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Abstract: Soft robotic grippers are able to carry out many tasks that traditional rigid-bodied grippers
cannot perform but often have many limitations in terms of control and feedback. In this study, a Fin
Ray effect inspired soft robotic gripper is proposed with its whole body directly 3D printed using
soft material without the need of assembly. As a result, the soft gripper has a light weight, simple
structure, is enabled with high compliance and conformability, and is able to grasp objects with
arbitrary geometry. A force sensor is embedded in the inner side of the gripper, which allows the
contact force required to grip the object to be measured in order to guarantee successful grasping and
to provide the most suitable gripping force. In addition, it enables control and data monitoring of the
gripper’s operating state at all times. Characterization and grasping demonstration of the gripper
are given in the Experiment section. Results show that the gripper can be used in a wide range of
scenarios and applications, such as the service robot and food industry.

Keywords: soft robotic gripper; force feedback; 3D printing; compliant structure; Fin Ray effect

1. Introduction

With the continuous development of robotics, traditional rigid and bionic robotic
hands have been widely used in various fields [1], playing an important role in the mecha-
nization and automation of industrial production, freeing humans from repetitive labor [2].
However, conventional robotic hands usually consist of rigid parts and rigid joints, which
have low compliance and lack the ability to adapt to unstructured environments [3,4]. In
addition, many conventional gripper ends are made of rigid materials and are in rigid
contact with the object to be gripped, which requires that the object to be gripped is not
fragile and deformable, which greatly limits the versatility and flexibility of a robotic
gripper [5].

As society evolves, the requirements for robotic devices vary greatly from field to field,
including safety during human–machine interaction, degrees of freedom, flexibility, and
adaptability in unstructured environments [6], etc. For complicated grasping situations, a
high degree of freedom is often required for mechanical grippers, which increases the cost
of the structure and the control of such grippers [7]. As such, soft grippers made of flexible
materials are developed for manipulating fragile or irregularly shaped objects [8].

In the gripping of objects where changes in shape are readily encountered, such as
foodstuffs, irregular geometric objects, and biological tissues, high flexibility and adaptabil-
ity of the manipulation device are required. Conventional rigid-bodied robotic grippers
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would need a delicate mechanism design and a complicated control strategy to perform
these tasks [9]. The soft robotic grippers, on the other hand, will conform to the grasped
objects’ shape and do not cause damage to the surface benefited from the gripper body’s
inherent compliance [10,11].

The existing soft robotic grippers have two-fingered and three-fingered configurations.
In contrast to the two-fingered configuration, the three-fingered configuration will put
the object in a more balanced position and will have a larger contact surface area when
holding an object. Therefore, we chose to use three fingers in our gripper design, which are
equally distributed with the structure of the robotic fingers inspired by fish fins [12–15].
Taking use of the Fin Ray effect, the gripper can automatically wrap around the grasped
object regardless of its shape. In terms of the actuation principle, there are two main types.
In pneumatic or hydraulic, the soft robot gripper is built with hollow channels, and the
flow of the liquid or gas inside the channels makes the gripper move [16,17]. The second
actuation type is “smart material” such as shape memory alloy (SMA) [18,19], dielectric
elastomer actuators (DEAs) [20], ionic polymer¬–metal composites (IPMC) actuators [21],
etc., which deform in response to external stimuli to drive the robotic gripper. Actuation
with a pneumatic or hydraulic system usually brings larger volume and requires auxiliary
devices, such as an air compressor or a pump and valves, which make the whole robotic
system bulky and noisy.

