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ABSTRACT Incidences of nosocomial infections mediated by New Delhi metallo-3-lac-
tamase (NDM) enzyme-producing Enterobacterales are increasing globally, resulting in a
great burden to public health. The carbapenem-resistant Enterobacterales (CRE) were
collected from Henan, China during 2013-2016. The blaypy-positive strains were charac-
terized using PCR, antimicrobial susceptibility testing, conjugation assay, S1 nuclease
pulsed-field gel electrophoresis (S1-PFGE), Southern blot, whole-genome sequencing
(WGS), and bioinformatics analysis. Eighty-one NDM-producing strains were identified
among 391 nonduplicate CRE strains. Among them, four strains cocarried mcr and
blayow genes, and two carried blay,e, and blaysy genes. The coexistence of blaypy.s
and mcr-9 in Enterobacter hormaechei was found for the first time. In total, four blaypy,
subtypes were identified. Among them, blaypy.; and blaypy.s were predominant. There
was an obvious increasing trend in blaypy s from 2013 to 2016. Thirteen different bacte-
rial species were found among the 81 strains, and Escherichia coli was the dominant
strain. blaypy genes were located on nine different Inc-type plasmids, most of them on
the IncX3 plasmids, except for the Pr-15-2-50 strain, which was located on the chromo-
some. We characterized two novel plasmids: the IncHI5-like plasmid carrying blayom.o
found in K. pneumonia, and the Incl1 blaypy.s-positive plasmid. These findings provide
the genomic basis for the widespread transmission of blayg,, and pave the way for the
formulation of more effective monitoring and control methods.

IMPORTANCE To control the emergence and transmission of CRE, it is important to
perform retrospective genomic investigations. It is important to evaluate the plasmid
diversity, genetic environment, and evolutionary relationships of the blaypy,-positive
clinical strains in the early transmission stages. This study conducted an in-depth
analysis of blaypy-positive pathogens during a 4-year period using different methods
for observing the high prevalence and active transmission of blaypy-positive CRE.
Moreover, we also explored the coexistence of the blayyy, and mcr, a clinically impor- ) o
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bla,,,-Bearing Plasmids Uncovered by ONT Sequencing

arbapenem antibiotics are B-lactam antibiotics with a broad antibacterial spec-

trum and strong antibacterial activity. They are the most important antibiotics for
the treatment of multidrug-resistant (MDR) Gram-negative bacterial infections (1).
However, the clinical use of these drugs leads to the emergence of carbapenem-resist-
ant Enterobacterales (CRE) (2) and makes clinical medication selection difficult. In 2013,
the Centers for Diseases Control and Prevention in the U.S. reported that more than
9,000 health care-related infections were caused by CRE each year. It ranked CRE in the
highest threat level. Moreover, the China CRE Monitoring Network showed that the
hospital mortality rate of CRE was 33.5% (222/662) (3). It also showed that the mortality
rate increased with the length of hospital stay.

Carbapenem-inactivating carbapenemases are predominantly divided into Classes
A, B, and D according to the Ambler classification. Classes A and D belong to serine
enzymes, and B belongs to metallo-B-lactamases (MBLs). NDM is a typical member of
the B1 class of MBLs. It is capable of hydrolyzing all B-lactams, except monobactams
(4). It recruits mobile genetic elements, such as plasmids belonging to different repli-
con or Inc types (IncFll, IncHI2, IncN, and IncX3), insertion sequences (ISAba125, ISCRT),
and transposons (Tn125) (5). blaypy genes have already spread to various species of
bacteria worldwide, including Enterobacterales and nonfermenting Gram-negative ba-
cilli (6). The increasing prevalence of NDM-producing pathogens has seriously compro-
mised the efficacy of carbapenems in clinical settings, and it poses a great threat to
public health. According to current reports, 28 NDM variants have been identified in
multiple species of Enterobacterales, Acinetobacter, and Pseudomonas. NDM-1 and
NDM-5, which were encoded mainly by IncX3 plasmids, were the most frequently
detected variants in Enterobacterales. However, NDM-5 was more prevalent compared
to NDM-1 in Escherichia coli. Our previous study revealed only NDM-1, and no other
variants were detected in NDM-producing Enterobacterales isolated from the Henan
province between 2011 and 2012. Moreover, the IncA/C plasmids with broad-host-
range were the predominant vehicles for blayyy compared to the narrow-host range
IncX3 plasmids (7). These differences indicate the changes in the prevalence and evolu-
tion of blaypy-bearing plasmids. Therefore, we continuously monitored the NDM-pro-
ducing CRE strains in a teaching hospital in Zhengzhou University over a 4-year period
(2013-2016). We tried to elucidate the molecular mechanisms for the blayoy gene
transfers, and study the evolution of the epidemic blaypy plasmids and their clones.

