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Telomeres comprise the ends of eukaryotic chromosomes and are essential for cell proliferation and genome
maintenance. Telomeres are replicated by telomerase, a ribonucleoprotein (RNP) reverse transcriptase, and are
maintained primarily by nucleoprotein complexes such as shelterin (TRF1, TRF2, TIN2, RAP1, POT1, TPP1) and
CST (Cdc13/Ctc1, Stn1, Ten1). The focus of this review is on the CST complex and its role in telomere mainte-
nance. Although initially thought to be unique to yeast, it is now evident that the CST complex is present in a di-
verse range of organisms where it contributes to genome maintenance. The CST accomplishes these tasks via
telomere capping and by regulating telomerase and DNA polymerase alpha-primase (polα-primase) access to
telomeres, a process closely coordinated with the shelterin complex in most organisms. The goal of this review
is to provide a brief but comprehensive account of the diverse, and in some cases organism-dependent, functions
of the CST complex and how it contributes to telomere maintenance and cell proliferation.
© 2016 Rice, Skordalakes. Published by Elsevier B.V. on behalf of the Research Network of Computational and

Structural Biotechnology. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Telomeres compose the non-coding ends of eukaryotic chromo-
somes and play a crucial role in the protection and replication of our ge-
nome [1,2]. Eukaryotic chromosomes, unlike prokaryotes are linear,
presenting the cell with a unique problem: telomere ends can be recog-
nized as DNA strand breaks by the recombination and repair systems of
the cell, whichwould lead to chromosome end-to-end fusion and geno-
mic instability or apoptosis [3,4]. Telomeres together with telomere
binding complexes, such as shelterin, repress unwanted DNA damage
response (DDR) and serve as a buffer between essential genomic infor-
mation and the ends of chromosomes. They also promote the full repli-
cation of our genome, thus preventing senescence, which is usually
associated with significant telomere shortening [5,6].

Proper telomere length regulation andmaintenance are essential for
genome stability. There are at least two complexes that contribute to
telomere maintenance: shelterin [7,8] and CST [9,10]. Shelterin is a six
subunit complex consisting of TRF1, TRF2, TIN2, RAP1, POT1, TPP1,
and localizes specifically to double- and single-stranded telomeric
DNA (Fig. 1) [11]. Although there is still a lot to learn about the role of
shelterin at telomeres, work from a confluence of labs has shown that
it is critical for suppressing DDR at telomeres, thus preventing chromo-
some fusions [11]. Shelterin also caps the ends of chromosomes by facil-
itating T-loop formation and by sequestering the single-stranded DNA
portion of the telomere [12,13]. It also acts as a telomerase processivity
factor by recruiting telomerase to telomeres [14,15].
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The CST is a trimeric complex composed of Ctc1, Stn1, and Ten1 in
higher eukaryotes and Cdc13, Stn1, and Ten1 in yeast (Saccharomyces
cerevisiae) [9,16]. CST localizes specifically to the single-stranded
telomeric DNA, including the telomeric overhang where it is involved
in chromosome end capping and telomere length regulation (Fig. 1)
[9,17–20]. However, there is increasing evidence, which suggests that
the Stn1-Ten1, CST sub-complex has extra-telomeric functions. Current
data show that Stn1-Ten1 act as a replication protein-A, complex (RPA)-
like complex, rescuing genome-wide replication fork stalling during
conditions of replication stress [16,21,22]. The RPA, is a heterotrimeric
protein complex that binds non-specifically single-stranded DNA and
is involved in a wide array of DNA metabolic pathways including DNA
replication and DNA damage cellular responses [23]. It is worth noting
that in vertebrates the capping properties of the vertebrate CST may
be dispensable in vivo due to the presence of shelterin, which also
caps the ends of chromosomes [11].