In this study, we used 3D-printing technology to fabricate the whole soft robotic
gripper body in one piece, without the need for assembly of each finger, which greatly
reduces the number of components and complexity of the system. The soft robotic gripper
has a hollow structure in the middle with an upper plate connecting the three fingers.
By applying force to the center of the upper plate, the three fingers will bend rather
than having to drive each finger individually. This saves on the cost of the actuator and
reduces the overall size even further, making the gripper more compact. Figure 1 shows
the comparison between a commercially available Fin Ray effect inspired gripper (Three-
fingered Compliant Bionic Gripper, Wheeltec Intelligent Technology, Dongguan, China [22])
in Figure 1a and the soft gripper designed in this paper in Figure 1b.
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Figure 1. Comparison of a common commercially available Fin Ray effect inspired soft gripper with
the soft gripper proposed in this paper. (a) shows a common commercially available soft adaptive
gripper. (b) shows the soft gripper designed in this paper.
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In comparison, the soft gripper commonly found on the market that is shown in
Figure 1a has a complex mechanical structure, where each finger of the gripper needs to
be fixed and driven by a separate mechanical structure, making it geometrically heavier
than the gripper designed in this paper, and more complicated to fabricate and install,
increasing production and time costs. In contrast, the soft gripper proposed in this paper
that is shown in Figure 1b has one monolithic gripper body, 3D printed from soft material,
which requires no extra parts or fixing bases and is simple to equip. Table 1 illustrates
the differences between the proposed design of a flexible gripper and the commercially
available gripper in [22].

Table 1. Comparison between the proposed flexible gripper and a commercially available gripper based on the Fin Ray
effect.

Gripper Weight
(without Motor) Fabrication Force Feedback

The flexible gripper
proposed in this paper 68 g Fully 3D printed

without assembly With force feedback

Commercially available
gripper [22] 200 g 3D-printed parts assembled with

mechanical connections Without force feedback

For some fragile objects to be grasped, we want to be able to control the amount
of force applied by the robotic gripper and be able to observe and make adjustments in
time [23]. Juan et al. mounted a tactile sensor on Fin Ray effect inspired flexible adaptive
grippers and aimed for an object recognition task based on deep convolutional neural
networks [24]. Data acquisition electronics are indispensable, and a certain amount of
computing power is required to process the acquired data. In this study, we have integrated
a pressure sensor embedded in the inner side of the robotic finger to give feedback on the
force applied by the soft gripper, which we can observe in real time on a serial monitor.
The control side of the robot is connected to a Bluetooth module, allowing us to control the
soft robot in real time from a device with a Bluetooth transceiver. Highlights of this work
are as follows:

(1) A monolithic 3D-printed soft adaptive gripper based on Fin Ray effect is proposed
with ease of fabrication;

(2) A pressure sensor is integrated in the soft gripper to realize force feedback
during grasping;

(3) Experiments are conducted to characterize the gripper and to demonstrate the im-
proved grasping performance with force feedback.

The rest of this paper is organized in the following manner: Section 2 presents the
design principle of the proposed gripper. In Section 3, force feedback control strategy and
characterization of the gripper are given firstly, followed by the grasping experiments.
Lastly, Section 4 concludes the paper and discusses potential future work.

2. Design and Analysis

The whole part of the soft robotic gripper body is 3D printed in one piece, which makes
it easy and cost effective to produce the gripper. In this design, the body of the soft gripper
was 3D printed by a ZRapid Tech model iSLA 660 light-curing 3D printer using Formlabs
elastic resin material. The material has a modulus of elasticity of 0.8 kgf/mm2 and a
hardness of 40 Shore A. The model (a) and the actual gripper (b) are shown in Figure 2.
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Figure 2. Conceptual drawing of a 3D-printed Fin Ray effect inspired soft robotic gripper: (a) 3D
model; (b) real prototype.

The fish fin structure allows the robotic gripper to be more adaptive and relatively
stable when gripping objects, allowing it to cope with different objects with ease [25]. The
characteristics and advantages of the Fin Ray structure have been systematically investi-
gated in previous studies with structural modeling, calculations, and experiments [14,26].
Therefore, we have adopted the Fin Ray structure as well as the inner patterns. The fins are
distributed diagonally parallel to the fingers and are connected by an elastic structure. The
hollow structure between the fins, which can be flexibly altered by external forces, allows
the finger to fit more closely to the object when grasping it, improving the wrapping of the
object and providing protection. In this design, we set the initial tilt of the gripper fingers
at 30 degrees and the finger length at 50 mm. There are tiny raised triangular structures
evenly distributed on the inner side of the fingers, which can effectively increase the friction
between the fingers and the object being gripped, preventing accidents such as falling off
when gripping some smooth objects. The robotic gripper has three fingers distributed in a
circular sequence. Compared to the two-finger structure, the three-finger robotic gripper is
more stable and reliable and can be adapted to more scenarios.

