it through a dense layer, which significantly expands its dimen-
sions. The output is then reshaped into a 32× 32 feature map, but
with a depth of 256, indicating many feature maps stacked to-
gether. These two pathways, noise and label, are then merged to-
gether using a concatenate operation. This merged tensor forms
the input to a sequential model, which consists of several layers
designed to upsample the input to a higher resolution image.

The upsampling is achieved through a series of transposed
convolutional layers each of which doubles the dimensions of
the feature map. A transposed convolutional layer, used in your
generator model, serves the purpose of upsampling the input fea-
ture maps to a higher spatial resolution. It’s the reverse operation
of a conventional convolutional layer [11]. The mathematical
operation of the transposed layers of the generator explained in
the (1) below:

Y = X ∗ T (F ) (1)

where Y is the output feature map from the transposed convolu-
tional layer,X is the input feature map,T denotes the transposed
convolution operation with F representing the size of the filter.
The stride S controls the step of the filter across the input,
affecting the upsampling, and the padding P adjusts the spatial
size of the output. The stride and padding are implicit in this
operation but are not explicitly represented in the equation for
simplicity. A stride of (2,2) is employed to our generator when
padding maintains the spatial dimensions post convolution.

These layers are interleaved with instance normalization,
where it normalizes the input across each channel in each data
sample independently. As activation function for the layers
LeakyReLU activation [12] was used as below in (2).

f(x) =

{
x if x > 0,

αx otherwise
(2)
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f(x) is the output of the LeakyReLU function given an input x,
and α is a constant of 0.01 that defines the slope of the function
for negative input values.

The model progressively upsamples the feature maps from 32
× 32 to 64× 64, then to 128× 128, and finally to 256× 256. The
last layer of the model is another transposed convolutional layer
that outputs a single 256 × 256 feature map, with a hyperbolic
tangent function(tanh) activation function. Finally, the model
connects the merged input to the sequential model and returns
the complete generator model. This model takes noise and a
class label as input and generates an image corresponding to
that class.

The discriminator’s architecture, is tailored to assess the au-
thenticity of the generated images. It also receives two inputs:
an image input of shape (256, 256, 1) and a label input. The label
is first embedded into a 50-dimensional vector, then expanded
through a dense layer to match the spatial dimensions of the
image input, and finally reshaped to a single-channel format.
These two inputs are then concatenated along the channel di-
mension, creating a merged input that combines image and label
information.

Within the model, a series of convolutional layers with
LeakyReLU activations progressively downsample this merged
input. The downsampling process involves halving the spatial
dimensions at each convolutional layer, starting from 128 ×
128 to 64 × 64, and finally to 32 × 32, with a stride of (2,2) at
each step. LeakyReLU is employed to introduce non-linearity
and prevent gradient vanishing. Dropout layers with a rate of 0.3
are interspersed between these convolutional layers to mitigate
overfitting by randomly disabling a fraction of neurons during
training.

The final stage of the model involves flattening the downsam-
pled feature map into a vector, which is then passed through a
dense layer with a sigmoid activation. This layer acts as a clas-
sifier, outputting a probability that indicates whether the input
image-label pair is real or fake, aligning with the discriminator’s
role in a GAN to distinguish between real and generated images.

For preprocessing, images were resized to 256 × 256 and
labels were appropriately processed. The generator and discrimi-
nator undergo alternating updates, using binary cross-entropy for
loss calculation (3) and the Adam optimizer [13] for adjustments.

L = −
∑
i

yi · log(pi) (3)

In (3), L is the Cross-Entropy Loss, yi denotes the true label
for the i-th class, and pi is the predicted probability for the i-th
class by the model.

B. Preparatory Task 2: Classifier Development

We employed a state-of-the-art image classification frame-
work, YOLO (You Only Look Once), specifically utilizing its
latest iteration at the time of our research, YOLOv8. YOLO,
an acronym for “You Only Look Once,” was proposed initially
by Redmon J. et al. [14] and is a series of computer vision
algorithms capable of performing various computer vision tasks.
The YOLO framework is distinguished by its unique method of

processing images, where it divides the image into a grid and
predicts bounding boxes and class probabilities for each grid
cell simultaneously. Since its introduction, YOLO has under-
gone several iterations and improvements. Each version, from
YOLOv1 to the latest YOLOv8, has brought enhancements in
accuracy and speeds. YOLOv8 represents the latest development
in this series, offering further optimizations in performance and
accuracy.

In our research, we utilized YOLOv8 Nano, initialized with
weights pre-trained on the MS COCO dataset [15], to create a
chest X-ray image classifier for distinguishing between normal
and pneumonia cases. YOLOv8 is characterized by its distinctive
architecture, incorporating an anchor-free approach combined
with a decoupled head. This design allows the independent han-
dling of objectness, classification and regression tasks. Our focus
particularly lies on the aspect of classification, where YOLOv8
leverages the softmax function to compute class probabilities.

