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GRAPHICAL ABSTRACT
PUBLIC SUMMARY

- Predicting mutation-driven changes in protein stability using a self-supervised deep learning model.

- The model achieved state-of-the-art prediction accuracy across various benchmarks with exceptional speed.

- Experimental verification of Pythia-predicted mutations demonstrated a higher success rate than previous predictors.

- Large-scale mutation analysis across the protein universe revealed a correlation between protein stability and evolutionary
information.
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Predicting free energy changes (DDG) is essential for enhancing our under-
standing of protein evolution and plays a pivotal role in protein engineering
and pharmaceutical development. While traditional methods offer valuable
insights, they are often constrained by computational speed and reliance on
biased training datasets. These constraints become particularly evident
when aiming for accurate DDG predictions across a diverse array of protein
sequences. Herein, we introduce Pythia, a self-supervised graph neural
network specifically designed for zero-shot DDG predictions. Our compara-
tive benchmarks demonstrate that Pythia outperforms other self-supervised
pretraining models and force field-based approaches while also exhibiting
competitive performance with fully supervised models. Notably, Pythia
shows strong correlations and achieves a remarkable increase in computa-
tional speed of up to 105-fold. We further validated Pythia’s performance in
predicting the thermostabilizing mutations of limonene epoxide hydrolase,
leading to higher experimental success rates. This exceptional efficiency
has enabled us to explore 26million high-quality protein structures, marking
a significant advancement in our ability to navigate the protein sequence
space and enhance our understanding of the relationships between protein
genotype and phenotype. In addition, we established aweb server at https://
pythia.wulab.xyz to allow users to easily perform such predictions.
INTRODUCTION
Proteins, often described as the molecular workhorses of life, carry out a

diverse range of essential biochemical functions.1,2 Despite their vital roles,
most natural proteins exhibit onlymarginal stability, with Gibbs free energy differ-
ences between their native and unfolded states as low as 5 kcal/mol1,3 or even
less.4,5 This narrow margin of stability renders them particularly susceptible to
environmental changes and genetic mutations.6 Even subtle alterations, such
as single-point mutations, can disrupt this delicate balance, resulting in protein
inactivation, misfolding, or aggregation. The destabilizing or stabilizing effects
of these changes have broad implications for health, disease mechanisms,
drug discovery, biotechnology, and our understanding of protein evolution.7

The modern era is characterized by endeavors to transcend the limitations of
natural protein repertoires, and protein engineering has emerged as a promising
avenue.8 Protein sequences have been designed to enhance stability and solubi-
lity and to tailor activities to meet the demands of industrial applications.2,9 Ad-
vancements in protein design computational tools have employed model-based
and data-driven methodologies.10 Among the model-based approaches, energy
calculation is used to predict DDG (the difference in DG between the wild type
and mutant) resulting from amino acid substitutions, which helps to identify
thermostabilizing mutations.11 Several studies have successfully leveraged
well-established energy functions in models such as Rosetta,12 FoldX,13 and
ABACUS214 to design thermostable enzymes.15 However, thesemethods are still
limited by imbalanced parametrization of the energy functions and insufficient
sampling of conformational space.11

Recent advances inmachine learning (ML) present a promising avenue for so-
lutions. One particularly compelling approach involves training ML models on
experimental data that capture stability changes resulting frommutations, while
leveraging features that are known a priori to influence stability. These models
typically rely on carefully curated evolutionary features, such as BLOSUM6216

and probabilities derived from multiple sequence alignments (MSAs),17 as well
as structural features that include accessible surface area,18 predicted hydrogen
bonds,19 atomic charges,20 and energy terms from Rosetta/FoldX-modeled mu-
tation structures21 and other calculations.20,22
ll
In addition to feature engineering, various architectures have been
explored, including 3D convolutional neural networks (CNNs),21 graph neural
networks (GNNs),23 Bayesian neural networks,20 and Transformers.24 While
these supervised methods are attractive because they can directly learn
from experimental data and provide improved processing speed, they are
often constrained by the limited availability of experimentally measured
DDG training data and the biases that can be present in these datasets.25–28

Such challenges are common in biology due to the labor-intensive nature of
wet lab experiments.29