For the actuation of the gripper, force applied to the center of the gripper base’s
upper plate will lead to bending movements of the gripper. When force is not applied, the
deformed fingers will resume their initial position due to the elasticity of the soft materials
that they are composed of. The external force is applied by a traction wire, which connects
the rotating fittings of the servo motor to the upper central part of the robotic gripper. The
servo motors can be of different types depending on the grasping scenarios. In our design,
one actuator can drive all three fingers, which saves both actuation cost and overall weight.
Changes in the point of application of force can indirectly change the movement of the
robotic gripper to cope with different objects.

In order to satisfy the needs of monitoring the contact force or making adjustments to
the force applied by the gripper under some conditions, a patch-type thin-film pressure
sensor, which is essentially a piezoresistive sensor, was built into the inside of the robotic
gripper’s finger (only one sensor was applied in this study). Like the gripper body, the
thin-film pressure sensor is also compliant and deformable, as shown in Figure 3a. It
was embedded in the finger using Smooth-On’s Ecoflex silicone, and the two can be
satisfactorily combined, as shown in Figure 3b. The sensor was 0.25 mm thick and can be
adequately fitted on the inside of the finger. The thin-film pressure sensor was connected to
a voltage conversion module to form a complete system to drive the entire robotic gripper,
as shown in Figure 4.
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On the back of the flexible gripper, there is a fixed bracket on which the actuation
system, such as the servo motor in Figure 4, is mounted. When the servo motor receives a
signal, it starts to perform the corresponding action to drive the pulling wire. Here, we
used a DS3225 servo motor from DSSERVO with a torque of 25 kg and a servo weight of
60 g. There is an overhead structure between the base of the gripper and the upper plate,
which, due to the wire pulling, causes the space between them to change so that the fingers
bend. The height of this overhead structure was 2.3 cm. The control section consisted of
a microcontroller and a Bluetooth controller; here, we used the HC-05 Bluetooth module
with a Bluetooth 4.0 interface. The microcontroller can be of different types and models
depending on the needs; here, we used the Arduino Uno as a sample core processor
and connected the Bluetooth module to a pressure sensor (Style No.: RP-L TDS REV C,
Shenzhen K-CUT Inc.). When the Arduino Uno receives the feedback signal, it processes
the signal and makes the corresponding action. The battery connected to the Arduino is
5 V and the battery connected to the servo is 8 V.

The flexible thin-film pressure sensor (Style No.: RP-L TDS REV C, Shenzhen K-CUT
Inc.) applied in this study consisted of a polyester film with good compliance and highly
conductive material as well as pressure sensitive material. When pressure is applied to
the sensing area, the lower disconnected layer conducts through the sensitive layer and
the output value of the port resistance varies according to the pressure. Because the state
of the robotic gripper changes with time when it is in operation, the sensor needs a short
response time if more accurate feedback is to be obtained. The activation time of the
thin-film pressure sensor is less than 0.01 s to roughly meet the application of the robotic
gripper in most scenarios, and its durability is long-lived. Before the sensor is put into use,
it has to be calibrated. Figure 5 shows the relationship between the change in the sensor’s
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resistance with applied pressure in a particular test environment. The red lines are actual
data while the black lines are fitted curves.
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3. Experiment

