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N-Heterocyclic carbenes catalyzed hydrophosphonylation reaction of 𝛼-ketoesters and 𝛼-trifluoromethyl ketones was developed.
Under the catalysis of 10mol% IPr, 𝛼-ketoesters or 𝛼-trifluoromethyl ketones reacted with dialkyl phosphites to provide quaternary
𝛼-hydroxyphosphonates in good to excellent yield.

1. Introduction

𝛼-Hydroxyphosphonates and phosphonic acids are ubiq-
uious synthons in the synthesis of pharmaceutically and
biologically activemolecules [1–3]. Hydrophosphonylation of
carbonyl compounds catalyzed by base, metal catalysts, or
organocatalysts, which is also named as Pudovik reaction,
provides facile access to this vital class of compounds [4–7].
However, in contrast to the hydrophosphonylation reaction
of aldehydes [8–14], the similar coupling reaction of ketones
was scarcely developed [15–22], which may be attributed
to the relatively low reactivity of ketones. Therefore, the
development of highly efficient catalysts for ketone that
participated in Pudovik reaction is still desirable, which will
provide 𝛼-hydroxyphosphonates with a quaternary carbon
center.

As an important type of organocatalyst, N-heterocyclic
carbenes (NHCs) have been used widely in a series of organic
transformations [23–26], such as umpolung and extended
umpolung reaction based on ambiphilicity of NHCs [27–
30] and transesterification [31–34], formal cycloadditions [35,
36], and other reactions based on nucleophilicity of NHCs.
On the other hand, NHCs are organocatalysts that possess
strong basicities, and based on this property, only very limited
reactions were reported [37, 38]. Recently, we found that
NHCs can catalyze the coupling reaction between phosphites
and imines (or aldehydes) [39, 40], which inspired us to

explore the hydrophosphonylation reaction of ketones with
NHCs catalysis.

The study commenced with the reaction of methyl phe-
nylglyoxylate 6a and dimethyl phosphite 7a (Table 1). To
our delight, under the catalysis of 10mol% NHC 1 (1,3-
bis(2,6-diisopropylphenyl)imidazol-2-ylidene, IPr) [41], the
reaction proceeded very smoothly in CH

2
Cl
2
to give the

desired quaternary 𝛼-hydroxyphosphonate 8a quantitatively
(Table 1, entry 1). And after the screening of catalysts, base,
solvent, and catalyst loading, the optimal reaction conditions
were established: using 10mol% IPr as catalyst, conducted the
reaction in dichloromethane at room temperature (Table 1,
entry 1).

The reaction scope was then investigated under the opti-
mized reaction conditions and the results were summarized
in Table 2. Methyl or ethyl phenylglyoxylate reacted with
dimethyl phosphite smoothly to furnish the correspond-
ing 𝛼-hydroxyphosphonates in high yield. Both electron-
withdrawing (-F, -Cl, and -Br) and electron-donating (-OMe)
groups that substituted ethyl phenylglyoxylates were all suit-
able reactants for the coupling reaction, providing the desired
products in high yield (Table 2, entries 3–6). Ethyl pyruvate
was also good candidate for the addition, affording alkyl-
substituted 𝛼-hydroxyphosphonate 8g in 90% yield (Table 2,
entry 7). Trifluoromethyl ketones, another important type of
carbonyl compounds that was used widely in the synthesis
of fluorinated molecules, were also tested for the reaction.
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Table 1: Screening of reaction conditionsa.

+
NHC

NN ArAr

1

NN ArAr

2 3

Cl
NN ArAr

Cl

NS R
X

HO
N

N
N

Ph
Cl

5

OH

6a 8a7a

O

O

OMe
(MeO)2POH

Ar = 2,6-(i-Pr)2C6H3 Ar = 1,3,5-Me3C6H2 Ar = 2,6-(i-Pr)2C6H3

CO2Me

P(O)(OMe)2

4a: R = Bn, X = Cl

4b: R = Me, X = I

Entry NHC Solvent Yield (%)b

1 1 DCM 99
2 2, Cs2CO3 (10mol%) DCM 72
3 2, DBU (10mol%) DCM 78
4 3, DBU (10mol%) DCM 67
5 4a, Et3N (10mol%) DCM 79
6 4b, Et3N (10mol%) DCM 52
7 5, Et3N (10mol%) DCM 75
8 1 toluene 77
9 1 THF 85
10 1 Et2O 78
11c 1 DCM 65
12 No catalyst DCM /
aReaction condition: 6a (1.5 equiv), 7a (1.0 equiv), NHC (10mol%), 0.15mol L−1 of 7a, and room temperature.
bIsolated yield.
cUsing 5mol% NHC 1 (IPr).