The fundamental unit of the architecturein Yolov8 called C2f
block, incorporates the core elements of CBS – a composition
of a Convolutional layer (Conv), Batch Normalization (4) and a
SiLU activation layer (5). This C2f module, characterized by
“f” representing the total feature count. A significant aspect
of the C2f unit is its adoption of a 3× 3× 3 kernel size in
the convolution along with the bottleneck within this unit also
utilizes a 3× 3× 3 kernel.

BN(x) = γ

(
x− μ√
σ2 + ε

)
+ β (4)

where x is the input,μ and σ2 are the mean and variance, γ and β
are learnable parameters, and ε is a small constant for numerical
stability.

SiLU(x) = x · σ(x) (5)

where σ(x) is the sigmoid function, defined as σ(x) = 1
1+e−x .

In this equation, x is the input to the activation function. The
sigmoid function outputs a value between 0 and 1, which scales
the input x.

We started by leveraging the feature extraction capabilities
of YOLOv8 Nano’s backbone, which was already trained on
the diverse MS COCO dataset. The primary modification in our
approach was the adaptation of the loss function to suit binary
classification. Given the nature of our task, we employed binary
cross-entropy as our loss function (3).

The focus of our training efforts was on the later layers of
the YOLOv8 Nano model. These layers, more specialized for
the specific task of classification, were fine-tuned to adapt to
the nuances of our dataset. By retraining these layers, the model
was able to better interpret the features extracted from the X-ray
images and make accurate distinctions between normal and
pneumonia cases.

C. SPINE Framework

The SPINE Evaluation Framework is the cornerstone of our
research on evaluating synthetic medical data, focusing particu-
larly on pulmonary imaging (lung X-rays). This framework op-
erates on three pivotal axes: expert domain assessment, statistical
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data analysis and adversarial evaluation, encompassing a variety
of specific criteria essential for determining the suitability of
synthetic images for medical applications.

The output of each criterion for the first two axes is primarily
the labeling of images as ‘correct’ or ‘erroneous’ indicating if
the synthetic image aligns with expert knowledge and statistical
analysis criteria. This binary classification allows for a straight-
forward assessment of the synthetic data initial quality. The
proposed logic behind this framework suggests a continuous
application of these criteria, with the aim of systematically
excluding data samples labeled as ‘erroneous’ from our syn-
thetic data repository. In the pursuit of these first two axes, we
have consciously chosen not to employ sophisticated machine
learning techniques. Instead, our focus is on enhancing the inter-
pretability, reproducibility and explainability of our processes.
This is achieved through the implementation of straightforward
image manipulation techniques. These methods, while simpler,
offer clear advantages in terms of understanding and replicating
the results. Furthermore, it’s important to note that even though
our specific use case and dataset focus on classifying lung X-rays
between normal and pneumonia, the criteria we have developed
are versatile and applicable to any synthetic lung X-ray imaging
scenario, regardless of the specific medical task at hand.

On the other hand, the third axis of the framework involves a
qualitative evaluation of the synthetic data, necessitating human
intervention to compare the evaluation results of the inference
on the baseline classifier for synthetic versus real-world data.
This process focuses on assessing the predictive value of the
synthetic data by thoroughly reviewing the results according to
clear guidelines. This holistic approach is critical for ensuring
that only the most accurate and reliable synthetic data is used,
complementing the expert knowledge-based assessment of the
first axis and the statistical analysis of the second axis.

The major goal of this framework is to add additional safety
and evaluation layers to the use of synthetic data in medical
applications, focusing particularly on excluding erroneous data.
Although the dataset utilized for generating synthetic data pri-
marily consisted of images from young children [4], the criteria
established in the framework are versatile and broad-ranging,
enabling their effective application across all age groups. Fur-
thermore, wherever possible, we intend to validate these criteria
against real-world data. This crucial step aims to confirm the
robustness and reliability of our framework.

1) [Axis 1: Experts Knowledge] Criterion 1.1 - Thoracic
Field Completeness: The thoracic field completeness is a fun-
damental criterion for evaluating synthetic lung X-rays, as it
ensures the integrity and clinical usability of the image. In a
diagnostic-quality chest X-ray, we expect to see clear delineation
of the thoracic cavity, with distinct visualization of the lung
fields, heart, diaphragm, and bony structures such as the ribs
and spine. Typically, bones appear white or light due to their
high density, contrasting with the darker appearance of the lungs
and air-filled spaces, which possess lower X-ray absorption
characteristics. The background, ideally homogeneous and dark,
provides a contrast that helps in identifying these anatomical
landmarks [16].