Proper telomere maintenance is critical to genome stability. Muta-
tions in genes that encode essential telomere components result in
some of the most intractable diseases. Human telomere dysfunction is
known to cause symptoms of pre-mature aging, pulmonary fibrosis,
and bone marrow failure as well as an increased incidence of cancer
[24–30]. Further insight in the molecular mechanisms of telomere
maintenance will allow us to better understand the role of telomere
dysfunction in human disease.

2. Telomere replication

The linear nature of eukaryotic chromosomes results in telomere
shortening over time [31]. Known as the “end-replication problem”,
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Fig. 1. Schematic of the sheleterin and CST complexes bound to telomeric DNA. The role of
TPP1 in recruiting telomerase to telomeres and its regulation by the CST complex are
highlighted.
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synthesis of the lagging-strand requires RNA priming for the replication
of the Okazaki fragments, the DNA fragments complementary to the
lagging strand of the chromosome [32]. The requirement of RNA
primers for the full replication of the lagging strand prevents its full rep-
lication, leading to loss of 50–200 bases of telomeric DNAwith every cell
division [33]. When telomeres become critically short, the cell enters a
non-replicative state known as cellular senescence followed by apopto-
sis [34,35].

To overcome the end-replication problem, a specialized enzyme is
recruited to the ends of chromosomes to help replicate telomeres. Telo-
meres are replicated during the S-phase (late S-phase in yeast) by telo-
merase, a ribonucleoprotein reverse transcriptase [36–42]. Unlike most
polymerases, telomerase consists of a protein subunit (TERT) and an in-
tegral RNA component (TER),whichTERT uses to addmultiple, identical
repeats of DNA (telomeres) to the ends of chromosomes [37].

G-strand (telomeric sense-strand) synthesis by telomerase is
followed by replication of the C-strand (telomeric antisense-strand)
by polα-primase during late S early G2 phase [43]. Limited evidence,
primarily from work carried out in Euplotes crassus and HeLa cells,
suggests that the switch between G- to C-strand synthesis is a highly
coordinated event generating a homogeneous C- and heterogeneous
G-strand telomeres in Euplotes [33,42,44,45]. Although the precise
mechanism for this switch is not clear, current evidence suggest that
is mediated by DNA polα [44].

3. Telomere structure

Even though telomeric DNA comprises the non-coding portion of
the chromosome, it is merely a passive structure. Telomeric DNA adopts
at least two well-defined tertiary structures, the T-loop and the G-
quadruplexes (G-quads), both of which serve to regulate telomere
length and protect the ends of chromosomes [12,46,47]. The telomeric
ends of eukaryotic chromosomes are composed of repetitive, G-rich,
non-coding, DNA repeats (TTAGGG in mammals). The G-rich nature of
telomeric DNA promotes the formation of higher-order structures,
known asG-quads [47]. G-quads are formedwhen four ormore guanine
bases come together through Hoogsteen hydrogen bonds to form a pla-
nar structure, frequently stabilized by cations like potassium [48]. The
formation of telomeric G-quads has been shown both in vitro and
in vivo, and is known to interfere with the elongation of telomeres
and most likely hinder exonuclease degradation. It is therefore possible
that G-quad formation is a regulatory mechanism of the telomere elon-
gation and protection pathway [49–52]. The presence of stable G-quads
throughout the single-stranded, telomeric DNA can pose challenges for
the telomere replication machinery. For telomeres to be replicated and
maintained, the G-quads must be resolved. Several eukaryotic proteins
have been reported to resolve G- quads, including the S. cerevisiae
Cdc13 protein, the C. glabrata CST complex [53,54], POT1 [55–57] and
the RTEL1, and RecQWerner's and Bloom's syndromehelicases [58–61].

T-loops on the other hand are generated when the single-stranded
G-overhang invades the duplex DNA to form a loop-like structure [12].
T-loop formation is promoted and stabilized by the components of the
shelterin complex such as TRF2 and RAP1 [13,62,63]. Like G-quads, T-
loops provide a regulatory mechanism of telomere elongation and pro-
tection. T-loopswere also reported recently to form compact nucleopro-
tein structures, thus acting like nucleosomes specific to telomeric
regions of the chromosome [64,65].