Experiment results indicated that dimethyl phosphite can add
to trifluoromethyl ketones smoothly to give trifluoromethyl-
substituted 𝛼-hydroxyphosphonates in good yields (Table 2,
entries 8–10). However, when acetophenone was used instead
of 𝛼-ketoesters or trifluoromethyl ketones, no desired prod-
uct was obtained and the starting substrates were recovered
completely; these results may be attributed to the low reactiv-
ity of acetophenone (Table 2, entry 11).

Based on the previous study of NHCs catalyzed hydro-
phosphonylation reaction [39, 40], a possible mechanism is
proposed in Scheme 1. A complex I is formed via the depro-
tonation of dialkyl phosphite by the basic NHCs catalyst,
which might trigger the subsequent coupling of carbonyl
compounds and after proton transfer, the desired product will
be obtained.

In summary, we have demonstrated an efficient NHCs-
promoted hydrophosphonylation of 𝛼-ketoesters and 𝛼-
trifluoromethyl ketones, which provide a valuable approach
for the preparation of quaternary 𝛼-hydroxyphosphonates.

2. Experimental

Unless otherwise indicated, all reactions were conducted
under nitrogen atmosphere in oven-dried glassware with
magnetic stirring bar. Column chromatograph was per-
formed with silica gel (200∼300mesh) and analytical TLC
on silica gel 60-F254. 1H NMR (400MHz) and 13C NMR
(100MHz) spectra were recorded on a Bruker-DMX 400
spectrometer in CDCl

3
, with tetramethylsilane as an internal

standard and reported in ppm (𝛿). Infrared spectra were
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Table 2: NHC-catalyzed hydrophosphonylation of phosphites with active ketonesa.

R R21

O
+P

O
H

RO
RO

10 mol% IPr
R1

R2

OH
OR
ORP

O

6 (1.5 equiv) 7 (1.0 equiv) 8  

CH2Cl2, 0∘C-rt

Entry Ketones Time (h) Products Yield (%)b

1

O

O

OMe

 
24

OH

8a CO2Me
P(O)(OMe)2 99

2

O

O

OEt
24

OH

8b 
CO2Et

P(O)(OMe)2
89

3

O

O

OEt

F
24

OH

F 8c 
CO2Et
P(O)(OMe)2

84

4

O

O

OEt

Cl
24

OH

Cl 8d 
CO2Et

P(O)(OMe)2
96

5

O

O

OEt

Br
24

OH

Br 8e 
CO2Et

P(O)(OMe)2
85

6

O

O

OEt

MeO
24

OH

MeO 8f  
CO2Et

P(O)(OEt)2
93

7 Me

O

O

OEt 24 Me
OH

 8g CO2Et
P(O)(OMe)2 90

8
O

CF3 48

OH

CF3
8h 

P(O)(OMe)2
57

9

O

CF3

Br
24

OH

CF3

Br 8i  

P(O)(OMe)2
64

10

O

CF3

Cl  
48

OH

CF3

Cl 8j  

P(O)(OMe)2
63

11c
O

CH3
48

OH

CH3

8k 

P(O)(OMe)2
—

aReaction conditions: 7 (1.5 equiv), 6 (1.0 equiv), IPr (10mol%), and 0.15mol L−1 of 6.
bIsolated yield.
cRecovered yield of acetophenone: 95%.
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Scheme 1: Proposed reaction mechanism.

recorded on a Nicolet FT/IR-360 spectrophotometer and
reported as wave number (cm−1). Other starting materi-
als were obtained from commercial supplies and used as
received. Anhydrous THF, toluene, Et

2
O, and DCM were

distilled from sodium or calcium hydride. Petroleum ether
(PE), where used for flash column chromatography, has a
boiling range of 60–90∘C.

General Procedure for Preparing of 𝛼-Hydroxyphosphonates
8. To an oven-dried Schlenk tube were added aldehyde
7 (0.3mmol), dry dichloromethane (2.0mL), and phos-
phite 6 (0.45mmol), then cooled to 0∘C. IPr (10mol %)
was subsequently added under nitrogen and the mixture
was stirred at room temperature until completion of the
reaction as indicated by TLC. After completion of the
reaction, the mixture was extracted by dichloromethane
(3 × 20mL). The combined organic phase was dried by
anhydrous sodium sulfate and concentrated under vacuum.
The residue was subjected to flash column chromatography
(silica-gel and petroleum/ethyl acetate 2 : 1∼1 : 1) to obtain 𝛼-
hydroxyphosphonates.