Algorithm 1: Thoracic Field Completeness Check.
1: Input: Synthetic Lung X-ray images
2: Output: Thoracic Field Completeness Check
3: procedure APPLYING OTSU’S THRESHOLDING

4: for each image do
5: Apply Otsu’s thresholding to create a binary image
6: Distinguish darker areas (lungs and background)

from brighter areas (bones and tissues)
7: end for
8: end procedure
9: procedure LUNG-BACKGROUND SEPARATION CHECK

10: Identify background as darker region touching image
margins

11: Check if segmented lung area contacts the background
area

12: end procedure
13: procedure DETERMINING IMAGE VALIDITY

14: if lung area is not distinct from background then
15: Mark image as erroneous
16: else
17: Mark image as correct
18: end if
19: end procedure

Otsu’s thresholding [17] is a classical and widely-used au-
tomatic thresholding technique in image processing to sepa-
rate the foreground from the background. Otsu’s thresholding
is fundamental to our research and will be used as the base
technique in the Thoracic Field Completeness criterion of the
SPINE framework. The method involves exhaustively searching
for the threshold that minimizes the within-class variance or,
equivalently, maximizes the between-class variance.

σ2
B(t) = ω0(t)ω1(t)[μ0(t)− μ1(t)]

2 (6)

In the (6), σ2
B(t) is the between-class variance, ω0(t) and

ω1(t) are the probabilities of the two classes separated by a
threshold t, andμ0(t) andμ1(t) are the class means. The method
iteratively calculates t for each threshold level and selects the
one yields the maximum σ2

B(t). This method is effective in
distinguishing areas of interest (like lung fields) in medical
images due to its ability to adaptively adjust the threshold based
on the image content.

To assess the specific criterion of thoracic field completeness
in synthetic chest X-ray images, we followed a structured ap-
proach as outlined in Algorithm 1. This algorithm encapsulates a
series of critical steps, including Otsu’s thresholding application,
lung-background separation checks, image validity determina-
tion and visualization with colored masks.

2) [Axis 1: Experts Knowledge] Criterion 1.2 - Di-
aphragm Existence: In a typical chest X-ray, which includes
the thoracic vertebrae, lungs, heart and other thoracic struc-
tures, the diaphragm plays a vital role in the interpretation of
the image [18]. Based on Thitiporn S. et al. [19] the right
hemidiaphragm dome is typically positioned at 9.7 ± 0.8 cm
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Algorithm 2: Diaphragm Existence Check.
1: Input: Synthetic Lung X-ray images
2: Output: Diaphragm Existence Check
3: procedure APPLYING OTSU’S THRESHOLDING

4: for each image do
5: Apply Otsu’s thresholding to create a binary image
6: Distinguish darker areas (lungs and background)

from brighter areas (bones and tissues)
7: end for
8: end procedure
9: procedure DIAPHRAGM LINE IDENTIFICATION

10: for each image do
11: Divide the image horizontally, focusing on the

bottom 1/6
12: end for
13: end procedure
14: procedure DETERMINING IMAGE VALIDITY

15: for each image do
16: Select the area below the diaphragm line
17: Calculate the percentage of brighter pixels (1 s in the

binary image) for each half of the bottom 1/6
18: Determine if brighter areas exceed 50% in each half

of the bottom part
19: if brighter areas are more than 50% then
20: Mark image as correct
21: else
22: Mark image as erroneous
23: end if
24: end for
25: end procedure

thoracic vertebral levels below the top of the first thoracic
vertebra, with the left hemidiaphragm dome slightly lower at
10.2 ± 0.8 cm vertebral levels. The hemidiaphragms, appearing
as domed structures, should be well-defined and visible up to the
midline on a frontal view, with the right diaphragm visible all
the way to the anterior chest wall and the left diaphragm visible
up to the point where it borders the heart.

Based on the above, in terms of its proportion in a chest X-
ray image, the diaphragm typically occupies the lower 1/6 of
the image when split horizontally. This estimation considers the
diaphragm’s relative position to the liver, which elevates the right
hemidiaphragm, and its relationship with the heart, which limits
the visibility of the left hemidiaphragm.

On a grayscale chest X-ray, the diaphragm is distinguished by
its appearance and intensity. The diaphragm should present as a
well-defined, dome-shaped structure with a consistent density. It
contrasts against the air-filled lungs, which appear darker due to
their lower density, and the abdominal structures beneath, which
are denser and thus appear lighter in color. The right hemidi-
aphragm, bordered by the air in the lungs and the soft tissue of the
liver, provides a clear interface visible to the anterior chest wall.
The left hemidiaphragm, however, becomes less distinct where
it borders the heart, as both structures have similar densities.
This distinction in densities and the well-defined contours of the

diaphragm are key aspects in evaluating its normalcy in a chest
X-ray [18].

In order to assess the presence of the diaphragm in synthetic
chest X-ray images, we employed Algorithm 2. This Algorithm 2
is crafted to scrutinize each image, ensuring the precise identifi-
cation of the diaphragm by labelling the ‘correct” or ’erroneous’
images accordingly.