4. Conservation of the CST complex

Until recently the CST complex was thought to be unique to yeast,
however, recent findings indicate that the CST complex may be univer-
sally conserved [66–68]. Despite the presence of the CST complex in cil-
iates, yeast, plants, and mammals, low or complete lack of sequence
identity and emerging differences across species, raises significant ques-
tions regarding the functional conservation of this complex. For exam-
ple, the yeast and human CST components, Stn1 and Ten1, are highly
conserved structurally [69]. However, the major components of the
CST complex (Cdc13 and Ctc1) have no sequence identity and vary sig-
nificantly in length and to some extent in function. For example, yeast
Cdc13 is known to recruit telomerase to telomeres via its interaction
with Est1, a component of the yeast telomerase holoenzyme [70,71].
In contrast, human Ctc1 is known to directly inhibit telomerase recruit-
ment to telomeres [18]. What makes things even more complex is the
recent identification of the CST complex in ciliates. The p75-p45-p19
of Tetrahymena thermophila, which has no sequence identity to any
known CST complexes, has been proposed to act as the ciliate CST com-
plex and to coordinate G- and C-strand synthesis [68].

5. Cdc13/Ctc1 structure function

Structural studies of CST components have revealed that recognition
of the single-stranded telomeric overhangs is mediated by several
oligosaccharide/oligonucleotide-binding folds (OB-folds) present in all
three subunits of the CST complex [72]. OB-folds are usually a five-
stranded, closed, beta barrel motif, known to bind single-stranded
nucleic acid and polypeptides [73,74]. The main component of the
yeast CST, Cdc13, consists of four OB-folds [20,75–80]. Subtle but dis-
tinct differences between these four OB-folds, allows Cdc13 engage-
ment in a wide range of processes including single-stranded DNA
binding, Cdc13 homo-dimerization, and polα-primase binding (Fig. 2)
[76,77,81].

The Cdc13 N-terminal domain comprises an OB-fold (OB1 - PDB
ID:3NWS and 3OIP) that is involved in a wide range of functions related
to telomere length regulation. It assists in Cdc13 homo-dimerization, a
process we postulated to be important for telomerase loading to telo-
meres [77,81]. Cdc13 also recruits telomerase to telomeres, a process
mediated by the telomerase associated protein Est1 [75]. Since telome-
rase is thought to act both as amonomer and a dimer [82,83], thedimer-
ic state of Cdc13may assist the dimeric form of telomerase for telomere
loading and synthesis. The Cdc13 (OB1) has also been shown to bind
and recruit polα to telomeres [84] most likely a coordinated effort
with Stn1 [85-89]. Moreover Cdc13 (OB1) has weak, non-specific,
single-stranded DNA binding activity [81]. We currently hypothesize
that this additional property of Cdc13 (OB1) may be important a) for
regulating telomerase access to telomeres during the various steps of
the cell cycle, and b) for the proper loading of polα-primase to telo-
meres for C-strand synthesis.

The Cdc13 recruitment domain (Cdc13RD) is an unstructured region
of the protein (Fig. 2) containing a large number of phosphorylation
sites implicated in two distinct CST functions [90-95]. Phosphorylation
of the Cdc13RD promotes Est1 binding and telomerase recruitment to
telomeres [90-92]. De-phosphorylation of Cdc13RD promotes CST
(Cdc13-Stn1-Ten1) assembly via association of Stn1 with the
Cdc13RD, a state of the complex known to bind and cap the ends of
chromosomes [70,92,93-95].