Methyl 2-(Dimethoxyphosphoryl)-2-hydroxy-2-phenylacetate
8a [15].Colorless oil, yield 99%; 1HNMR (400MHz, CDCl

3
)

𝛿: 7.49–7.38 (m, 5H), 5.77 (d, 2JPH = 8.2Hz, 1H), 3.85 (d, 3JPH
= 11.4Hz, 3H), 3.74 (s, 3H), 3.60 (d, 3JPH = 11.3Hz, 3H); 13C
NMR (100MHz, CDCl

3
) 𝛿: 169.2 (d, JCP = 6.0Hz), 134.8 (d,

JCP = 6.0Hz), 129.4, 128.8, 127.2, 76.9 (d, 1JCP = 4.0Hz), 54.8
(d, 2JCP = 6.0Hz), 54.4 (d, 2JCP = 6.0Hz), 52.8, 29.7.

Ethyl 2-(Dimethoxyphosphoryl)-2-hydroxy-2-phenylacetate 8b
[15]. Colorless oil, yield 89%; 1H NMR (400MHz, CDCl

3
)

𝛿: 7.50–7.45 (m, 2H), 7.41–7.36 (m, 3H), 5.75 (d, 2JPH =
8.2Hz, 1H), 4.28–4.16 (m, 2H), 3.85 (d, 3JPH = 11.4Hz, 3H),
3.61 (d, 3JPH = 11.4Hz, 3H), 1.22 (t, J = 7.1Hz, 3H); 13C
NMR (100MHz, CDCl

3
) 𝛿: 168.7 (d, JCP = 5.0Hz), 134.9 (d,

JCP = 6.0Hz), 129.3, 128.8, 127.2, 76.8 (d, 1JCP = 11.0Hz), 61.9,
54.7 (d, 2JCP = 6.0Hz), 54.3 (d, 2JCP = 6.0Hz), 14.0.

Ethyl 2-(Dimethoxyphosphoryl)-2-(4-fluorophenyl)-2-hydrox-
yacetate 8c. Colorless oil, yield 84%; 1H NMR (400MHz,
CDCl

3
) 𝛿: 7.50–7.44 (m, 2H), 7.08 (t, J = 8.7Hz, 2H), 5.73 (d,

2JPH = 8.3Hz, 1H), 4.30–4.16 (m, 2H), 3.86 (d, 3JPH = 11.4Hz,
3H), 3.63 (d, 3JPH = 11.3Hz, 3H), 1.23 (t, J = 7.1Hz, 3H); 13C
NMR (100MHz, CDCl

3
) 𝛿: 168.6 (d, J = 5.0Hz), 163.2 (d, 1JCF

= 248.0Hz), 130.9 (dd, J = 6.0, 3.0Hz), 129.2 (d, J = 8.0Hz),
115.8 (d, J = 22.0Hz), 76.2 (d, 1JCP = 4.0Hz), 62.0, 54.8 (d, 2JCP
= 6.0Hz), 54.4 (d, 2JCP = 6.0Hz), 14.0; HRMS(ESI) Calcd for
(C
12
H
16
FO
6
P + Na) 329.0566, found: 329.0569.

Ethyl 2-(4-Chlorophenyl)-2-(dimethoxyphosphoryl)-2-hydrox-
yacetate 8d. Colorless oil, yield 96%; 1H NMR (400MHz,
CDCl

3
) 𝛿: 7.39 (q, J = 8.6Hz, 4H), 5.72 (d, 2JPH = 8.4Hz,

1H), 4.27–4.15 (m, 2H), 3.86 (d, 3JPH = 11.3Hz, 3H), 3.64
(d, 3JPH = 11.3Hz, 3H), 1.23 (t, J = 7.1Hz, 3H); 13C NMR
(100MHz, CDCl

3
) 𝛿: 168.4 (d, J = 5.0Hz), 135.4, 133.5 (d, J =

6.0Hz), 129.0, 128.5, 76.2 (d, 1JCP = 5.0Hz), 62.1, 54.8 (d, 2JCP
= 6.0Hz), 54.4 (d, 2JCP = 7.0Hz), 14.0. HRMS(ESI) Calcd for
(C
12
H
16
ClO
6
P + Na) 345.0271, found: 345.0282.

Ethyl 2-(4-Bromophenyl)-2-(dimethoxyphosphoryl)-2-hydrox-
yacetate 8e. Colorless oil, yield 85%; 1H NMR (400MHz,
CDCl

3
) 𝛿: 7.53 (d, J = 8.6Hz, 2H), 7.36 (d, J = 8.3Hz, 2H),

5.70 (d, 2JPH = 8.4Hz, 1H), 4.32–4.14 (m, 2H), 3.86 (d, 3JPH =
11.3Hz, 3H), 3.64 (d, 3JPH = 11.3Hz, 3H), 1.23 (t, J = 7.1Hz,
3H); 13C NMR (100MHz, CDCl

3
) 𝛿: 168.3 (d, J = 5.0Hz),

134.0 (d, J = 6.0Hz), 132.0, 128.8, 123.6, 76.2 (d, 1JCP = 5.0Hz),
62.1, 54.8 (d, 2JCP = 6.0Hz), 54.5 (d, 2JCP = 6.0Hz), 14.0.
HRMS(ESI) Calcd for (C

12
H
16
BrO
6
P + Na) 388.9766, found:

388.9770.