In the Experiment section, the force feedback system was relied upon to measure
contact force for various grasping tasks. Figure 6 presents the workflow diagram of the
proposed soft robotic gripper with force feedback. The system consists of the following
components: an Arduino Uno controller, a servo motor for pulling wire and actuating the
gripper, a power supply, a force sensor signal conversion module, and a Bluetooth module.
During operation, the serial port of the Arduino Uno was used to receive input from the PC
or the command sender and converted it into commands. When a given value is entered
from the PC or the command sender, the servo rotates according to the predetermined
expectation, the wire is pulled, shortening the distance between the upper and lower
plates of the gripper, and the fingers move accordingly. The pressure sensor detects the
contact force between the finger and the grasped object in real time. At each moment,
the servo acts according to the comparison result between the measured force value and
the predetermined value. If the measured force is smaller than the given value, then the
controller will make the servo pull the cable to increase the contact force. Conversely, the
servo will be controlled to release the cable in order to reduce the contact force. The servo
will stop, and the gripper will stabilize when the measured force is the same with the given
value, as shown in Figure 6.
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3.1. Characterization of the Gripper

To characterize the gripper, the relationship between the angular displacement of the
finger end θ (as shown in Figure 7) and the length of the pulling wire movement α need to
be investigated. In this experiment, marks were made at 1 mm intervals on the gripper’s
pulling wire, and the original state of the gripper was used as the origin to observe and
record the angular deflection of the end of the finger. The finger’s angular deflection
was recorded by a HD camera and the test result is presented in Figure 8. From the test
result, the angular deflection of the finger increased as the displacement of the pulling wire
increased. We conducted linear fitting of the measured data, and the linear fit formula is:

θ = 1.84α + 1.10 (1)
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Figure 7. Schematic diagram of the angular displacement of the finger end θ and the length of the
pulling wire movement. (a) shows the displacement schematic in the modeling and (b) shows the
physical drawing, where α is the change in displacement length of the pulling wire and θ is the
change in angular displacement of the end of the finger.

Next, the soft gripper’s force feedback system was investigated. The values of the
gripping force collected by the sensor were inputted to the Arduino Uno controller and
can be read through the serial monitor or external display at the current moment. The
relationship between the measured force values and the variation of the displacement of
the pulling wire was investigated in this experiment. A hollow cylinder 3D-printed using
ABS material was used as the gripped object with a weight of 200 g (diameter: 50 mm,
height: 70 mm), as shown in Figure 9.
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Figure 8. Changes in the state of the gripper during gripping with different degrees of deformation
as shown in (a–i). The finger end angle change was measured once for every 1 mm change in the
displacement of the pulling wire during the experiment, and a total of 18 numerical samples were
taken. (j) shows the degree of deformation of the end of the finger in relation to the change in the
displacement of the pulling wire.
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Figure 9. Force measurement when grasping an object. (a–i) are snapshots of grasping a 3D-printed
cylinder. (j) shows a graph of the relationship between the change in force during grasping of an
object and the change in displacement of the pulling wire.

From the experimental result in Figure 9, the gripper fits the cylinder profile and
reaches about 2.4 N gripping force when the pulling wire is displaced by 13 mm. Conse-
quently, the gripping force and finger deformation both tended to be smooth and did not
fluctuate excessively even though the servo motor continued to pull the wire.

3.2. Wrap-Around Grasping

In this test, the gripper end angular displacement and force feedback’s variation with
displacement of the pulling wire were tested for objects with different sizes and shapes.
For demonstration, common life objects, such as raw eggs, longans, dates, and tomatoes
were used as experimental samples for comparison and analysis, as shown in Figure 10.
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Figure 10. Examples of grasping objects (a–d). The graphs show examples of grasping postures of the
force feedback gripper in grasping raw eggs (a), longans (b), dates (c), and tomatoes (d). (e) shows a
graph of the variation in the degree of deformation of the pulling wire versus the end of the finger for
the four sample experiments (a–d). (f) shows the variation of the pulling line versus force feedback
for the four sample objects (a–d).

Through the above experiments, we observed that the force exerted by the gripper on
an object increased linearly at the beginning of the gripping process, and when the force
reached a specific value, its increase tended to slow down. Each object had a different
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specific value, which was related to its size and mass; the larger the size and mass, the
larger the specific value was. Moreover, the contact force pulling wire displacement curves
for the four grasped objects as shown in Figure 10f are obviously different with the largest
force measured during the gripping of a tomato. With the force–displacement curves
obtained, we estimated which object was grasped in a prescribed situation based on the
force feedback information. It was also observed that the angular displacement at the end
of the gripper varied by the size of the object. Of the four samples taken in the experiment,
the best shape adaptation and wrapping of the gripper was observed for the tomato.