Following the Cdc13RD is the Cdc13 (OB2). Interestingly, the Cdc13
(OB2) domain contains unusually long, surface loops also involved in



Fig. 2. Primary and tertiary structure of S. cerevisiae Cdc13. Primary structure of Cdc13 indicating domain organization. Atomic structures of eachof the yeast Cdc13 domains are also shown
((OB1 (PDB ID:3NWS), OB2 (PDB ID:4HCE), DBD (PDB ID:1KXL)). Key post-translational modifications known to contribute to Cdc13 function are also indicated.
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Cdc13 (OB2) homo-dimerization (PDB ID:4HCE). Unlike Cdc13 (OB1),
the OB2 is not directly involved in protein or nucleic acid binding. In-
stead Cdc13 (OB2) dimerization promotes the faithful binding of Stn1
to the Cdc13RD domain and the proper assembly of the CST complex
and telomere capping [76].

Immediately following the Cdc13 (OB2) is a third OB-fold referred to
as the DNA Binding Domain (DBD - PDB ID:1KXL) of Cdc13 due to its
high affinity and specificity for approximately 11 bases of single-
stranded telomeric DNA [96]. Binding of Cdc13 (DBD) to telomeric
DNA assists in the localization of the yeast Cdc13 to the telomeric
overhang.

Although there is no structure of the S. cerevisiae C-terminal domain
of Cdc13, structures from Candida glabrata show that it is an OB-fold
(OB4 - PDB ID:3RMH) also involved in Cdc13 dimerization and is also
proposed to enhance Cdc13 single-stranded, telomeric DNA binding
[80].

Like Cdc13, Ctc1 is predicted to consist of multiple OB-folds [16,67,
74]. Due to lack of sequence identity between Cdc13 and Ctc1, it has
been difficult to accurately predict the domain organization of Ctc1
and no structural information currently exists.

6. Stn1-Ten1 structure function

Stn1 and Ten1, the most conserved components of the CST, form a
stable complex in vitro [69-85,86-88]. Ten1 is the smallest of the three
CST components and contains a single OB-fold with a highly conserved
C-terminal helix (4JOI, 3KF6, 3KF8, 3K0X). The yeast Ten1 has been
shown to bind single-stranded, telomeric DNAwithweak affinity, an in-
teraction that is proposed to enhance the DNA binding activity of Cdc13
[100]. Unlike Ten1, Stn1 consists of an N-terminal OB-fold and two
Fig. 3. X-ray, crystal structure of the Stn1-Ten1 complex. A) Structure of the human Stn1-Ten
involved in contacts with Ten1. B) Structure of the C-terminal domain of human Stn1 (hStn1C
Ten1 (PDB ID:3KF6) and human RPA (PDB ID:1QUQ) complexes. The overlay shows a striking
wing-helix-turn-helix (wHTH) motifs (PDB ID:4JOI, 3KF6, 3KF8, 3K10,
3KEY, 4JQF). The Stn1 OB-fold, like Ten1, contains a highly conserved
C-terminal helix. The Stn1-Ten1 complex comes together via extensive
interactions between the two C-terminal helices of the OB-folds as well
as contacts between the bodies of these domains. Stn1-Ten1 association
positions the putative DNAbinding pockets of the two proteins in paral-
lel with each other thus forming an extensive nucleic acid binding pock-
et on the surface of the complex [69]. The wHTH motifs have been
implicated in polα and Cdc13 binding [69,87,88,90].

Structural data on the human CST is currently limited to Stn1-Ten1,
which is similar to the yeast complex (Fig. 3A and B) [69]. Interestingly,
unlike the yeast Ten1, the human homolog does not bind single-
stranded nucleic acid [69]. This is not surprising if one takes into consid-
eration the lack of residue conservation in the putative DNA binding
pocket of Ten1 [69]. In contrast to Ten1, human Stn1 binds single-
strandedDNAwith 2 μMbinding affinity and no specificity [69]. High af-
finity and specificity of the human CST complex for single-stranded
telomeric DNA is provided by the larger component of CST, Ctc1 [18].