RESULTS

Overview of NDMs-producing CRE isolates. From 2013 to 2016, 391 nonduplicate
CRE isolates belonging to 13 different species were collected from a teaching hospital
in the Zhengzhou University for screening carbapenemase genes using PCR and
Sanger sequencing. The result showed 291 Klebsiella pneumoniae strains (74.42%) car-
rying the blayc., gene and another 81 (20.72%) belonging to various species carrying
the blaypy, (Table 1). This illustrated that K. pneumoniae and E. coli were the main clini-
cal CREs. KPC and NDM were the primary carbapenem-inactivating enzymes in CRE
recovered from the Henan province. It was well recognized that blayp,, genes were
mainly carried by Gram-negative Enterobacterales, including E. coli, K. pneumoniae,
Citrobacter freundii, and Enterobacter cloacae (8-10). The prevalence of blayp,, in differ-
ent Enterobacterales was 49.38% (40/81), 14.81% (12/81), 13.58% (11/81), 7.41% (6/81),
and 4.94% (4/81) in E. coli, K. pneumoniae, Enterobacter hormaechei, C. freundii, and
Citrobacter portucalensis, respectively. There was also 1.23% (1/81) in each Citrobacter
braakii, Klebsiella aerogenes, Klebsiella pasteurii, Klebsiella oxytoca, Raoultella ornithinoly-
tica, Serratia marcescens, Proteus mirabilis, and Providencia rettgeri. This indicates that E.
coli was the most common host for blayp,, followed by K. pneumoniae and E. hormae-
chei. Sanger sequencing of blayoy genes identified four blayp, subtypes, including
blaypm., (n = 41), blaypp.s (n = 38), blaypw.s (N = 2), and blaypw.s (n = 1) (Table 1). Among
them, blayows was the most prevalent subtype in E. coli (33/40, 82.5%), and the
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FIG 1 Epidemiological description and impact factors of the 81 blay,,-positive strains used in this study. (A) The proportion carrying the
NDM by gender in different years. (B) Isolation rates of NDM among CRE in different years. (C) Proportion of NDM subtypes isolated in

different years. (D) Proportion of different species isolated in different years.

majority of K. pneumoniae carried blaypoy., (9/12, 75%). However, carbapenemase gene
bla,yp-, was only detected in two NDM-producing strains (KA-14-61 and KO-14-71).

We analyzed the clinical features of these 81 blaypy, carriers (Table 1). We found
that most blaypy-positive strains were isolated from medical Intensive Care Units
(ICUs). ICU patients usually have longer hospital stays, which increases the risk of infec-
tions and evolution of CRE pathogens. Comparatively, higher NDM-positive rates were
also obtained among the Urinary Surgery and Pediatrics wards. The number of male
patients was slightly higher compared with female patients (Fig. 1). We observed a
wide age gap among these patients, ranging from 6 days to 89 years old; however,
maximum cases (49.38%) were concentrated in the 50-79 age group. The mortality
among the NDM-positive patients was 18.52%, which was lower compared to our pre-
vious report (7).

Resistance phenotype, determinants, and bacterial genotyping. Antimicrobial
susceptibility testing revealed that all the 81 blaypy-positive strains were MDR strains,
and they were resistant to multiple categories of antimicrobials (n = 3) (Table S2 in the
supplemental material). Therefore, each isolate carried at least three categories of re-
sistance genes associated with the resistance phenotype (Fig. 2 and Fig. S1). The MIC
values of meropenem or imipenem were distributed between 16 and 64 wg/mL. Given
that most NDM-producing isolates (92.59%) were resistant to aztreonam, we detected
B-Lactamase encoding genes other than carbapenemase. Therefore, various AmpC
(CMY, ACT, DHA) and ESBL (CTX-M, TEM, SHV, VEB, SFO, OXA) genes were identified in
different species (Fig. 2 and Fig. S1). Moreover, four strains (EC-15-3, CF-15-2-29, ECL-
16-5, and ECL-16-79) also contained plasmid-borne colistin resistance genes (mcr-1 or
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FIG 2 Phylogenetic tree of all 40 blay,,-positive E. coli isolates from 2013-2016. Resistance genes are indicated by squares: solid square

indicates has; hollow square indicates does not have.

mcr-9). The abundance of antibiotic resistance genes in strains increases the risk of
blaypy cotransmission. To evaluate the transferability of blayy, genes, conjugation
assays were performed for the 81 blaypy-positive strains with E. coli (EC600 or J53). The
blayom genes carried by 46 strains were successfully transferred to the recipient, sug-
gesting that the blay, genes carried by these 46 strains were located in conjugative
plasmids or other mobilizable genetic elements. The conjugation frequencies ranged
from 2.5 x 1073 to 1.8 x 1077 (Table 1).