3) [Axis 2: Data Statistics] Criterion 2.1 - Diagnostic
Noise Level Check: To evaluate the statistical properties of our
synthetic lung X-ray images, we have broadened our dataset to
include the National Institutes of Health (NIH) ChestX-ray14
dataset [20]. This integration is not only crucial for enhancing
the statistical robustness of our evaluation but could ensure that
there is an alignment with real-world clinical standards. The
ChestX-ray14 dataset is a comprehensive collection, consisting
of 112,120 frontal-view X-ray images from 30,805 unique pa-
tients, each annotated with 14 different thorax disease categories.

In the process of calculating the noise in our datasets, we
utilized Immerkaer’s method [21], a technique in the field of
image processing for estimating the noise variance. Immerkaer’s
method operates by calculating the local mean around each pixel
in an image. It does so by considering a 3x3 window centered
on each pixel. The core of this method is the estimation of
variance, which it achieves by analyzing the difference between
the intensity of each pixel and its local mean (7). This difference
is indicative of the noise level at each pixel. The method then
involves squaring these differences and summing them across
the entire image.

Noise Variance =
1

M

H−1∑
i=1

W−1∑
j=1

⎛
⎝I(i, j)− 1

4

∑
neighbors

I(n)

⎞
⎠

2

(7)
In (7), Noise Variance is the estimated variance due to noise in

the image. M is the total number of pixels in the image, adjusted
for border pixels.H andW are the height and width of the image,
respectively. I(i, j) denotes the intensity of the pixel at position
(i, j). The inner summation calculates the local mean around
each pixel by averaging the intensities of its four immediate
neighbors (top, bottom, left, and right), effectively capturing the
local variability in pixel intensity that is indicative of noise. The
method’s primary objective is to quantify the noise level in an
image by providing a numerical value for the noise variance.
This value is a representation of how much the intensity of each
pixel varies from its local mean due to noise.

In Fig. 2, we present the noise distributions of the two
datasets of lung X-rays, alongside their concatenated distribu-
tion. Mendeley dataset [4] exhibits a mean noise level of 107.58,
a median of 108.72, and a standard deviation of 14.04, while
NIH dataset [20] has a mean of 110.62, a median of 114.12, and
a standard deviation of 14.89. Despite these slight variations,
the noise levels in both datasets are predominantly concentrated
around similar values. This observation underscores a notable
consistency in the noise characteristics of lung X-ray images
across different datasets. Such consistency is crucial, especially
in medical imaging, where the reliability and quality of images
are paramount for accurate diagnoses.



582 IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY, VOL. 5, 2024

Fig. 2. Noise Distribution along Datasets.

Based on our analysis and the visual evidence from Fig. 2, we
can deduce that synthetic lung X-ray images exhibiting noise
levels greater than 155 are likely to be erroneous. Conversely,
images with noise levels below this threshold can generally be
considered correct. This assertion is grounded in the understand-
ing that excessive noise in medical images, especially X-rays,
can significantly degrade their quality. High noise levels ob-
scure critical details, reduce image clarity, and compromise the
contrast necessary for distinguishing vital anatomical structures
and pathological indications. In lung X-rays, where subtleties in
tissue textures and densities are often key indicators of various
conditions, maintaining low noise levels is imperative to ensure
the images’ diagnostic utility and accuracy. Consequently, iden-
tifying and flagging synthetic images with anomalously high
noise levels as erroneous becomes a crucial step in ensuring the
quality and reliability of medical imaging data.

Based on the analysis of noise levels in lung X-ray images,
we have developed Algorithm 3. This algorithm categorizes
synthetic lung X-ray images as either correct or erroneous by
assessing their noise levels using Immerkaer’s method.

4) [Axis 2: Data Statistics] Criterion 2.2 - Diagnostic
Sharpness Level Check: Sharpness, which essentially trans-
lates to the level of detail in medical imaging, particularly

Algorithm 3: Diagnostic Noise Level Check.
1: Input: Synthetic Lung X-ray images
2: Output: Diagnostic Noise Level Check
3: procedure ESTIMATE NOISE USING IMMERKAER’S

METHOD

4: for each image do
5: Estimate the noise level of the image using

Immerkaer’s method
6: end for
7: end procedure
8: procedure DETERMINING IMAGE VALIDITY

9: for each image do
10: Retrieve the estimated noise level for the image
11: if noise level > 155 then
12: Mark image as erroneous
13: else
14: Mark image as correct
15: end if
16: end for
17: end procedure

in chest X-rays, is essential. For diagnosing conditions like
pneumonia, the ability to discern subtle changes in lung density
is paramount. These changes, often manifesting as increased
whiteness on the radiograph, are key indicators of the disease’s
presence and severity. According to Cleverley et al. [22], identi-
fying these nuances, which can be exceedingly subtle, is integral
to an accurate diagnosis. This reliance on fine detail accentuates
the necessity of sharp, high-quality images, without which the
risk of misinterpretation escalates significantly. Furthermore,
the quality of chest X-rays is a significant determinant of their
interpretability. Factors that degrade image quality, such as
under-exposure or poor imaging due to the patient’s positioning,
can obscure critical details.