In contrast to supervised learning, which is restricted by the availability of
labeled data, self-supervised learning (SSL) can glean insights from vast
amounts of unlabeled data.30 A particularly prominent SSL strategy is masked
language modeling (MLM), which trains models to predict a masked or
substituted token based on its contextual surroundings.31 MLM has found wide-
spread application across protein sequences,32 MSAs,33 and protein struc-
tures,34 especially in predicting mutation fitness. For example, ESM-1v,35 which
was trained using MLM on 150 million sequences from the UniRef90 database,
achieved exceptional zero-shot fitness prediction results on 41 deep mutation
scanning datasets with an average Spearman’s rho of 0.509. Furthermore,
SSL approaches based on structure have been explored.
ProteinSolver was trained on both protein structure data and homologous se-

quences for protein design, and the probabilities assigned to individual residues
have demonstrated a correlation with the stability of mutants.36 In a similar vein,
ABACUS-R37 was developed using a high-quality subset of protein structure data
for de novoprotein design based on Transformer architecture and has shown su-
perior predictive correlation for mutant stability compared with ProteinSolver.
There have been concerted efforts to predict stability changes resulting frommu-
tations by employing SSL to enhance structural feature extraction. A pretrained
CNN that utilizes spherical convolutions was used to predict amino acid propen-
sities, with the log-likelihoods of bothwild-type andmutant sequences serving as
features for supervised DDG prediction through a neural network-based regres-
sor.38 Recent studies have reported improved prediction correlations compared
with earlier efforts by incorporating predicted labels generated through Rosetta
for data augmentation25 or leveraging larger datasets derived from high-
throughput experiments39,40 in combination with more advanced deep learning
models.41–44 These recent advancements yield promising results, further high-
lighting SSL’s potential in addressingmolecular fitness challenges, includingmu-
tation stability.
Drawing on the foundational principles of SSL and insights from previous

research, we have developed Pythia, a self-supervised model specifically de-
signed for predicting DDG of mutations based on protein structures. This model
is constructed to decode intrinsic patterns among residueswithin given proteins,
enabling precise predictions ofmutational effects. Pythia operates independently
of evolutionary information and manually crafted features derived from energy
functions, learning stability directly from the protein structures themselves. Its
evaluations against thousands of reliable experimental DDG datasets and a
recent mega-scale dataset, Pythia demonstrated superior prediction accuracy
compared with other self-supervised models and energy functions. Its perfor-
mance was comparable with, or even better than, that of supervised models
across various benchmarks, while boasting significantly faster prediction
throughput ranging from 700 to 100,000 mutations per second, depending on
the hardware used. By focusing on limonene epoxide hydrolase (LEH), we empir-
ically showcased Pythia’s capacity to identify a greater share of effective thermo-
stabilizing mutations. Moreover, we emphasized Pythia’s potential for extensive
exploration within the protein universe by calculating all single mutations in
the high-quality predicted structures available in the AlphaFold database,45
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 amounting to over 26million predicted protein structures. Pythia’s source code is

freely accessible at https://github.com/Wublab/pythia.

RESULTS
Model architecture and training of Pythia

Over the past few decades, numerousmethods have been developed to inves-
tigate the relationship between the free energy landscape and the internal struc-
ture of proteins. However, the accuracy of these approaches appears to be con-
strained by the approximations and assumptions inherent in themodels used. In
this context, we propose that the energy of a protein in its unfolded state is largely
unaffected by mutations,16 given that there are virtually no stable specific
interactions between the side chains of a protein when it is unfolded:
DDG � DGfolded

MUT � DGfolded
WT . According to the Boltzmann hypothesis of pro-

tein folding and energy, the probability of a rotamer is determined by the energy,
which is influenced by atomic interactions with neighboring residues. By sum-
ming the probabilities of all rotamers for a particular amino acid, we can derive
the probability of that amino acid and, subsequently, its free energy. From this
analysis, we can conclude that, for a specific position within a folded protein
structure, the free energy difference attributable to amino acid substitutions dic-
tates the relative probabilities of the various amino acids:

� ln
PAAj

PAAi

=
1

kBT
DDGAAi/AAj

DDGAAi/AAj is the difference in the folding free energy change of AAi to AAj,
PAAi is the probability of amino acid type i, kB is the Boltzmann constant, and T
is the temperature. The prediction of DDG can be achieved by estimating the
probabilities of each amino acid (represented as PAA) at a specific position within
a given structure. While stability has been found to correlate with the likelihood
derived from MSAs,39,40 this correlation is relatively weak. Moreover, the likeli-
hood is influenced not only by folding stability but also by various other factors,
including function, solubility, and aggregation.44 Since energy is determined by
the atomic interactions present in folded structures, we draw upon previous suc-
cesses of statistical potentials in protein structure assessment46 and de novo
design14 to suggest that the PAA can be better estimated from structure data
to gain a better prediction of DDG.

The energy of a protein is determined by the interactions among neighboring
residues, which led us to adopt a widely recognized GNN known for its effective-
ness in protein structure prediction47 and sequence design.48 A protein local
structure was transformed into a graph representation using a k-nearest
neighbor graph (Figure 1A). In this graph, each amino acid acts as a node and
is connected to its 32 nearest amino acids, determinedby the Euclidean distance
of the C-alpha atom. The features of each node include one-hot encoding for the
amino acid type, along with the backbone dihedral angles (f, j, and u) repre-
sented using sine and cosine functions. To maintain SE(3) invariance, we incor-
porated the distances between five backbone atoms—C-alpha, C, N, O, and
C-beta (when available)—in our edge encoding, with distance measured in
Ångström (Å). In addition, we introduced supplementary features such as the
relative positional encoding of amino acids in the sequence and chain identity en-
coding. The chain identity encoding assigned a binary value of 1 if two amino
acids belong to the same chain, or 0 if they do not (Figure 1B). The training objec-
tive was to predict the natural amino acid type of the central node using informa-
tion from the nodes and edges (Figure 1C).

Pythia employs the message-passing neural network (MPNN) architecture,49

specifically designed with an attention-based message-passing and readout
function (Figure 1D). By integrating attention mechanisms into the MPNN, this
approach, referred to as the attention message-passing layer (AMPL), allows
the model to focusmore effectively on substructures critical to the desired inter-
action properties during the learning process. In each layer of the AMPL, the ver-
tex representation is updated using an attention block, which is then concate-
nated with the edge representation to derive the message representation
(Figure 1E). This message representation subsequently serves as a query to
further refine the node representation through an additional attention block (Fig-
ure 1F). The final model consists of three AMPLs, each operating with a hidden
dimension of 128.

During the model training phase, we evaluated several hyperparameters,
including the masking ratio of the central nodes and the noise level of the back-
bone coordinates, as outlined in Table S1. The physical unit of noise is Å aligning
2 The Innovation 6(1): 100750, January 6, 2025
with the input distance features. To enhance robustness and generalizability, we
developed two distinct models. One model was trained on specifically defined
protein domains obtained from the CATH database,50 while the other was devel-
oped using a nonredundant protein structure dataset constructed in this study by
clustering high-resolution bioassemblies from the RCSB PDB database.51 The
final prediction of Pythia is computed using the averaged outputs from these
two models. We have launched a web server at https://pythia.wulab.xyz to facil-
itate predictions (Figure 1G).
Benchmark evaluation of Pythia in DDG prediction
Pythia was evaluated alongside a diverse array of pretrained protein models