As the most abundant species carrying blaypy, evolutionary relationships between
the 40 E. coli isolates were investigated and a phylogenetic tree based on SNPs of the
core genome data was constructed (Fig. 2). These isolates were assigned to 14 distinct
sequence types (STs), and ST167 (16/40, 40%) was the most prevalent ST (Table 1). This
finding was in agreement with the previous results (11), which suggest that ST167
appears to be the predominant type of blaypy-positive E. coli in China. To further inves-
tigate the evolutionary relationship between these ST167 E. coli and other ST167 E. coli
collected from the NCBI database (Table S3), a phylogenetic tree based on SNPs of the
core genomes was constructed. ST167 E. coli carrying blayoy were mainly found in
humans. However, they are also found in pets and environmental samples (Fig. S2).
blaypm.s was dominant in this subtype. Observation of diverse STs in E. coli indicated
plasmids or other horizontal mobile elements to be considered as the main vehicles
for blaypy, transmission. Similarly, four STs were identified among the eight C. freundii.
Moreover, K. pneumoniae (n = 12) and E. hormaechei (n = 11) contained 12 and 8 differ-
ent STs, respectively. The wide distribution of NDM-producing strains illustrates that in
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FIG 3 The distribution of different Inc group plasmids in all bla,y-positive strains. (A) The percentage of Inc groups found in all blayy,-positive strains. (B)
Diversity of blayoy-bearing plasmids in terms of replicon types and sizes. Eight different plasmids with various replicon combinations were identified, and
each of them was labeled in different circle colors with plasmid types and sizes highlighted.

inter- and intraspecies, horizontal gene transfer plays the most important role in the
transmission of blaypy genes.

Systematic analysis of the predominant IncX3 blay,,-bearing plasmids. S1-
PFGE and Southern blot analysis showed 77 blayoy-positive strains located on plasmids.
The Pr-15-2-50 was an exception, encoding a chromosomal blaypy gene, and four strains
(KA-14-61, EC-14-2-92, EC-15-34, and EC-15-2-153) failed to produce a visible band; how-
ever, they were confirmed on plasmids during the transfer experiments and whole-ge-
nome sequencing (WGS) analysis. Notably, two different blayp,-bearing plasmids, pECL-
14-60-NDM-1-IncAC (IncC, 171,038 bp) and pECL-14-60-NDM-1 (IncX3, 53,023 bp), were
identified in the strain ECL-14-60. These 81 blaypy-harboring plasmids were categorized
into nine different replicon types (Fig. 3A) with sizes ranging from ~46 to ~370 kb
(Fig. 3B). The isolated Inc types of plasmids carrying blayo, genes were different each
year; however, IncX3 blaypy-positive plasmids were dominant through the period (Fig. 4
and Table 1). The bacteria carrying blaypy-positive IncX3-type plasmids were diverse.
Sixty-five NDM-producing IncX3 type plasmids with different sizes 54 kb and 46 kb (lack-
ing the blag,,, ,,-bearing segment) were found in 10 different bacterial species.

In total, the environment around the blayoy gene located on the IncX3 plasmid can
be classified into five major groups. These regions carrying the blayo, genes were all
inserted into the umuD gene, and a 3-bp (TGT) direct repeat sequence formed at the
insertion site. Group A (n = 1) is the simplest among several groups (Fig. 5). Compared
with group A, group B (n = 29) had one more ISAba125 insertion downstream from the
blaypm- Group C (n = 20) had more 7,874 bp regions carrying the blag,, gene downstream
from the 1S26 compared with group B. Group D had the reverse IS5 arrangement
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compared with group C. Compared with group D, the region in group E lost the ISAba125
gene downstream from the blaypy.

