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Abstract
The epidemiologic link between schizophrenia (SCZ) and type 2 diabetes (T2D) remains poorly understood. Here, we
investigate the presence and extent of a shared genetic background between SCZ and T2D using genome-wide
approaches. We performed a genome-wide association study (GWAS) and polygenic risk score analysis in a Greek
sample collection (GOMAP) comprising three patient groups: SCZ only (n= 924), T2D only (n= 822), comorbid SCZ
and T2D (n= 505); samples from two separate Greek cohorts were used as population-based controls (n= 1,125). We
used genome-wide summary statistics from two large-scale GWAS of SCZ and T2D from the PGC and DIAGRAM
consortia, respectively, to perform genetic overlap analyses, including a regional colocalisation test. We show for the
first time that patients with comorbid SCZ and T2D have a higher genetic predisposition to both disorders compared
to controls. We identify five genomic regions with evidence of colocalising SCZ and T2D signals, three of which
contain known loci for both diseases. We also observe a significant excess of shared association signals between SCZ
and T2D at nine out of ten investigated p value thresholds. Finally, we identify 29 genes associated with both T2D and
SCZ, several of which have been implicated in biological processes relevant to these disorders. Together our results
demonstrate that the observed comorbidity between SCZ and T2D is at least in part due to shared genetic
mechanisms.

Introduction
Schizophrenia (SCZ) patients are 1.5–2 times more

likely to develop type 2 diabetes (T2D) compared to the
general population1. Several explanations for this epide-
miologic link have been proposed, including environ-
mental factors, the use of antipsychotic medication, and/
or shared genetic aetiology1–4. For example, patients with
severe mental illness often lead a more sedentary life and
are more likely to smoke compared to the general

population4—both risk factors for T2D. Antipsychotic
drugs, particularly second generation antipsychotics, are
known to cause metabolic side effects and often lead to
significant weight gain5. Several studies have found an
association between psychotropic medication and T2D
risk6–8, but it is still unclear to what extent interactions
between different medications, life-style and inter-patient
variability affect this association4. It is conceivable that the
metabolic effects of antipsychotics are partly mediated by
genetic predisposition. So far, studies on the genetics of
antipsychotic response have been small (n < 400) and
unable to identify replicating associations9,10.
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In addition, there is evidence that the increased pre-
valence of T2D in patients with SCZ is not purely medi-
cation induced: Proteomic studies have revealed
perturbed expression of genes involved in glucose meta-
bolism in brain tissue and elevated insulin levels in per-
ipheral blood of first-episode SCZ patients compared to
controls11,12. More recently, a large study following over
2.5 million Danish individuals found that antipsychotic-
naïve SCZ patients were three times more likely to
develop T2D than the general population, with anti-
psychotic drug use further increasing that risk13. This,
along with findings from a systematic review and meta-
analysis14, suggests that impaired glucose homeostasis
may already be present in drug-naïve SCZ patients.
It is also plausible that the observed overlap between

SCZ and T2D is due to common susceptibility variants2.
Both diseases are highly polygenic, and genome-wide
association studies (GWAS) to date have successfully
identified a substantial number of risk loci for T2D15–18

and SCZ19–21. Functional analyses showed that risk var-
iants for SCZ are enriched for enhancers mapping to
pancreatic beta cells19, and that variants associated with
BMI – a key risk factor for T2D – predominately map to
central nervous system pathways22. Genetic research into
the shared pathobiology of SCZ and T2D has been limited
to date, and has mainly focused on patients with one of
the two disorders2. If SCZ without T2D comorbidity and
SCZ with T2D are partly underpinned by different genetic
aetiologies, such study designs will fail to identify risk
factors predisposing to the latter.
Here, we investigate the presence of shared genetic risk

factors for T2D and SCZ using genotype data from a
novel cohort comprising three patient groups (T2D only,
SCZ only, and comorbid SCZ and T2D), as well as sum-
mary data from large-scale disease-specific GWAS. First,
we conduct genome-wide comparisons between all three
patient groups, as well as population controls; next, we
assess the genetic overlap between the two disorders using
polygenic risk scores; finally, we use summary statistics
from published GWAS to search for genetic risk factors
shared between SCZ and T2D.