and three widely used energy function methods on the S2648 dataset,52 which
is recognized as a standard training set for supervised MLmodels for predicting
DDG of mutations due to its high quality. In this assessment, Pythia achieved a
Spearman’s rho of 0.616 and Pearson’s r of 0.598 (Figure 2A), outperforming all
models tested across six critical performance metrics: Spearman’s rho, Pear-
son’s r, accuracy, F1-score, area under the receiver operating characteristic curve
(AUROC), and area under the precision-recall curve (AUPRC) (Figure 2B). Notably,
all structure-based pretrained models demonstrated higher correlation
compared with sequence-based and MSA-based pretrained models, with the
state-of-the-artmodel (ESM2-t3353) failing to exceed a correlation of 0.4. Further-
more, larger protein language models did not consistently outperform their
smaller counterparts, consistent with previous findings that suggest larger
models trained on more extensive datasets may estimate the density of
sequence data more effectively without necessarily improving fitness estima-
tions.54 This highlights the importance of incorporating structural information,
as it provides valuable insights into inter-residue interactions, making it a more
effective strategy for predicting the thermodynamic properties and mutation ef-
fects. Our findings reinforced our idea that probabilities derived from energy as-
sessments are more accurately determined from structural data rather than
sequence data. However, while structure-based models remain suboptimal
when compared with energy function-based methods, Pythia stands out as
the onlymodel to achieve a higher correlation. Pythia demonstrated an improved
ability to transfer its learning to the single mutation prediction task and, for the
first time, outperformed force field-based methods among pretrained models
in predictingDDG. Remarkably, Pythia accomplishes this with just 1.3 million pa-
rameters, which is one-third of the parameter count of the second smallest
model (Figure 2C).
We further explored the performance of Pythia in comparison with supervised

ML models. A direct comparison with ML-based predictors presents challenges
due to varying training datasets, whichmay lead to data leakage and biases.55 To
mitigate this issue, we utilized a dataset known as S669, which has not been
used in training any supervised ML models and shares sequence identities
of less than 25% with S2648 and the VariBench dataset.26 As shown in
Figures 2D and 2E, the prediction performances yield a Spearman’s rho ranging
from0.28 to 0.63 for supervisedMLmodels25,56–61 and0.28 to 0.59 for statistical
methods.62,63 Pythia outperformed all evaluated methods on the S669 dataset
across all metrics, achieving a Spearman’s rho of 0.66. One significant challenge
for supervisedDDGpredictors is their inability tomaintain the symmetrybetween
direct and inversed mutations.26 In contrast, Pythia does not depend on any
labeled DDG data during training. It addresses the symmetry issue, at least
partially, by utilizing a fixed protein backbone configuration, while still achieving
the highest Spearman’s rho in inverse predictions from remodeled structures
of mutants (Table S3).
In addition to its impressive prediction accuracy, Pythia offers a significant

advantage in computational speed. Force field-based methods often require
sampling of local side chain or even backbone structural conformation to achieve
more accurate predictions, but face constraints in computational speed, particu-
larly when handling proteins of large sequence length. Even with a fixed back-
bone, these methods can manage only about 10 mutations per minute. Among
them, FoldX, the highest-performing option, is particularly slow, averaging just 1
mutation per minute on a CPU core (E3-2678v3) due to its elaborate sampling
methodology, which necessitates multiple independent runs and subsequent
averaging. In comparison, when tasked with computing 380,741 mutations for
131 proteins in the S2648 dataset, Pythia completes the initialization and compu-
tations in merely 20 s on 24 CPU cores, achieving an approximate rate of 50,000
mutations perminute on a single core. This remarkable efficiency surpasses that
www.cell.com/the-innovation
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Figure 1. Overview of the Pythia model (A) Pythia processes a protein’s local structure as a k-NN graph of C-alpha atoms, abstracting it into an amino acid graph. (B) Node features
include amino acid type and three dihedral angles (f, c, u), while edge features consist of distances between main chain atoms, sequence positions, and chain information. (C)
Pythia’s training task is to predict the amino acid type of the central node. (D) The architecture of the Pythia model. The node and edge features independently traverse the embedding
layer and enter the attention-based message-passing neural network. The output is the probabilities of the 20 amino acids. (E) Breakdown of the architecture of attention message-
passing layer. Within this layer, the information of nodes is first updated using the attention block. The embeddings of edge (evw) are concatenated with the representation of nodes
(hʹvw) to getmvw. Subsequently,mvw and hʹvw go through the attention module, resulting in the updated huvw. (F) The structure of the attention block. (G) A visual snapshot of the Pythia
webapp interface.
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of alternativemethods by a factor ranging from 625 to 50,000 on the same hard-
ware (Figure 2F).