By connecting the blaypy subtypes of E. coli to plasmid types, ST types as well as
the year of isolation (Fig. 4), we illustrated a complex combination of multiple genetic
vehicles and diverse hosts in the spreading of the blayp, gene. Most of the blaypy.s
genes were distributed on the IncX3 plasmids. Moreover, blaypy., and blaypy.. Were
also found on the IncX3 plasmids. According to Fig. 4, IncX3 plasmids are the main
blaypy-positive plasmids isolated each year, and these plasmids are distributed in
many different STs of E. coli. However, compared with other Inc-type NDM positive
plasmids (Fig. S3), IncX3 type plasmids carried only a few antibiotic resistance genes,
which may incur a low fitness cost to the host.

Characterization of novel Inc-type and hybrid bla,,-bearing plasmids. In addi-
tion to IncX3 plasmids, other Inc-types of NDM-bearing plasmids were also detected in
these strains (Fig. 6). To the best of our knowledge, the Incl1 plasmid pEC-16-10-NDM-
5 characterized in this study is a novel blayyy-bearing plasmid (Fig. S4 and Fig. 6).
Plasmid pEC-16-10-NDM-5 was 92,260 bp in size and had an average G+C content of
50.6%. The BLAST comparison against the GenBank database showed that pEC-16-10-
NDM-5 exhibited similarities to Incl1 plasmid pEC224 2 (CP018946). The main differ-
ence is that plasmid pEC-16-10-NDM-5 has an additional 8,698 bp complex transposon
structure composed of two IS5 and a blaypy.s-bearing region (IS5-hp-hp-AumuD-1S26-
dsbC-trpF-bleyg, -blaypm.s-AISAba125-1S5). This additional transposon structure is similar
to the IncX3 plasmid pNDM-HK3473 (MH234506) carrying the blayows gene. It is
flanked by 15 bp inverted repeats (TAGGGAAGGTGCGAA) on either side. This phenom-
enon indicates that the blaypy,.s could be transferred through this complex transposon
and integrated into the Incl1 plasmid (Fig. S5).

Five IncFll blaypyu-bearing plasmids were also identified among the 22 plasmids
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FIG 5 Different blay,, gene core genetic environments of the IncX3-type plasmids. A total of five (A-E) major types of bla,yy-bearing genetic contexts
among the 42 bla,,,-bearing plasmids. Red arrows represent resistance genes.

with complete and circular sequences using Nanopore sequencing (Table 2). The
PMLST of the pEC-15-3-NDM-1 plasmid was F2:A-:B-, and the size of the plasmid is
109,944 bp. BLASTn analysis of the pEC-15-3-NDM-1 plasmid showed that it had 99%
nucleotide identity at more than 95% coverage to pMC-NDM (HG003695). The main
difference between them was the copy number of blaypy.,. Three 10,461 bp region
repeats were found on the pEC-15-3-NDM-1 plasmid, which carried a variety of resist-
ance genes, including blaypm.,, dfrA12, aadA2, sull, and bleyg, . According to the result

-
wes e
o re
A

FIG 6 Circular comparison of different blay.,,-bearing plasmids with similar online plasmids. A-H represent different blay,-bearing plasmids with various
replicons IncC, Incl1, IncHI5-like, IncX3, IncFll, IncFIA-IncFIB-IncFll, IncFll-IncN, and IncFli(p14).
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of BLASTn, two Y2:A-:B- (pCR-13-12-NDM-1 and pCR-13-36-NDM-1) plasmids of IncFll
were similar to the pA1137 (NZ_MF190369) and pTTHS031_GES (NZ_LC589514) plas-
mids in the NCBI database. In contrast to the plasmids in this study, they all lacked
regions carrying the blaysy gene, implying that the regions carrying the blaypy, may
insert progenitors before forming these plasmids. Moreover, two-hybrid plasmids
pEC-16-37-NDM-5 (IncFll-IncFIA-IncFIB) and pEC-13-33-NDM-1 (IncFll-IncN) were also
found. The pEC-16-37-NDM-5 plasmid was similar to the online IncFll-IncFIA-IncFIB
plasmid p4_1_1.1 (NZ_CP023845) in E. coli. The plasmid pEC-13-33-NDM-1 was simi-
lar to both of the online IncFll-IncN plasmids pMH13-009N_1 (AP018566) and
pMH16-367M_1 (AP018565) found in Proteus mirabilis and Morganella morganii,
respectively. The core genetic environment of blaypy.s in pEC-16-37-NDM-5 is ISCR1-
dsbC-trpF-bleyg -blaypm.s-AISAba125-1S26. Although there are only four IncFll-type
plasmids carrying blaypw.;, the gene environment around blaypy.; could be divided
into three categories: TnAs3-groEL-cutA-dsbC-trpF-bleys -blaypm..-AISAba125-1S1294
(pEC-13-33-NDM-1), ISCR1-dsbC-trpF-bleyg, -blayom.,-AISAba125-1526 (pEC-15-3-NDM-1
and pCR-13-12-NDM-1), and ISCR1-dsbC-trpF-bles -blaypm.1-AISAba125-ISCRT (pCR-
13-36-NDM-1).