Laplacian Variance = Var(L) (8)

where the variance Var is calculated over the Laplacian image
L, quantifying the spread of the edge information and L is
calculated as:

L = ∇2I =
∂2I

∂x2
+

∂2I

∂y2
(9)

where I is the original image,∇2 denotes the Laplacian operator,
and ∂2

∂x2 and ∂2

∂y2 are the second partial derivatives of the image
intensity I with respect to the x and y coordinates.

For assessing the sharpness of images, a technique known as
the Laplacian variance used, as in (8) and (9). This approach is
well-suited for evaluating the level of detail in an image. In the
context of chest X-rays, edges and fine details are paramount in
revealing the structural integrity of lung tissues and the presence
of pathological changes. By applying the Laplacian operator
to an image, we essentially accentuate these critical edges,
making it easier to assess the image’s overall sharpness. A higher
variance indicates a greater degree of sharpness, implying that
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Fig. 3. Sharpness levels in lung X-ray datasets.

Algorithm 4: Diagnostic Sharpness Level Check.
1: Input: Synthetic Lung X-ray images
2: Output: Diagnostic Sharpness Level Check
3: procedure ESTIMATE SHARPNESS USING LAPLACIAN

VARIANCE

4: for each image do
5: Estimate the sharpness level of the image using

Laplacian variance
6: end for
7: end procedure
8: procedure DETERMINING IMAGE VALIDITY

9: for each image do
10: Retrieve the estimated sharpness level for the image
11: if noise level < 23 then
12: Mark image as erroneous
13: else
14: Mark image as correct
15: end if
16: end for
17: end procedure

the image has more defined edges and, consequently, a higher
level of detail.

In Fig. 3, we showcase the boxplots representing sharpness
levels across our lung X-ray datasets, including the Mendeley [4]
and NIH datasets [20], as well as their concatenation as “Com-
bined”. This visual representation underscores the sharpness
characteristics of the datasets, integral to the quality and diag-
nostic viability of the images. A crucial finding from our analysis
is the establishment of a minimum sharpness threshold of 23,
derived from these datasets. Synthetic lung X-ray images falling
below this threshold are considered inadequate for medical
applications and are therefore excluded from further analysis
or use. The threshold of 23 for sharpness acts as a decisive
marker in evaluating the utility of synthetic images. Those falling
below this marker lack the essential clarity and detail required
for accurate medical interpretation.

To operationalize this criterion in a systematic and automated
manner, we have developed Algorithm 4. This algorithm as-
sesses the sharpness levels of synthetic lung X-ray images,
categorizing them based on their adherence to the established
sharpness threshold. Images that meet or exceed the threshold
are deemed suitable for medical purposes, while those falling
below it are flagged and excluded.

5) [Axis 3: Adversarial Evaluation]: This evaluation axis,
called “Adversarial Evaluation” involves the use of a trained
baseline classifier, in our case coming from the Preparatory
Task 2, to discern between normal and pneumonia-afflicted lung
conditions. The classifier, trained on real-world data, serves as a
benchmark tool for assessing the predictive value of real against
synthetic datasets.

The core objective of this adversarial evaluation is to analyze
the extent to which synthetic data can mimic the predictive
characteristics of real-world data when subjected to the same
diagnostic algorithm. By inferencing the classifier with both real
and synthetic data, we aim to perform a comparative analysis
across various evaluation metrics. The comparison will include
not only a general assessment across all data but also a more
detailed analysis on a class-by-class basis. This approach allows
us to delve deeper into how well synthetic data represent each
category – normal and pneumonia.

A critical aspect of this evaluation is determining any disparity
in the predictive value of synthetic data. For instance, if the
synthetic data consistently underperform in accurately classify-
ing pneumonia cases when compared to real data, this would
indicate a lack of fidelity in the synthetic dataset’s representa-
tion of pathological features critical for diagnosis. Conversely,
comparable performance between synthetic and real data would
suggest that the synthetic images possess a high degree of
realism and diagnostic value.

IV. EXPERIMENTAL OUTCOMES

A. System Configuration

In our research setup, we chose the GPU V100 over a CPU
due to its superior computational power. GPUs excel in handling
parallel tasks, making them ideal for training complex mod-
els like cGANs and image classifiers, which involve complex
computations. This parallel processing capability significantly
accelerates training and analysis especially with intricate neural
network architectures.