Evaluation of Pythia on a mega-scale dataset
Expanding the scope of our investigation, we applied predictive analytics

to a mega-scale dataset of approximately 1 million mutations across 600
proteins including natural, redesigned, and hallucinated domains.39 Perfor-
mance was evaluated on 177,315 mutations within 181 well-characterized
natural protein domains. The overall performancemetrics indicated a Spear-
man’s rho value of 0.602 and a Pearson’s correlation coefficient (r) of 0.633
ll
(Figure 3A), while the AUROC reached 0.83 (Figure 3B), and the AUPRC
reached 0.88 in predicting the stabilizing potential of a mutation (Figure 3C).
These results align closely with the performance metrics reported in S2648
and S669. Notably, of the 181 evaluated natural domains, 127 domains
(approximately 70%) exhibited a Spearman’s rho surpassing 0.6 (Figure 3D),
indicating a relatively robust correlation.64

This compelling observation prompted a more granular exploration of
domain-specific correlations. Unlike a holistic assessment across all point
mutations, analyzing the correlation values for individual domains provides
insights that are particularly beneficial for applications in protein engineering
The Innovation 6(1): 100750, January 6, 2025 3
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Figure 2. Evaluation of Pythia in predicting DDG compared with current state-of-the-art methods (A) The density scatterplot for Pythia’s predictions. (B) Parameters of the top 5
deep learning methods and their Spearman’s rho on S2648. (C) Inference speeds of the top 6 methods ranked by Spearman’s rho. (D) Comparisons of Pythia against pretrained
models and energy functions. The correlation of the predicted values with experimental DDG is indicated by Spearman’s rho and Pearson’s r, revealing the ranking and linear cor-
relation. The metrics for classification tasks (accuracy, F1 score, AUROC, and AUPRC) categorize the stabilizing factor (DDGfolding > 0) using the S2648 dataset. (E) Comparisons of
Pythia against nine supervised ML methods using the S669 dataset. (F) Comparisons of Pythia against four knowledge-based statistical methods using the S669 dataset. The top-
performing method is highlighted red, and the remaining methods are highlighted blue.
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D

E Figure 3. Validation of Pythia on the mega-scale da-
taset (A) Density scatterplot showcasing Pythia’s
predictions on the mega-scale dataset. (B) ROC curve
illustrating Pythia’s ability to classify stabilizing mu-
tations. (C) PR curve highlighting Pythia’s prediction
accuracy in classifying stabilizing mutations. (D) The
correlation between Pythia’s predictions and the
cDNA display proteolysis estimated DDG is repre-
sented by Spearman’s rho across all 181 domains.
The Spearman’s rho of prediction and measured
values higher than 0.6 is colored red, otherwise
colored blue. (E) Density scatterplot of Pythia’s pre-
dictions for the structural domain of SH3 domain of
DOCK180.
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and mutation prediction. Through this domain-specific analysis, we attained
a higher average Spearman’s rho of 0.620. A noteworthy case emerged from
our examination of the SH3 structural domain of DOCK180 inMus musculus
(PDB: 2M0Y), where the correlation between scores predicted by Pythia and
the DDG values derived from cDNA display proteolysis yielded a Spearman’s
rho of 0.644 (Figure 3E), positioning this result within the median range
across the 181 tested domains.

In addition, we probed the influence of both AlphaFold2 models and ESMFold
models on our predictions (Figure S3). The analysis revealed that models exhib-
iting higher predicted local distance difference test (pLDDT) scores are concom-
itantlymore likely to produce elevated Spearman’s rho values. Conversely, certain
models with erroneous predictions were identified as having low pLDDT scores,
accompanied by discrepancies between AlphaFold2 and ESMFold model out-
puts (Figures S4 and S5). Consistent with prior findings, our predictions gener-
ated from AlphaFold2 models either matched or surpassed those obtained
from experimentally determined structural data.65

Identification of stabilizing mutations for a LEH
Encouraged by the superior generalization in predicting DDG, we experimen-