Methods
Data sets
The GOMAP (Genetic Overlap between Metabolic and

Psychiatric disorders) study comprises a collection of
2,747 DNA samples from four different patient categories:
T2D patients, SCZ patients, individuals with both SCZ
and T2D (referred to from here on as SCZplusT2D), and
individuals with a different psychiatric diagnosis (this last
group is not used in further analyses reported here) (Table
1). SCZ patients with and without T2D were recruited at
the Dromokaitio Psychiatric Hospital and Dafni Psychia-
tric Hospital in Athens. SCZ diagnosis was determined by
structured clinical interview of the Diagnostic and Sta-
tistical Manual of Mental Disorders 4th edition (DSM-
IV)23. T2D participants were recruited from diabetes
outpatient clinics at Hippokrateio General Hospital and
Laiko General Hospital. T2D status was assessed in all
participants based on criteria outlined by the American
Diabetes Association24. All participants gave written
informed consent.

Quality control
A total of 2,474 samples and 538,448 markers were

successfully genotyped on the Illumina HumanCoreEx-
ome 12v1.0 BeadChip (Illumina, San Diego, CA, USA) at
the Wellcome Trust Sanger Institute, Hinxton, UK.
Quality control (QC) of genotype data was performed
following a standard protocol25 using the PLINK26 soft-
ware package. Individuals were removed if they had a call
rate below 90%, discordant values for genotyped and
reported sex or had heterozygosity rates deviating more
than three standard deviations from the mean. For
duplicates and related sample pairs (pi_hat > 0.2), we
excluded one and retained the other.
In order to identify potential ethnic outliers, we per-

formed multidimensional scaling (MDS) on a merged
dataset comprising GOMAP and three other Greek
sample collections: TEENAGE27, a collection of adoles-
cents from the general Greek population, HELIC-
POMAK25 and HELIC-MANOLIS28, two Greek isolated
population cohorts. We removed seven individuals from
GOMAP as outliers based on the first and second MDS
components (Supplementary Figure 1).
A total of 2,582 samples passed QC (Supplementary

Table 1; samples size of each diagnostic category: SCZ, n
= 924; T2D, n= 822; T2D/SCZ, n= 505; other diagnosis,
n= 331).
After removal of individuals failing QC, variants were

filtered for call rates lower than 98%, a Hardy-Weinberg
Equilibrium deviation p value < 1 × 10–4 and cluster
separation scores below 0.4. In addition, we removed X-
chromosomal markers not within the pseudo-autosomal
region with heterozygous haploid genotypes in males. A

Table 1 Sample numbers in the three phenotype groups
in GOMAP before and after QC

Sample group Pre-QC Post-QC

SCZ 977 924

T2D 885 822

SCZplusT2D 542 505

Other 343 331

Total 2747 2582
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total of 524,271 autosomal and X-chromosomal markers
passed QC (Supplementary Table 2).
Since GOMAP is a cases-only sample collection, we

selected two independent Greek cohorts, TEENAGE29 (n
= 413) and ARGO (n= 712), as control data sets. ARGO
comprises osteoarthritis cases and healthy controls from
Larisa, Greece. Samples from all three cohorts formed a
cluster in MDS analysis (Supplementary Figure 2).

Imputation
Following QC we merged GOMAP with 413 samples

from TEENAGE27 and 712 from ARGO, an in-house
Greek sample collection. We performed pre-phasing of
the merged dataset in SHAPEIT30 and imputed the
phased haplotypes with IMPUTE231 using a combined
reference panel consisting of UK10K32, 1000 Genomes33

and HELIC-MANOLIS28. We filtered imputed genotypes
for Hardy-Weinberg equilibrium deviation (p value < 1 ×
10-4), IMPUTE2 info scores < 0.4, and a minor allele fre-
quency (MAF) > 1%. A total of 14,528,340 markers passed
imputation QC.

GWAS
We carried out a GWAS for each case-case and case-

control combination in GOMAP using the ‘method
--expected’ option, which performs an additive associa-
tion test, adjusting for the first ten MDS components
using SNPTEST version 2.534.

Genetic risk scores
We constructed polygenic risk scores for T2D and SCZ

in GOMAP based on effect size estimates from the
DIAGRAM and PGC consortium, respectively. The risk
score analyses are divided into two stages: first, we con-
structed using only established risk variants for each
diseases; next, we relaxed our inclusion criteria incre-
mentally by using all variants falling below a given p value
threshold.