B. Dataset Description

In the context of this research, the Mendeley Chest X-ray
dataset [4], derived from Guangzhou Women and Children’s
Medical Center, Guangzhou, plays a pivotal role. It encompasses
5856 anterior-posterior chest X-ray images of pediatric patients
aged one to five years, as shown in Fig. 4. These images, integral
for studying pulmonary conditions, were collected as part of the
patients’ routine clinical care. The dataset underwent thorough
quality control, where scans of inferior quality were excluded
and the remaining images were meticulously graded by two
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Fig. 4. Illustrative examples of chest X-rays.

Fig. 5. Distribution of Chest X-ray Images by Class.

expert physicians, with a third providing additional review for
the evaluation set.

For the purposes of this study, the two general classes were
used: Normal and Pneumonia, as in Fig. 5, without distinguish-
ing between the subcategories of bacterial and viral pneumonia.
The dataset is comprised of 4273 images indicating pneumonia
and 1583 images classified as normal.

Regarding data management, as shown in Fig. 1, our
initial dataset was stratified and split into two distinct
sets: “Real_main” and “Real_test,” with a 90/10 ratio. The
“Real_main” dataset was utilized for data synthesis, resulting in
the “Synthetic” dataset. Furthermore, “Real_main” underwent
another stratified split into “Real_sub1” and “Real_sub2” with
a 95/5 ratio. “Rel_sub1” was employed in the training of our
classifier, while “Real_sub2” played a crucial role in the third
axis of our core task, specifically for adversarial evaluation. Ad-
ditionally the evaluation report for the classifier for the validation
of the effectiveness of our classifier was generated by inferencing
on the “Real_test” dataset, providing insights into the classifier’s
performance metrics.

C. Evaluation Metrics

To assess the quality and efficacy of our development process
we employed a diverse range of evaluation metrics. For the eval-
uation of the synthetic data quality during the preparatory task of
data synthesis, we used the Structural Similarity Index Measure

(SSIM) as in (10), a metric proposed by Wang et al. [23].

SSIM(x, y) =
(2μxμy + c1)(2σxy + c2)

(μ2
x + μ2

y + c1)(σ2
x + σ2

y + c2)
(10)

In (10) μx and μy are the average values of images x and y,
σx and σy are the variances, σxy is the covariance and c1 with
c2 are the constants to stabilize the division.

For the evaluation of both the classifier during the second
preparatory task of classifier development but also in the concept
of adversarial evaluation in the 3 rd axis of framework, we used
metrics based on the confusion matrix. A confusion matrix is
a tabular representation of the performance of a classification
algorithm. In our binary classification scenario for normal and
pneumonia cases, the confusion matrix elements are True Posi-
tives (TP), True Negatives (TN), False Positives (FP), and False
Negatives (FN). TP represents correctly identified pneumonia
cases, TN denotes correctly identified normal cases, FP indi-
cates normal cases incorrectly identified as pneumonia, and FN
represents pneumonia cases incorrectly identified as normal.

From this confusion matrix, we derived critical metrics such
as accuracy (11), recall (12), precision (13) and the F1 score (14).
Accuracy measures the overall correctness of the model, recall
(or sensitivity) assesses how well the model identifies positive
cases, precision evaluates the correctness of positive predictions,
and the F1 score provides a balance between precision and recall,
especially important in uneven class distributions.

Accuracy =
TP + TN

TP + TN + FP + FN
(11)

Recall =
TP

TP + FN
(12)

Precision =
TP

TP + FP
(13)

F1 =
2× TP

2× TP + FP + FN
(14)

D. Results

1) Preparatory Task 1 - Data Synthesis: In our study, we
engaged in a systematic training regimen for the cGAN model,
extending over 70 epochs, to produce the synthetic data that our
SPINE framework will evaluate as part of the end-to-end data
management. This training process involved regular monitoring
of the model’s key components: the generator and the discrim-
inator. Special attention was paid to their respective losses,
a critical factor in ensuring optimal model performance and
learning accuracy.

These observations are depicted in Fig. 6, offering insight into
the dynamic interplay between the generator and discriminator
during the training process.

A pivotal aspect of our training methodology was the use
of a latent dimension of 200 in the cGAN model. The latent
dimension in generative models like cGANs refers to the size of
the input noise vector. Additionally, we adopted a batch size of
8 for the training process. Furthermore, a crucial aspect of our
training process involved the periodic plotting of the generated
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Fig. 6. Generator and discriminator losses.

Fig. 7. Generated images.

synthetic images. By examining these images at regular inter-
vals, we could qualitatively assess the evolution and refinement
of the model’s image generation capabilities, as shown in Fig. 7.

The synthetic data generated underwent an evaluation us-
ing SSIM comparing “Real_main” and “Synthetic” datasets of
Fig. 1. The results of this evaluation were quite revealing, as we
achieved an Average SSIM score of 0.55%. For the ‘Normal’
class, we achieved an Average SSIM of 0.48%. On the other
hand, the ‘Pneumonia’ class exhibited a higher level of fidelity,
as evidenced by an Average SSIM of 0.58%.