Ethyl 2-(Diethoxyphosphoryl)-2-hydroxy-2-(4-methoxyphen-
yl) Acetate 8f . Colorless oil, yield 93%; 1H NMR (400MHz,
CDCl

3
) 𝛿: 7.33 (d, J = 8.7Hz, 2H), 6.84 (d, J = 8.8Hz, 2H), 5.63

(d, 2JPH = 8.4Hz, 1H), 4.22–4.00 (m, 4H), 3.97–3.82 (m, 2H),
3.74 (s, 3H), 1.28 (td, J = 7.1, 1.0Hz, 3H), 1.19–1.09 (m, 6H); 13C
NMR (100MHz, CDCl

3
) 𝛿: 168.0 (d, JCP = 6.0Hz), 159.3, 127.7,

126.3, 113.1, 75.4 (d, 1JCP = 5.0Hz), 63.2 (d, 2JCP = 6.0Hz), 62.9
(d, 2JCP = 6.0Hz), 60.7, 54.2, 15.0 (d, JCP = 7.0Hz), 14.9 (d,
JCP = 7.0Hz), 13.0. HRMS(ESI) Calcd for (C

15
H
23
O
7
P + Na)

369.1079, found: 369.1075.

Ethyl 2-(Dimethoxyphosphoryl)-2-hydroxypropanoate8g [42].
Colorless oil, yield 90%; 1HNMR (400MHz, CDCl

3
) 𝛿: 8.64

(br s, OH), 4.95–4.87 (m, 1H), 4.27–4.20 (m, 2H), 3.84 (d, 3JPH
= 11.3Hz, 3H), 3.79 (d, 3JPH = 11.3Hz, 3H), 1.57 (dd, 3JPH =
6.9, 0.7Hz, 3H), 1.30 (t, J = 7.1Hz, 3H); 13C NMR (100MHz,
CDCl

3
) 𝛿: 170.5 (d, JCP = 5.0Hz), 72.0 (d, 1JCP = 5.0Hz), 61.7,

54.7 (d, 2JCP = 7.0Hz), 54.5 (d, 2JCP = 6.0Hz), 19.2 (d, 2JCP =
6.0Hz), 14.1.

Dimethyl 2,2,2-Trifluoro-1-hydroxy-1-phenylethylphosphonate
8h [17].Colorless oil, yield 57%; 1HNMR (400MHz, CDCl

3
)

𝛿: 7.53–7.48 (m, 2H), 7.47–7.41 (m, 3H), 5.61 (dd, 2JPH = 10.2,
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6.4Hz, 1H), 3.78 (d, 3JPH = 11.4Hz, 3H), 3.57 (d, 3JPH = 11.8Hz,
3H); 13C NMR (100MHz, CDCl

3
) 𝛿: 131.2, 130.3, 128.8, 127.9,

76.3 (dd, 1JCP = 34.0, 5.0Hz), 54.7 (d, 2JCP = 6.0Hz), 54.5 (d,
2JCP = 6.0Hz), 29.7.

Dimethyl 1-(4-Bromophenyl)-2,2,2-trifluoro-1-hydroxyethyl-
phosphonate 8i [17]. Colorless oil, yield 64%; 1H NMR
(400MHz, CDCl

3
) 𝛿: 7.58 (d, J = 8.6Hz, 2H), 7.37 (d, J =

8.6Hz, 2H), 5.69–5.42 (m, 1H), 3.80 (d, 3JPH = 11.4Hz, 3H),
3.61 (d, 3JPH = 11.4Hz, 3H); 13C NMR (100MHz, CDCl

3
) 𝛿:

132.0, 130.2, 129.5, 124.7, 75.6 (dd, 1JCP = 34.0, 5.0Hz), 54.7 (d,
2JCP = 6.0Hz), 54.5 (d, 2JCP = 6.0Hz), 29.7.

Dimethyl 1-(4-Chlorophenyl)-2,2,2-trifluoro-1-hydroxyethyl-
phosphonate 8j [17]. Colorless oil, yield 63%; 1H NMR
(400MHz, CDCl

3
) 𝛿: 7.46–7.40 (m, 4H), 5.59 (dd, 2JPH = 10.2,

6.3Hz, 1H), 3.80 (d, 3JPH = 11.4Hz, 3H), 3.61 (d, 3JPH = 11.4Hz,
3H); 13C NMR (100MHz, CDCl

3
) 𝛿: 136.5, 129.8, 129.3, 129.1,

75.7 (dd, 1JCP = 34.0, 5.0Hz), 54.8 (d, 2JCP = 6.0Hz), 54.5 (d,
2JCP = 6.0Hz), 29.7.
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