Established risk variants
For SCZ, we obtained odds ratios (ORs) of 125 auto-

somal risk variants from the psychiatric genomics con-
sortium (PGC)19 (Supplementary Table 3). We excluded
three X-chromosomal markers of the original 128 inde-
pendent variants identified by Ripke et al19. as calculating
scores for non-autosomal alleles is not straightforward.
We used 73 variants identified in a trans-ethnic meta-

analysis15 for the T2D risk score. In order to match the
ancestry of the base data as closely to GOMAP as possi-
ble, we looked up summary statistics of all independent
variants (76 in total) identified in the trans-ethnic study15

in the DIAGRAMv3 stage 1 meta-
analysis17(Supplementary Tables 4) based on samples of

European descent. Three of the 76 variants were not
present in the DIAGRAMv3 data and therefore excluded.
We used PRSice version 1.2535 to calculate the risk

scores in GOMAP and test for an association between
scores and phenotype. Briefly, for each variant the number
of risk alleles in the target data (GOMAP) is multiplied by
the log(OR) from the base data (DIAGRAM or PGC). The
total score for an individual is the average score across all
SNPs in the set. Following the approach described by
Purcell et al.36, two logistic regression models are used to
obtain the variance in phenotype explained (Nagelkerke’s
pseudo R2):
Full model:
Phenotype ~ Score+C1+C2+C3+C4+C5+C6+

C7+C8+C9+C10
Null model:
Phenotype ~ C1+C2+C3+C4+C5+C6+C7+

C8+C9+C10
In the full model, phenotypes are regressed on risk

scores adjusting for the first ten multi-dimensional scaling
(MDS) components; in the null model, phenotypes are
regressed on MDS components only. Most, but not all
studies contributing to the DIAGRAMv3 meta-analysis
adjusted for sex; conversely, sex was not adjusted for in
the individual GWAS included in the PGC-SCZ meta-
analysis. We therefore decided not to add sex as a cov-
ariate in our risk score model. The final pseudo R2 esti-
mate is obtained by:

R2
final ¼ R2

full � R2
null

A p value for association of score with phenotype was
obtained from the full model. Risk score analysis was
carried out in each pairwise comparison between the
three disease groups and controls in GOMAP.

To assess whether the sample size difference between
the single-disease and comorbid group in GOMAP affects
the strength of the risk scores, we randomly down-
sampled the SCZ-only and T2D-only group to 500 indi-
viduals each and performed risk score analyses with this
reduced set. We repeated this process 5,000 times and
computed average pseudo R2 and p values.

Genome-wide risk scores
In addition to calculating risk scores based on estab-

lished genome-wide significant risk variants, we per-
formed polygenic scoring as implemented in PRSice35, a
pipeline automating data preparation in PLINK26 and risk
score regression in R. First, P value informed linkage
disequilibrium (LD) clumping was performed on the
intersection of variants between the base summary sta-
tistics (DIAGRAM17 and PGC19) and target data
(GOMAP), using an r2 threshold of 0.1 and a window size
of 250 kb. Next, alleles are matched between the base and
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target data and ambiguous variants are removed to pro-
duce a final list of clumped variants used for the risk
scores. Score calculations and regression analyses are
conducted following the same procedure as outlined for
the established risk variants. We performed risk score
analyses at ten cumulative p value thresholds: p < 5 ×
10−8, p < 0.001, p < 0.005, p < 0.05, p < 0.1, p < 0.2, p < 0.3,
p < 0.4, p < 0.5, p < 1; all variants below a given threshold
in the base data were included in the score.

Summary statistics-based overlap analyses
We obtained genome-wide summary data for T2D from

the DIAGRAMv3 meta-analysis17, and for SCZ from the
Psychiatric Genomics Consortium (PGC) meta-analysis19.
To assess the genetic overlap between the two data sets,
we performed three complementary analyses, which have
been described previously37 and are briefly outlined
below.

LD score regression
LD score regression relies on the assumption that var-

iants in strong LD with a causal variant will have a higher
association statistic than variants in low LD. When
comparing the effect estimates of two GWAS, LD score
regression can be used to compute the overall (i.e. gen-
ome-wide) correlation between them.
We performed LD-score regression38 on the DIA-

GRAMv317 and PGC19 summary statistics, using LD
scores computed on the 1000 Genomes European
sample39.

Regional colocalisation test
We performed a Bayesian colocalisation analysis40 to

test for the presence of association signals in distinct
blocks across the genome. At each region the model uses
Z-scores and standard errors from two association studies
to generate posterior probabilities for each of five
hypotheses:

Hypothesis 0: No causal variants

Hypothesis 1: One causal variant for disease 1.

Hypothesis 2: One causal variant for disease 2.

Hypothesis 3: One causal variant for disease 1 and 2.

Hypothesis 4: One causal variant each for disease 1 and
2.