3.3. Pinch Grasping

For some shapes, such as long, thin strips, wrapped-around gripping is not possible.
Using pinch gripping instead, the following experiment demonstrated the effectiveness
of this gripper when gripping such objects. For the food production industry, where the
production and packaging of food cannot be automated and where most food products
are prone to deformation or damage [27], the gripper would have potential application. In
this test, a biscuit was pinched with the contact areas located in the middle section of the
fingers, as shown in Figure 11a–i. The relationship among time, contact force, pulling wire
displacement, and the finger end angular deformation are given in Figure 11j.
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Figure 11. Examples (a–i) of a gripper grasping a biscuit. (j) shows a 3D scatter plot with color
mapping, with the Y-axis being the angular magnitude of the gripper finger deformation, the X-axis
being the length of the wire pulling displacement, the Z-axis being the change in time and the size of
the bubble representing the magnitude of the contact force.
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From the experimental result, the biscuit was not damaged and benefited from the
shape adaptation of the fingers’ Fin Ray structures, demonstrating its feasibility and safety.
The experiment also clearly showed that once the biscuit was sufficiently gripped, the
increase in contact force became smooth after a specific value, even if the servo motor
continued to pull the wire. Once this value was determined, it can be set to a given value for
force feedback control, as shown in Figure 6, so that the entire soft robotic gripper system
can work within this range for safe, reliable, and efficient food production application.
The gripper design is well suited for use in the food industry and has a gripping force of
around 0.1–3 N for small packaged foods and fruits.

3.4. Comparative Experiment

To demonstrate that the force feedback function improved the performance of grasp-
ing, a comparative experiment was conducted for the proposed gripper. In this experiment,
a soft and fragile cake with a mass of 30 g was grasped twice. In the first case, the force
feedback function was acting and the gripping force was set to 0.3 N. The gripping process
followed the logic of the flow chart in Figure 6, and the servo will stop pulling the wire
when the contact force achieves the given value such that the soft cake was not broken and,
thus, a safe grasp was performed as shown in Figure 12a. In the second case, all the other
test conditions were the same except the force feedback system was switched off during
the grasping. The servo was set free to pull the wire and the soft cake was easily broken
since the contact force information was unknown, as shown in Figure 12b. From this test,
we determined that adding force feedback improved the gripper’s grasping performance,
especially when grasping soft and fragile objects. Demonstrations of the gripper’s grasping
performance are given in Supplementary Video S1.
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4. Conclusion and Future Work

In this paper, a 3D-printed Fin Ray effect inspired soft robotic gripper with force
feedback function was presented. Using 3D-printing technology, the overall gripper
structure is lighter, easier to manufacture, less costly, and simpler to control than existing
soft grippers inspired by the Fin Ray effect. With the pressure sensor embedded, the
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gripper’s grasping status can be monitored in real time and the gripper can be controlled
to work according to predetermined expectations based on the force feedback.

When in contact with an object, the fish fin inspired finger structure can passively
adapt itself to fit the profile of the object. Thus, its inherent safety makes it suitable for
human interaction in a wide range of scientific research and service applications. The
soft material and elastic structure also compensate for excessive external forces and allow
objects to be grasped without damaging them, making it ideal for non-destructive gripping.
For grasping objects with various shapes in a production line, a single gripper can be
applied to adapt to different shapes without the need to change or reprogram the gripper,
thus saving time and cost. The gripper could also be integrated into intelligent assembly,
automatic sorting, logistics, warehousing, and food processing lines. Figure 13 presents a
possible application of the proposed gripper on a drone for delivery. Further improvements
to the gripper can be made in future work, for example, optimizing the size of the fingers,
adding more sensors to realize not only force feedback but also position feedback, etc., to
suit a wider range of applications.
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