2) Preparatory Task 2 - Classifier Development: In our
study, as part of the end-to-end model management, we created a
baseline classifier which is crucial for the adversarial evaluation
axis of our SPINE methodology. This classifier would be capable

Fig. 8. Train and validation losses - YOLOv8.

TABLE I
CLASSIFICATION REPORT OF YOLOV8

of categorize the X-ray lung images to normal/pneumonia. For
this reason, we resized all chest X-ray images to 256×256 pixels
as a preprocessing step. We trained our model for 25 epochs, with
a batch size of 4, selecting the best-performing iteration based
on the lowest validation loss, as shown in Fig. 8.

To have an indication about the performance of the classifier,
our baseline model was evaluated on the “Real_test” set (Fig. 1)
producing the classification report of Table I. The evaluation
revealed a high precision (0.99) for “Normal” class but a lower
recall (0.43), indicating accurate but not comprehensive detec-
tion of normal cases. In contrast, it showed strong performance
in identifying “Pneumonia” cases, with high precision (0.74) and
perfect recall (1.00). The overall accuracy stood at 78%, with
macro and weighted F1-scores of 0.72 and 0.76, respectively,
suggesting a balanced but improvable performance across both
classes.

3) [Axis 1: Experts Knowledge] Criterion 1.1 - Thoracic
Field Completeness: In Fig. 9, we present two indicative cases
following the application of Algorithm 1 applying red mask for
background and blue for lung areas. This figure illustrates the
outcomes of our thoracic field completeness check, showcasing
one example of a correctly processed synthetic chest X-ray
image and another example deemed erroneous.

To validate the effectiveness of Algorithm 1, we applied it to
the “Real_sub2” dataset of Fig. 1. All images in this dataset suc-
cessfully passed the check, with each being labeled as ‘correct’.

4) [Axis 1: Experts Knowledge] Criterion 1.2 - Di-
aphragm Existence: In Fig. 10, two representative examples
showcase the outcomes post-application of Algorithm 2, where
the area subject to analysis is demarcated with a red line.

This process involves computing the ratio of bright to dark
pixels within the specified region. Furthermore, a validation
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Fig. 9. Thoracic field completeness check.

Fig. 10. Diaphragm existence check.

of Algorithm 2 was conducted on the “Real_sub2” dataset,
as depicted in Fig. 1. This validation exercise confirmed the
algorithm’s robustness, with all images in the dataset being
classified as ‘correct’.

5) [Axis 2: Data Statistics] Criterion 2.1 - Diagnostic
Noise Level Check: In Fig. 11, we present side-by-side exam-
ples of a ‘correct’ and an ‘erroneous’ synthetic lung X-ray image
from our dataset, following the application of Algorithm 3,
accompanied by their respective noise maps. The ‘erroneous’
image exhibits a marked reduction in clarity with a wider blurry
area. This lack of detail is reflected in its noise map, which
shows a greater abundance of white spots, signifying higher
noise levels.

6) [Axis 2: Data Statistics] Criterion 2.2 - Diagnostic
Sharpness Level Check: The comparison of a ‘correct’ and an
‘erroneous’ synthetic lung X-ray image based on Algorithm 4
could be seen in Fig. 12.

Fig. 11. Diagnostic noise level check.

Fig. 12. Diagnostic sharpness level check.

Fig. 12 images are accompanied with their respective sharp-
ness maps. The sharpness map of the ‘correct’ image reveals a
high level of detail, with clearly defined edges and structures.
On the other hand, the ‘erroneous’ image, marked by its low
sharpness, displays a significant loss of detail, evidenced by
blurred edges and a lack of clarity in its corresponding sharpness
map.

7) [Axis 3: Adversarial Evaluation]: Regarding the adver-
sarial evaluation of the synthetic chest X-ray images, Table II
is presenting the comparative analysis of “Real_sub2”(Real in
Table II) and “Synthetic”(Synthetic in Table II) datasets, as per
Fig. 1, through the trained classifier of Preparatory Task 2. The
evaluation focused on recall, precision, F1 score and overall
accuracy metrics for both normal and pneumonia conditions in
each dataset.

The recall rates for Real data were high, with 0.93 for normal
and 0.96 for pneumonia conditions, indicating the classifier’s
proficient capability in correctly identifying true positives. In
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TABLE II
COMPARATIVE EVALUATION OF CLASSIFICATION METRICS FOR REAL AND

SYNTHETIC DATA

Fig. 13. Workflow diagram of ablation study.

contrast, Synthetic data showed lower recall rates of 0.84 for
normal and 0.93 for pneumonia conditions. This discrepancy
suggests that while Synthetic data can mimic real scenarios
to a certain extent, it is less reliable, especially in identifying
TP in normal conditions. Precision values further accentuated
this trend. Real data exhibited high precision values of 0.89
for normal and 0.97 for pneumonia conditions. Synthetic data,
however, lagged with precision values of 0.81 for normal and
0.94 for pneumonia conditions, pointing to a higher incidence
of FP, particularly in the normal category. F1 score, further
confirm the above outcomes. Finally, overall accuracy metrics
highlighted also the differences as Real data achieved an overall
accuracy of 0.95, compared to the 0.91 accuracy of synthetic
data. This difference underscores that Synthetic data, while
accurate, doesn’t match the performance level of real-world data.
From these observations, it’s evident that Synthetic data does not
completely replicate the predictive value of real-world data, with
its limitations being more pronounced in the normal condition
category.