All evidence so far points to tight and specific association of Cdc13/
Ctc1 with single-stranded telomeric DNA, which assists in the localiza-
tion of the CST complex to telomeres [18–20]. Cdc13, Ctc1, and Stn1
are also involved in a series of protein–protein interactions, which con-
tribute to telomerase and polα-primase recruitment to telomeres for G-
and C-strand synthesis respectively.What remains amystery is the pre-
cise role of human Ten1 in telomere biology. Ten1 is essential for proper
telomere capping, however, the absence of any evidence for nucleic acid
or protein binding raises questions regarding its role in telomere biolo-
gy. Currently, Ten1 has been shown to enhance the telomeric DNA-
binding activity of Cdc13, although Ten1 itself exhibits weak DNA bind-
ing activity in yeast and no affinity in humans [69,98]. Another
1 (hStn1-Ten1) complex (PDB ID:4JOI); only the N-terminal OB fold of Stn1 (hStn1N) is
– PDB ID: 4JQF) consisting of two wHTH motifs. C) Overlay of the human, S. pombe Stn1-
similarity between the three complexes.
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possibility is that it acts as a steric block preventing access of the
telomeric overhang bound by Cdc13/Ctc1 and Stn1 for telomere elonga-
tion, which would be consistent with the telomere uncapping defects
associated with a dysfunctional CST complex [99].

7. Stn1-Ten1 is an RPA like complex

Interestingly, Stn1-Ten1 domain composition and organization is
strikingly similar to that of the small subunits (RPA32 and RPA14) of
the Replication Protein A (RPA) complex (Fig. 3C) [66,67,97]. The most
striking difference between Stn1-Ten1 and RPA is the presence of two
wHTH motifs in Stn1, whereas RPA32 contains only one [97]. Despite
the overall structural conservation of the Stn1-Ten1 and RPA14–32
complexes, current evidence suggests that CST and RPA similarities
are limited to these two subunits of the two complexes [80].

wHTHmotifs are known for protein–protein interactions or double-
stranded nucleic acid binding. There is no evidence that the two wHTH
motifs of Stn1 are involved in DNA binding; in fact, the organization of
the two Stn1 wHTH motifs occludes their putative, double stranded,
nucleic acid binding pocket. Instead, like the RPA32 wHTH motif, the
C-terminal domain of Stn1 is thought to interact with Cdc13 during
CST complex formation and telomere capping [100,101]. It is also in-
volved in the recruitment of polα-primase thus facilitating C-strand
synthesis at telomeres [89,102].

8. The CST complex and telomere replication

Telomere elongation is a tightly regulated process as itmaintains the
proliferative nature of the cell and yet prevents cellular immortalization
associatedwith carcinogenesis [70]. The yeast CST complex is known to
both downregulate and upregulate telomere elongation [71,90,92,93,
103]. Yeast CST downregulates telomere elongation through tight and
specific interaction with the telomeric overhang, a process known as
telomere capping [70]. Binding of CST to the end of chromosomes se-
questers the telomeric overhang thus preventing access of telomerase
to the 3′-end of the DNA for telomere replication [20]. It is important
to emphasize that all three components of the yeast CST (Cdc13, Stn1
and Ten1) are required for telomere capping. Loss of any of the yeast
CST subunits or limited disruption of the CST assembly leads to telomere
uncapping and telomere length elongation. Telomere elongation sug-
gests that the telomeric overhang has become accessible to telomerase
[69,76,77,81].

Interestingly, the yeast CST complex also contributes to the upregu-
lation of telomere length via recruitment of telomerase to telomeres
[70,75,78,79]. As we mentioned earlier, telomerase recruitment to
yeast telomeres is mediated by the Cdc13RD and its interaction with
the telomerase associated protein, Est1. Est1 is a predicted 14-3-3 pro-
tein fold that has affinity for phosphorylated peptides [104].

The switch between the capping and elongation state of the CST is
heavily influenced by phosphorylation of Cdc13RD and SUMOylation
of the Cdc13 (OB4) (Fig. 2). In fact, the Zakian and Garcia labs recently
identified 21 in vivo, Cdc13 phosphorylation sites [95]. Although the
function ofmost of these sites is currently unknown they all are respon-
sible for the tight regulation of the CST complex and therefore of telo-
mere length.