tally verified Pythia’s predictions using the LEH from Rhodococcus erythropolis
DCL14. This enzyme has been used widely in organic chemistry and has under-
gone extensive protein engineering, allowing direct comparisons between
different strategies.66 Generally, the current computational enzyme stabilizing
process employs various predictors to nominate putative stabilizing mutations,
followed by wet lab characterization (Section S5). We selected mutations with
scores below �2 predicted by Pythia, prioritizing those with the lowest scores
when multiple mutations were possible at a given position. This process led to
35 single-point mutations; 31 mutants yielded soluble expression in Escherichia
ll The
coli, among which 17 mutations increased the
protein’s apparent melting temperature (Tm)
(Figures 4A and 4B). Hybrid strategies employ vi-
sual inspections ormolecular dynamic (MD) sim-
ulations to filter out unreasonable candidates
predicted by energy function methods such as
FoldX, thus improving the median DTm from
�1.80�C to �0.15�C. However, this requires a
high level of technical expertise and hinders the
widespread adoption of such a strategy. By com-
parison, Pythia improved the median DTm to
0.80�C of all expressed mutants without any
knowledge-basedmutation selection (Figure 4C).
Notably, the proportion ofmutationswith aTm in-
crease exceeding 1�C was significantly higher in
Pythia’s predictions compared with energy func-
tionmethods, evenwithMD filtration (Figure 4D).
Among these beneficialmutations, the P57Amu-
tation, which is typically regarded as destabilizing
in force field-based methods, exhibited the high-
est Tm increase of 8.8�C. Moreover, only 4 of the
17 beneficial mutations had been previously re-
ported, highlighting Pythia’s unique capability to
identify stabilizing mutations that conventional
methods may have overlooked. In light of this,
Pythia is a promising tool to enhance the advancement of hybrid strategies,
such as FireProt,67 FRESCO, and GRAPE,15 that integrate information from
diverse complementary approaches to provide more options for the subsequent
accumulation paths.

Structural interpretability of Pythia
Since Pythia employs an attention mechanism, we can leverage the atten-

tion scores learned by the model to explore whether it has effectively
captured the intricate interactions within proteins. We visualized the atten-
tion scores for functional residues in molecular graphs from two distinct cat-
egories (Figure 5). The first instance examines the p-p interactions involving
F52 and its neighboring residues within the GB1 domain (PDB: 1PGA).
Nearby F52, four aromatic amino acids—Y3, F30, W43, and Y45—have the
potential to form p-p interactions that stabilize the hydrophobic core of
the domain (Figure 5A). Notably, Pythia assigns higher attention scores to
these four amino acids along with the crucial F52, indicating the model’s
ability to recognize the significance of these interactions in comparison
with other neighboring residues (Figure 5B).
In our analysis of pre- and postmutation structures, we focused on

DuraPETase,15 a more stable plastic-degrading enzyme engineered from IsPE-
Tase. Previous studies have highlighted the synergistic effect of D186 along
with several stability-enhancing point mutations. We compared the attention
scores assigned with themutated residues surrounding D186with those of their
wild-type counterparts (Figure 5C). The results indicated that Pythia assigns
higher attention scores to the mutated interactions, suggesting that the model
is attuned to the structural implications of mutations and effectively captures
the consequential relationships between mutated residues and their environ-
ments (Figures 5D and 5E).
Innovation 6(1): 100750, January 6, 2025 5



A

B

C D Figure 4. Experimental validation of Pythia’s predic-
tions (A) The monomer structure of LEH is rendered in
cartoon form, with the C-alpha atom locations of mu-
tations shown as spheres. Stabilizing mutations are
represented with red spheres, while destabilizing mu-
tations are shown in yellow. The visualization of protein
structures was prepared using PyMOL. (B) The bar plot
represents the measured DTm of mutants character-
ized in this study (error bars represent standard devia-
tion, n = 3 technical replicates). Bars accentuated with
light blue dots present the stabilizing mutations, as
reported by Wijma et al.68 The Pearson’s r between our
measurement and the previous report is 0.895, and the
RMSE is 1.094. (C) A boxplot comparing three different
mutation prediction strategies. The central line within
each box represents the median values of DTm for that
strategy. The top and bottom boundaries of the box
represent the first and third quartiles, respectively. The
height of the box represents the interquartile range
(IQR). Data points outside of the 1.5 3 IQR range are
considered outliers and are plotted individually. (D) The
success ratio of characterized mutations versus
differentDTm cutoff values across three strategies. The
blue curve depicts results using only FoldX. The gray
curve represents the outcomes of energy function
calculations supplemented with further MD filtration
(EFC + MD simulations), corresponding to the FRESCO
strategy’s single-point mutation prediction component.
The red curve demonstrates results achieved using
only Pythia, in the absence of other selection criteria.