The characteristics of the five NDM-positive plasmids (171 kb-215 kb) of the IncC type
were also analyzed (Fig. 6). The blaypy subtypes carried by these plasmids were all blayom.1,
and most of them shared similar backbones. Despite their similar backbones, there are three
types of genetic environments around blaypy,..: ISCRT-dsbC-trpF-bleyg, -blayoy..-AISAba125-
ISTR (pECL-14-60-NDM-1 and pKP-14-6-NDM-1), ISCR1-dsbC-trpF-bleyg -blaypy.-ISAba125
(pEC-13-22-NDM-1 and pEC-13-49-NDM-1), and ISCR1-dsbC-trpF-bleyg, -blayom.,-AISAba125-
IS26 (pKP-16-57-NDM-1). Among these five IncC plasmids, pEC-13-22-NDM-1 and pEC-13-
49-NDM-1 were isolated from E. coli, pKP-16-57-NDM-1 and pKP-14-6-NDM-1 from K. pneu-
moniae, and pECL-14-60-NDM-1 from E. hormaechei. BLASTn comparison with the NCBI
database showed similarities to pNDM-TAEC1 (NZ_MH001166) found in E. coli.

It is worth noting that three plasmids belonged to the recently discovered IncHI5-
like plasmids (Fig. 6). The three blaypy-harboring IncHI5-like plasmids ranged from 358
to 376 kb and possessed the same plasmid backbone structure. The BLAST comparison
against the GenBank database showed that plasmid pKO-16-21-NDM-1 from K. oxytoca
exhibited similarities to the same Inc-type plasmids pKP19-3023-374k (CP063748) and
pKP19-3088-375k (CP063149), which were collected from K. pneumoniae. The core
genetic environment of blaypy (ISCRT-sulT-AqacE-blaypy.,-bleyg, -trpF-dsbC-ISCR1) car-
ried on the plasmid pKO-16-21-NDM-1 was similar to the pKP19-3023-374k plasmid.
This is the first time that a blaypy-positive IncHI5-like plasmid has been found in K. oxy-
toca. The pKP-13-14-NDM-9 plasmid that was isolated from K. pneumoniae was
358,655 bp in size. Although IncHI5-like plasmids were reported to carry blaypy., in pre-
vious studies (12, 13), pKP-13-14-NDM-9 was the first IncHI5-like plasmid positive for
blaypm.o- The core genetic environment of bldaypy.o is 1S26-AISAba125-blaypy.o-bleys -
trpF-mocA-cutA-ISCR1, and a similar genetic environment (I1S26-AISAba125-blayppm.1-
bleyg, -trpF-mocA-cutA-ISCR1) was found in pKP-14-2-131-NDM-1.