During late S to early G2 phase, Cdc13RD phosphorylation of
Cdc13RD residue T308 by the kinase Cdk1 allows for Est1 binding to
the Cdc13RD and recruitment of telomerase to telomeres [90,92,105].
Est1 binding to Cdc13 is further facilitated by the cell cycle-dependent
SUMOylation of Cdc13 (OB4) residue Lys909 [101,106]. Cdc13RD phos-
phorylation and Cdc13 (OB4) SUMOylation partially disrupt Cdc13-Stn1
binding and therefore the productive, capping state of the CST complex.
Disruption of the CST complex allows for release of the telomeric over-
hang and Est1-dependent telomerase recruitment to telomeres for G-
strand elongation.
The CST complex also promotes telomere, C-strand synthesis via re-
cruitment of polα to telomeres [17,70,86,87,102,107]. Current evidence
suggests that polα-primase recruitment to telomeres is mediated by
Cdc13/Ctc1 and Stn1 [16,70,86,102,108]. Cdc13-dependent polα-
primase recruitment to telomeres involves at least the N-terminal do-
main of Cdc13 (OB1). Earlier studies identified two distinct regions of
polα-primase making direct contacts with Cdc13 (OB1) and include
residues 13–392 and 47–560 [78,109], while more recent structural
data suggests a helix consisting of residues 215–250 binds the Cdc13
(OB1) [84].

A striking difference between the yeast and human CST complexes
lies with the mechanism of telomerase recruitment to telomeres. We
have so far stated that the yeast CST, and in particular Cdc13, recruit tel-
omerase to the ends of chromosomes for telomere elongation. In higher
eukaryotes and in particular humans, the Pot1-TPP1 sub-complex of
shelterin mediates this process. The Cech lab and others have shown
that telomerase binds directly to the N-terminal OB-fold of TPP1 (TEL
patch), an interaction that assists in bringing telomerase to telomeres
and enhances its processivity [15,110,111]. Interestingly, the Lingner
lab has shown that the human CST complex downregulates telomerase
recruitment to telomeres to one cycle of telomere replication per cell
cycle via direct contact with TPP1 [18]. It is worth noting that the
yeast telomerase associated protein Est3 is structurally similar to TPP1
and has been proposed to share similar functional roles in telomeres
[112]. The fact that TPP1 is conserved in humans andpossibly yeast, sug-
gests that the CST may have dual roles in telomerase recruitment and
inhibition to telomeres adding an additional regulatory step in the rep-
ertoire of CST functions.

9. Extra-telomeric functions of CST

Recent studies have shown that the human CST complex may have
additional functions beyond the telomeres. Work form the Price lab
has shown that the CST complex rescues genome-wide (telomeric and
non-telomeric) replication fork stalling during conditions of replication
stress by facilitating dormant origin firing [21,113]. Although the CST
has been thought to work exclusively at telomeres, the human Stn1-
Ten1 complex binds single-stranded DNA weakly, in a non-specific
manner [69]. In addition, Stn1-Ten1 is an RPA-like complex, which is
known to participate in genome-wide replication. Taken together the
data indicates that Stn1 and Ten1 may have a dual role in stabilizing
single-stranded DNA and assisting in DNA replication throughout the
genome and at telomeres.

10. CST and human disease

Naturally occurringmutations in telomeric complexes are associated
with aplastic anemia, pulmonary fibrosis, Coats plus (CP) and
Dyskeratosis Congenita (DC) [29,114]. Although there is no current ev-
idence implicating Stn1 or Ten1 in human disease, there are a number of
naturally occurring Ctc1 mutations, which result in a range of rare ge-
netic disorders such as CP andDC. CP is characterized by intracranial cal-
cifications, hematological abnormalities, and retinal vascular defects
[25–27], while DC is an inherited bone marrow failure syndrome [28,
30]. Several patientswith CP display critically shortened telomeres, sug-
gesting that telomerase dysfunction plays an important role in disease
pathogenesis. Moreover, a wealth of recent data suggests a direct corre-
lation between cardiovascular disease or infectious disease, and shorter
telomeres in blood cells [115]. Defects in telomere structure and protec-
tion, independent of length, were also reported in Hoyeraal–
Hreidarsson syndrome [116].