REPORT

w
w
w
.t
he

-in
no

va
tio

n.
or
g

DDG prediction at the protein universe scale
Several previous studies have established exemplary approaches for con-

ducting large-scale mutation analyses across proteomes, yielding valuable in-
sights into the potential of mutations that cause diseases,66 influence fitness,68

and predictDDG values.25We further examined the prediction speed of Pythia at
three different scales: (1) proteome scale, (2) annotated proteins, and (3) the pro-
tein universe. For the proteome-scale assessment, we utilized the proteome of
E. coli K-12 as a representative example (Figure 6A). Pythia efficiently predicted
all 25,189,782 mutations across 4,214 structures (with an averaged C-alpha
pLDDT > 70) in only 3 min using a single NVIDIA GeForce RTX 4090.

Next, we expanded our analysis to encompass all mutation predictions for the
134,276 structures in SwissProt with a pLDDT score above 95. Remarkably, this
extensive computational task was completed in approximately 2 h, scanning a
total of 770,105,473 mutations. Finally, we processed all possible mutations
for 26 million high-quality AlphaFold2 structures. Pythia completed the entire
computation in 3 days using a machine equipped with 8 NVIDIA GeForce RTX
4090 GPUs. This clearly demonstrates Pythia’s immense computational effi-
ciency for large-scale mutation prediction.
A

B

C

D E
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In our preliminary analysis of millions ofmutations derived from a uniform dis-
tribution, we observed that the average scores of amino acid substitutions corre-
lated with the substitution scores in the BLOSUM62 matrix (Figure 6B). These
findings align with previous research suggesting that stability plays a significant
role in protein evolution; however, factors such as function, solubility, and aggre-
gation also contribute to the evolutionary process.44,69,70

Moreover, we identified a significantly higher average mutation score in ther-
mophilic proteins compared with nonthermophilic proteins, with a p value of
0.0 from the Mann-Whitney U test (Figure 6C). Although this difference is mar-
ginal, it suggests that sourcing stabilizing mutations from a thermostable scaf-
fold may be more challenging, indicating a more constrained sequence space
for thermophilic proteins.
Drawing upon a comprehensive dataset of mutational variations, we under-

took an analysis into the role of residue type in influencing protein stability by
comparing thermophilic and nonthermophilic proteins. A clear pattern emerged
in the predicted mutations, indicating that smaller substituents (A or C) tend to
be generally favorable. Conversely, substitutions involving aromatic rings (F, Y,
and W) appear to be disadvantageous in thermophilic proteins (Figure 6D).
Figure 5. Interpretability of Pythia The attention
score can be interpreted as a measure of the impact
of amino acids in the environment on the central
amino acid distribution (A) The p–p interactions of
F52 with its neighboring residues in the GB1 domain
(PDB: 1PGA). Possible p-p interactions are high-
lighted with blue dashed lines. (B) In the k-NN graph of
the F52 in the GB1, the weights are assigned based
on the attention score in the final AMPL. Bigger dots
have higher attention with the central node. (C) A
comparison between IsPETase (PDB: 5XH3) with the
DuraPETase (PDB: 6KY5). IsPETase is green, and the
DuraPETase is white. The side chain of mutation po-
sitions and the central node D186 are shown in sticks,
and their C-alphas are displayed as spheres. (D)
The change in attention scores between mutated
residues surrounding D186 with their wild-type coun-
terparts. (E) The sum of total attention scores at the
five mutated positions and positions remains un-
changed. Protein structure visualizations were pre-
pared with PyMOL.
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Figure 6. Insights gained from large-scale mutagen-
esis predictions (A) Visualization of the protein space
with a t-SNE embedding of the E. coli K-12 proteome.
Blue dots represent proteins with averaged C-alpha
pLDDTs R 70, while red dots represent proteins
with averaged C-alpha pLDDTs < 70. (B) Scatterplot
comparing amino acid substitution scores of Pythia
and BLOSUM62. (C) Bar plot depicting the averages of
all mutations. Mutations in thermotolerant proteins
exhibit significantly higher Pythia scores (p = 0.0 in
Mann-Whitney U test) compared with mutations
in randomly sampled proteins (most likely non-
thermostable). (D) The comparison of energetic ef-
fects caused by substitution between proteins
derived from the mesophile and thermophile. Heat-
map illustrating energy differences caused by various
mutation types, with 380 mutation types color coded
based on their average energy difference.
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Utilizing the benefits of SSL, our investigation into large-scale protein mutations
revealed intricate details that are often overlooked in isolated protein mutation
studies.