Four of the 81 strains were found to carry both blayp,, and mcr genes (mcr-1, n = 1,
mcr-9, n = 3). The mcr-1 gene was located on a 60,961 bp plasmid designated as pEC-15-
3-mcr-1 in the incompatibility group Incl2 (Fig. S6). The plasmids similar to pEC-15-3-mcr-
1 in the public database were the E. coli plasmid pAH62-1 (NZ_CP055260) and Salmonella
plasmid pS304_2 (NZ_CP061128), which showed 100% coverage and identity. Moreover,
three strains were found (CF-15-2-29, ECL-16-5, and ECL-16-79) carrying the mcr-9. Online
BLAST (Fig. S7) showed that mcr-9-positive plasmids all belonged to IncHI2A-IncHI2 and
showed similarities to the pBSI034-MCR9 (NZ_MN937241) plasmid. Strains carrying mcr-9
were usually resistant to polymyxin; however, ECL-16-79 was susceptible to polymyxin. It
has been reported that the deletion of the two-component system gseCB may silence the
mcr-9 gene (14). However, the ECL-16-79 strain contains the two-component system
gseCB, and other genes or molecules may regulate the expression of mcr-9. Further inves-
tigations are needed to decipher the underlying molecular mechanisms.
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Two tandem copies of blayp,,., in the chromosome. In addition to the plasmid-
mediated blayp, genes, we also found the blaypy,., on the chromosome of the P. rettgeri
strain Pr-15-2-50. The size of the genome was 4,648,900 bp, with 40.3% GC content. Two
copies of blaypy., were found on the chromosome of the Pr-15-2-50. On comparing the
Pr-15-2-50 chromosome with FZB001 (CP060821) and AR0156 (CP021852), we found a
40,775 bp Tn7-like transposon structure carrying the blayow gene, inserted into the chro-
mosomal region (Fig. S8). This Tn7-like transposon had an average GC content of 48.8%
and similarly to the p2BJAB07104 (CP003907) plasmid, it was surrounded by 11 bp
inverted repeats (ACAAAATAGAT), implying that the transposon could translocate
between chromosomes and plasmids. However, this plasmid lacked the blayyy-bearing
region. The 5,250 bp blaypy-carrying region (ISCR1-dsbC-trpF-bleyg, -blayow..-AlISAba125-
AsulT) may be incorporated because of the ISCRT-mediated insertion, similar to previous
reports(15). Moreover, a 4,390 bp integron (intl2-Inu(F)-dfrA1-aadA1-AqacE-sull) was
found downstream to the blayoy,.; gene. Despite these reports, ISCRT-mediated copies of
blayoy have been found on these chromosomes. However, the ISCR7-mediated transpos-
able units on P. aeruginosa MMA83 (ISCRT-aph(3')-Vla-1SAba125-blaypy,.,-sull), E. coli Y5
(ISCR1-traF-bleyg -blayom..-AISAba125-catB3-arr-3-AqacE-sul1), and P. mirabilis XH1653
(sul1-arr-3-cat-blaypy,-bleo-ISCRT) are different from the Pr-15-2-50 (ISCR1-dsbC-trpF-
bleyg -blayom,-AlISAba125-AsulT) strain in this study (15-17). The ble and sul1 genes were
also detected in these transposable units. This suggests that blaypy,, may cotransfer with
other resistance genes.

DISCUSSION

blayowm., was discovered in 2009. Since then, CRE strains carrying blaypm., and its var-
iants have spread in more than 55 countries worldwide. Asian countries such as India,
Pakistan, and China are considered major reservoirs of blaypy (6). The blaypy..-positive
strains were first isolated in clinical stool samples in China in 2010, followed by an
increasing number of blaypy-positive strains. In 2013, 17 blaypy-positive strains
(38.64%) were obtained from 44 CRE strains isolated from hospitals in Henan, which
was an increase compared to 2011-2012 (7). However, the positive rate decreased to
18.89% (17/90) and 17.13% (31/181) in 2014 and 2015, respectively. This may be the
result of the effective clinical infection control measures. However, there was an
increase in 2016, with the isolation rates reaching up to 21.79% (17/78).

ST11 is the most common type of blaypu-positive K. pneumoniae that was reported
(18, 19). Moreover, ST11 K. pneumoniae often had hypervirulent and/or multidrug re-
sistant phenotypes (20). However, only one strain of ST11 K. pneumoniae was found in
this study. The ST types of K. pneumoniae were more diverse, indicating that K. pneu-
moniae carrying blaysy in Henan is not clonally transferred. Moreover, we found
diverse E. coli STs, and ST167 was predominant among them. This phenomenon is simi-
lar to previous domestic reports (21, 22). ST167 NDM-producing E. coli strains are not
only widely disseminated in China (11, 23); they also cause infections worldwide (6, 24,
25), which has gained much attention. Consistent with this study, the blayou.s gene is
mainly carried by E. coli of ST167 (26, 27), suggesting that ST167 E. coli is an important
repository of blaypy.s. More importantly, ST167 blaypy,-positive E. coli strains have been
found in companion animals (28, 29), which suggests that the ST167 E. coli carrying
blaypm.s gene could be transmitted between animals and humans.

Four NDM subtypes (NDM-1, NDM-4, NDM-5, and NDM-9) were found in 81 NDM-
producing strains; however, from 2011 to 2012, all blaypy,-positive strains isolated from
Henan were blaypy.; (7). Since the isolation of blaypy.s in Henan in 2013, the detection
rate has gradually increased. It has now become the main subtype of blayoy. The
blayow., detection rates have been decreasing each year; however, it remains the main
epidemic subtype. Previous studies have shown that NDM-5 exhibits higher hydrolytic
activity toward carbapenems and cephalosporins compared with NDM-1 (30). This may
be caused by the increase in the usage of carbapenems in clinical treatment. It has
been shown that IncX3 plasmids could promote the transmission of NDM-5, and the
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plasmids carrying NDM-5 demonstrated high stability (31, 32). In this study, most of
the blaypw.s genes were carried by IncX3 plasmids, which led to a higher prevalence.
The increasing prevalence of blaypy.s-positive strains should be of high concern.