V. ABLATION STUDY

In the ablation study conducted to evaluate synthetic medical
images, a comprehensive approach was taken to understand the
impact of the four criteria on the quality of the dataset, as shown
in Fig. 13. The primary objective was to refine the synthetic
dataset (“Synthetic” in Fig. 1) by sequentially applying these
criteria and observing changes in the SSIM against the real-
world dataset(“Real_sub2” in Fig. 1). This process demonstrated
the effectiveness of each criterion in enhancing the dataset’s
accuracy.

TABLE III
IMPACT OF SEQUENTIAL CRITERIA APPLICATION ON SSIM IMPROVEMENT IN

SYNTHETIC MEDICAL IMAGES

Table III, encapsulates this sequential criterion application
presenting at each row the synthetic data samples before the
application of criterion (“Initial Data Samples” in Table III), the
number of synthetic data samples considered erroneous after
the application of the criterion (“Erroneous Data Samples” in
Table III), the correct images remained after the application
of the criterion (“Remaining Data Samples” in Table III) and
finally the SSIM score of the remaining synthetic data samples
against the real-world data.

The initial dataset comprised 261 synthetic images. The
baseline SSIM between this complete synthetic dataset and the
real-world dataset (“Synthetic” and “Real_sub2” in Fig. 1) was
calculated as 0.5536, indicated also in results of Preparatory
Task 1.

Criterion 1.1(“Thoracic Field Completeness”), was then ap-
plied, leading to the identification and exclusion of 76 erroneous
data samples. This exclusion reduced the dataset to 185 images
and it resulted in an improvement in the average SSIM score to
0.5652. Following this, Criterion 1.2 (“Diaphragm Existence”)
was implemented. This led to the further exclusion of 20 images,
bringing the dataset down to 165 images. The application of
this criterion brought another increase in the SSIM score, rising
to 0.5739. The study proceeded with the application of the
Criterion 2.1(“Diagnostic Noise Level Check”), which identified
and excluded 4 more images, leaving 161 images in the dataset.
Post this exclusion, a slight increase in the SSIM score was
observed, reaching 0.5746. Finally, the Criterion 2.2(“Diagnos-
tic Sharpness Level Check”) was applied. This last criterion
resulted in the exclusion of 3 additional images, culminating
in a dataset of 158 images. The final SSIM score after this round
of refinement was 0.5758, the highest throughout the study.

The sequential application of these criteria and the corre-
sponding increase in the SSIM score with each step effectively
demonstrated that the removal of specific erroneous images led
to a gradual but consistent enhancement in the resemblance of
the synthetic dataset to the real-world dataset. This progression
validated the utility of the SPINE framework in improving the
quality of synthetic medical images, making the dataset more
representative and accurate for potential applications in medical
imaging and analysis.

VI. CONCLUSION

This paper introduced the SPINE framework, an innova-
tive and comprehensive system crafted to evaluate synthetic
pulmonary imaging. Our approach marks a substantial leap
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forward in utilizing synthetic data for medical diagnostics and
machine learning, tackling key concerns related to data quality
and applicability. To ensure thoroughness and precision at every
stage of this evaluation, we went beyond merely leveraging an
open-source synthetic dataset. We systematically developed all
the necessary components as preparatory steps, encompassing
the creation of synthetic data and the training of a classifier that is
integral to the SPINE evaluation axis. This post-market approach
followed at the SPINE framework, combining domain expertise,
statistical data analysis and adversarial evaluations, allowed
us to critically examine the utility and reliability of synthetic
images compared to real-world data. Furthermore, the ablation
study, a critical component of our research, demonstrated the
effectiveness of the SPINE framework in refining the quality
of synthetic medical images. By systematically applying the
Algorithms developed under our 4 main Criteria and tracking
improvements in SSIM scores, we provided concrete evidence
of our methodology’s ability to enhance the fidelity of synthetic
datasets to real-world scenarios.

In conclusion, this research not only contributes a novel
framework for evaluating synthetic medical images but also
lays the groundwork for future advancements in this rapidly
evolving field. By continually refining and expanding the SPINE
framework, we can further bridge the gap between synthetic
data and real-world applicability, enhancing the reliability and
effectiveness of synthetic data in medical imaging and machine
learning.
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