DISCUSSION
The prediction of DDG following mutations plays a crucial role in eluci-

dating the effects of genetic variations on protein function and stability.
Due to the limited availability of labeled DDG data needed for deep
learning, we introduce Pythia, an efficient approach tailored for zero-shot
predictions that leverages the capabilities of SSL. Pythia’s architecture en-
ables the integration of both sequence and structural data, with a focus on
the interactions between residues. It has learned to infer how the spatial
arrangement of neighboring residues affects the probability of the central
masked residue being a specific amino acid, thereby improving the accu-
racy of stability predictions. In addition, its attention weights provide valu-
able biological insights (Section S6), making interaction patterns interpret-
able and improving the model’s explainability. The dual capability of
assessing the likelihoods of amino acids at the central residue and explain-
ing inter-residue interactions contributes to a deeper understanding of
genomic variation and its implications for protein functions.

Comparative assessments demonstrate that Pythia outperforms other self-
supervised pretraining models in correlating predictions with experimental
DDG values, achieving superior accuracywith the fewest parameters. In compar-
ison with conventional energy calculation methods, Pythia not only delivers a
modest improvement in prediction correlation but also boasts an extraordinary
computational speed increase of up to 105-fold. This remarkable efficiency
makes Pythia particularly well-suited for large-scale, high-throughput studies
across extensive protein datasets. Comprehensive in silico benchmarks and
in vivo experiments further validate Pythia as a robust and versatile tool for pro-
tein engineering.
ll
A recent advancement in the field of protein mutation prediction is the intro-
duction of the mega-scale dataset,40 which has not only deepened our under-
standing of protein stability but has also provided valuable data for model devel-
opment. Blaabjerg et al. evaluated Rasp25 on a curated subset of themega-scale
dataset containing 164,524 mutants across 164 protein domains and achieved
Pearson’s r of 0.62. This result is comparable with the Pearson’s r of 0.63 that
Pythia obtained with the same dataset. Very recently, some models used
mega-scale datasets for training and outperformed previous training methods
in terms of various benchmarks42,43 This vast amount of experimental data
can be used to fine-tune Pythia for better prediction of protein domains that
are currently underpredicted.
One notable limitation of Pythia is that the predicted values are not ex-

pressed in the physical unit of kcal/mol. This may restrict its application
in situations where a physical unit is essential. We have partially addressed
this limitation by calibrating the predictions with DDG using the S2648 dataset
(Section S3). Another constraint of Pythia is its dependence on predicted struc-
tures as the starting point. However, with 152 billion genetic variations pre-
dicted in this study, it appears feasible to integrate pretrained protein language
models with the probabilities generated by Pythia. Such integration could
enhance the accuracy and impartiality of sequence-based DDG prediction of
mutations.

MATERIALS AND METHODS
See supplemental information for details.

DATA AND CODE AVAILABILITY
The source code is available on GitHub (https://github.com/Wublab/Pythia.git) under the

Apache-2.0 license. The source code of the web server is available upon request at https://

pythia.wulab.xyz/. The ColabPythia is available at: https://colab.research.google.com/gist/

JinyuanSun/83ff4323ff751dc665f96381a02df18a/colabpythia.ipynb. The structures that
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 Pythia used to make predictions and the predicted results involved in the benchmark are

available along with the source code for both training and prediction at https://github.

com/Wublab/Pythia. Preprocessed data required to train the Pythia from scratch are also

included in the GitHub repository. The pdb_utils.py script in the GitHub repository can

convert untreatedPDBfiles to trainingdata. For large-scale analysis, all computedmutations

of the E. coli proteome, high-quality SwissProt structures, and thermophilic proteins used in

the analysis can be found at https://zenodo.org/records/8231999.
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