Carbapenem and colistin are considered the last line of defense in the treatment of
severe infections caused by extensively drug-resistant bacteria. Only a few articles
have previously reported the coexistence of blaypy., and mcr-9 genes (33, 34). Four
strains with the coexistence of blayy, and mcr genes were found in this study. This
phenomenon greatly increases the risk of treatment failure. The bla,p.,-producing
Enterobacterales have been reported sporadically in China (11, 35). Only two strains
harboring the bla,y,, gene were found among the 81 blaypy-positive strains.
Moreover, multiple resistance genes are often present on plasmids carrying blaypm
genes, which greatly increases the risk of cotransmission of multiple resistance genes.

Except for the strain Pr-15-2-50, the blaypy gene was located on the plasmids, which
might be the main mode of blaypy, transmission. A variety of blayyu-positive plasmids
with different Inc types and sizes were found in the 80 strains, mainly IncX3 type,
which is similar to previous reports. In this study, the ST type of NDM-producing strains
carrying the IncX3 plasmid was mainly ST167. This highly prevalent ST and plasmid
type promotes the transmission of blaypy further and seriously threatens public health.
We also discovered a novel blaypy,-bearing plasmid pEC-16-10-NDM-5 (Incl1). Incl1
plasmid belongs to the narrow-host range plasmid type (36) and was only found in
Enterobacterales. Several articles have pointed out that Incl1 plasmids frequently carry
genes encoding antibiotic resistance, especially the extended-spectrum beta-lacta-
mase genes (37-39). These plasmids are widely distributed in animals and patients
worldwide (40, 41). The IncHI plasmid has a wide host range and plays an important
role in the transmission of resistance genes (42, 43). Previously, it was shown that a va-
riety of carbapenemase genes were found on the IncHI5 plasmids (44), which poses a
great threat to clinical treatment. The two IncHI5-like plasmids, carrying both carbape-
nem and tigecycline resistance genes, were found in our recent study (12), severely
restricting the clinical treatment options. In this study, the new blay,, core genetic
environment was found in the IncHI5-like plasmids, suggesting that this plasmid has
evolved as a novel MDR plasmid and needs to be continuously monitored.

Conclusion. To date, NDM is the predominant mechanism for CRE in humans.
Carbapenem, polymyxin, and tigecycline are regarded as the last line of defense in the
clinical treatment of MDR infections. In recent years, several studies have found that
blaypw coexists with mobile colistin (mcr) and tigecycline resistance genes (tet(X) and
tmexCD-toprJ), making clinical treatment extremely difficult. Therefore, continuous long-
term surveillance for pathogens that clinically harbor blayg,, is important. This study con-
ducted an in-depth analysis of blaypy,-positive clinical strains and confirmed that the vast
majority of blayp, genes were distributed on plasmids of different Inc types, and are
transmitted by horizontal transfer of plasmids. The emergence of Enterobacterales carry-
ing both blaypy and other resistance genes, such as mcr, is worrying. These isolates can
seriously limit clinical treatment options. Therefore, there is an urgent need for large-scale
monitoring and the development of effective control measures.

MATERIALS AND METHODS

Bacterial isolates. The samples in this study were obtained between 2013 and 2016 at an affiliated
hospital of Zhengzhou University. This study did not exclude patients based on age, gender, or symptoms.
Moreover, the samples collected were nonduplicate isolates from different patients. CRE was defined as
Enterobacterales resistant to at least one carbapenem (meropenem or imipenem). A total of 391 CRE strains
were collected from blood, urine, sputum, wound, tissue, pus, swab, drainage liquid, secreta, bile, ascites,
sanies, joint fluid, and urine tube tips. Clinical data of each patient were collected from the clinical and med-
ical record system. Extracted clinical information included the date of collection, patient age, sex, source of
isolate, ward type, and outcome (alive or dead). The bla,p,,-positive strains were screened and confirmed
using PCR and Sanger sequencing, respectively. All blay,-positive isolates were sent to Zhengzhou
University for subsequent experiments. This study was approved by the Ethics Committee of Zhengzhou
University with a waiver of informed consent because of the retrospective nature of the study.