Ctc1mutations associatedwith human disease are typically biallelic,
and in some cases severe frame shift mutations that lead to a truncated
Ctc1 and complete loss of function [26,27]. Work from the Lingner lab
has shown that these mutations act by disrupting CST complex forma-
tion, telomeric DNA binding, polα-primase recruitment to telomeres,



Fig. 4. Primary structure of human Ctc1. Predicted domains and naturally occurring mutations associated with human disease are indicated.
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and/or cellular localization of the complex in vivo (Fig. 4). It is worth
noting that the Chang lab also carried out this study in mice using mu-
rine Ctc1 and did not observe the same phenotypes as the Lingner lab.
It is therefore possible that the Ctc1-mutant associated defects observed
could be organism-dependent [27]. Currentmodels of Ctc1 suggest that
the N-terminus of the protein consists of two OB folds [74]. Three natu-
rally occurring mutations within the N-terminal and central region of
Ctc1 (A227V, V259M, and V665G) disrupt Ctc1/polα-primase binding
(Fig. 4). In particular, the V259M mutation resulted in significant accu-
mulation of telomere-free ends, while the G503R one resulted in elon-
gated telomeres, a defect usually associated with a dysfunctional CST
complex [26]. The Ctc1 disease mutations L1142H and 1196-Δ7 (dele-
tion of amino acid residues 1196–1202) disrupts Ctc1-Stn1 association,
and polα-primase recruitment to telomeres (Fig. 4). In addition to
disrupting CST assembly and telomere maintenance, the A227V,
V259M, R987, L1142Hmutations and 1196-Δ7 deletion also negatively
impacted the nuclear localization of these proteins. The role of the Ctc1,
naturally occurring mutations R840W and V871M in human disease is
currently unclear. Interestingly, none of the identified Ctc1 mutations
interfere with the Pot1-TPP1 inhibitory properties of CST.
11. Summary and outlook

Telomeres allow for the full replication of our genome and prevent
deleterious events such as chromosome fusions, and exonucleolytic
degradation. Dysfunctional telomeres can lead to genomic instability,
the hallmark of cancer or cell cycle arrest, senescence and apoptosis.
Telomeres accomplish this task together with specialized proteins,
such as Cdc13/Ctc1, Stn1 and Ten1, which together assemble into
what is commonly known as the CST [117], an RPA-like complex [66,
67,97].

Telomere length regulation by the trimeric CST complex is key to ge-
nome maintenance. Current evidence shows that both the human and
yeast CST complexes localize to telomeres through association with
the telomeric overhang. They also regulate access of telomerase and
polα-primase to the end of chromosomes for G- and C-strand synthesis,
respectively.

Naturally occurringmutations of these nucleoprotein complexes are
associated with aplastic anemia, pulmonary fibrosis and a range of rare
genetic disorders such as CP and DC. There is also data, which suggests a
direct link between cardiovascular or infectious disease and shorter
telomeres in blood cells, while defects in telomere structure and protec-
tion have been reported in Hoyeraal–Hreidarsson syndrome. Under-
standing the mechanisms that regulate and maintain the integrity of
telomeres is paramount to identifying therapies for the treatment of
some of the most intractable diseases such as cancer.

Currently, the biophysical mechanisms underlying CST architecture
and function are poorly understood. Structural, biochemical and func-
tional characterization of these factors, both in isolation and in complex
with one another, is needed to answer a number of questions regarding
the role of this complex in telomere biology and genome integrity.
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