PCR screening and antimicrobial susceptibility testing. The presence of carbapenem resistance
genes (blaypy, blay,, blag., bla,,, and bla,y, .) and other important resistance genes (mcr-1, blay,,,
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and blag,) was investigated using PCR with the primers (Table S1). The PCR amplified products were
confirmed using gel electrophoresis and Sanger sequencing. All CRE species identification was carried
out by the automated Vitek 2 system. Antimicrobial susceptibility testing of clinical strains was per-
formed against 17 antimicrobials by determining the MICs using the broth microdilution method, and E.
coli ATCC 25922 was used as the quality control. All antibiotic breakpoints were interpreted according to
CLSI guidelines (45); however, tigecycline (>2 mg/L) was interpreted according to the EUCAST criteria.

Conjugation, S1-PFGE, and Southern blot. The conjugation experiment was performed with each of
the blay,-positive strains using a rifampicin-resistant E. coli EC600 or sodium azide-resistant E. coli J53 recipients.
The donor and recipient were mixed in a ratio of 1:1 and incubated statically in an LB broth at 35°C for 24 h.
Transconjugants on the LB agar plates containing double antibiotics (meropenem 2 mg/L and rifampicin 100 mg/
L, or meropenem 2 mg/L and sodium azide 200 mg/L) were selected and confirmed using PCR and PFGE, respec-
tively. Transfer frequencies were calculated as the number of transconjugants/total number of recipients.

S1-PFGE and Southern blot analyses were performed to determine the plasmid sizes and genomic posi-
tions of blayy,,. To elucidate the genetic environments of blayy, genes, 22 representative blayp,,-carrying
plasmids were selected based on the plasmid replicon types and sizes to perform Nanopore sequencing to
obtain the complete plasmid sequences.

WGS procedures and analyses. We characterized the genetic features and resistomes of the blayo-
positive CRE. The genomes of all blay,,-positive strains were extracted with the FastPure bacterial DNA iso-
lation minikit (catalog no. DC103; Vazyme) and evaluated using 1% (wt/vol) agarose gel electrophoresis.
The concentration and purity were quantified using the Qubit 4 Fluorometer and Nanodrop. The genomic
DNA samples were sequenced using the lllumina Hiseq 2500 platform generating 2 x 150 bp paired-end
reads. Twenty-two representative strains were sequenced with the Nanopore long-read sequencing plat-
form according to resistant phenotypes and genotypes (46). The Rapid Barcoding Kit RBK004 was used to
construct the long-read sequencing libraries, which were subjected to Nanopore sequencing in MinlON
R9.4.1 flow cells.

The lllumina paired-end reads were de novo assembled using the SPAdes version 3.14.0, and contigs
less than 200 bp in length were removed (47). Unicycler v. 0.4.8 was used for hybrid assembly of genomes
with the combination of lllumina short reads and Nanopore long reads with default parameters (48). For
intricate regions that could not be resolved using the hybrid assembly method, Nanopore sequencing data
were assembled using the long-read assembler Flye v. 2.4.2 to acquire accurate structures of complex
genomic regions (49). The genomes were annotated using the online tool RAST (http://rast.nmpdr.org/).
ResFinder and PlasmidFinder (http://cge.cbs.dtu.dk/services/) were used to identify antimicrobial resistance
genes and plasmid replicon types with default parameters. The virulence factors in the assembled genome
sequences were identified using the Kleborate software (50) and the virulence factor database (last updated
14th October 2020) in abricate v.1.0.1 (https://github.com/tseemann/abricate) with default parameters.
Multilocus sequence typing (MLST) of the 81 blay,,-positive isolates was conducted using mlst (https://
github.com/tseemann/milst). The plasmid comparison maps were constructed and displayed by using BRIG
v. 0.95 and Easyfig v. 2.2.3 (51, 52), respectively. The core genes in the genomes of bla,,,-positive CRE were
identified using Roary (53). The phylogenetic trees of blay,,-positive strains were constructed using
FastTree (54) based on the core single-nucleotide polymorphism (SNP) alignments with default parameter
settings and visualized using iTOL (https://itol.embl.de).

Data availability. The sequence data generated in this study have been submitted to the NCBI
BioProject database (https://www.ncbi.nlm.nih.gov/bioproject/) under accession numbers PRINA752009,
and individual accession numbers of 22 bla,\-bearing plasmids are listed in Table 2.
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