Splitting the genome into uniform segments without
accounting for LD structure can result in the double-
counting of signals if segment boundaries happen to fall
within an associated region. We downloaded LD-blocks

pre-computed using the LDetect algorithm41 and the
European sample of the 1000 Genomes Phase 1 data33

(https://bitbucket.org/nygcresearch/ldetect-data). The
output of the test includes posterior probability estimates,
as well as the highest absolute Z-score for each phenotype
in a given region. We followed up regions with a high
(≥0.9) posterior probability for either hypothesis 3 or 4 by
taking the variants corresponding to the highest absolute
Z-scores in DIAGRAMv3 and PGC-SCZ and querying
their function and closest protein coding genes using the
Ensembl REST API42.

Extent of shared signals
To assess the extent of association signals common

between DIAGRAMv3 and PGC-SCZ, we took all variants
present in both data sets and performed p value informed
LD pruning (r2 > 0.1) to obtain an independent set. We
constructed 2 × 2 contingency tables of overlapping var-
iants at ten cumulative p value thresholds (Pt) by counting
how many variants fell above and below each Pt in DIA-
GRAMv3 and PGC-SCZ. We then tested for an excess of
shared signals at each Pt by applying a χ2 test, which gives
an overlap p value. Empirical overlap p values were
obtained by randomly permuting the GWAS p values in
each data set 1,000,000 times and repeating the test on
each permuted set.

Gene and pathway analysis
We used MAGMA43 to perform gene and pathway

analyses on the DIAGRAMv3 and PGC summary statis-
tics separately. We annotated variants in each dataset to
genes according to dbSNP version 135 coordinates and
NCBI 37.3 gene definitions. We allowed for a 20 kilobase
(kb) window around the transcription start and stop sites
to also include proximal regulatory elements. We com-
bined the results of the gene-level analysis into biological
pathways using gene-set definitions from two compre-
hensive databases: the Molecular Signatures Database
canonical pathways collection44, comprising 1,329
manually curated gene-sets, and the Gene Ontology
pathway database45, comprising 6,166 automatically
annotated gene-sets. Significance was defined as a false
discovery rate (FDR) corrected p value (q value) < 0.05.

Results
GWAS
We performed six case-case and case-control genome-

wide association studies in GOMAP and population
controls (Supplementary Figures 6-9). There was no
indication of inflation of test statistics, with lambda values
ranging from 0.99 to 1.04 (Supplementary Figures 8-9).
We identified two genome-wide significant signals in

the SCZplusT2D vs controls analysis (Table 2; Supple-
mentary Figure 6c). The most strongly associated variant
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resides within an intron of the PACRG gene
(chr6:163319442_G/A, effect allele (EA) G, effect allele
frequency (EAF) 0.91, OR 3.81 [95% CI: 3.32–4.29], p
value= 5.46 × 10−9). The second signal is located in an
intron of RP11-587H10.2 on chromosome 8 (rs1449245,
EA A, EAF 0.79, OR 1.96 [95% CI 1.77–2.20], p value=
2.58 × 10−8).
Three further signals reached genome-wide significance

in other analyses (Table 2): an intronic single nucleotide
polymorphism (SNP) in TCF7L2 (rs7903146, EA T, EAF
0.38), a well-established T2D risk gene17, in the T2D vs
controls (OR 1.66 [95% CI 1.50-1.80], p value= 3.31 ×
10−11) and T2D vs. SCZ analyses (OR 1.53 [95% CI:
1.39–1.67], p value= 1.09 × 10−9); an intronic SNP in
BMPR1B (rs17616243, EA T EAF 0.16, OR: 2.03 [95% CI:
1.79–2.27], p value= 3.26 × 10−9) in the SCZ vs. controls
GWAS; and an intronic SNP in PCSK6 in the T2D vs
controls GWAS (rs6598475, EA T, EAF 0.36, OR: 1.56
[95% CI: 1.40–1.72], p value= 1.95 × 10−8). (Table 3)

Genetic risk scores
We performed genetic risk score analyses of SCZ and

T2D for each pairwise case-case and case-control com-
bination in GOMAP (Fig. 1). In the case-control analyses,
risk scores for SCZ and T2D were significantly associated
with these respective disorders (SCZ R2= 1.7%, p value=
5.25 × 10−9; T2D R2= 6.8%, p value= 6.12 × 10−27), ser-
ving as a positive control for the validity of the included
variants and patient groups. Conversely, risk scores for
one disorder were not associated with the other in the
case-control comparisons. In the comorbid sample both
SCZ and T2D risk scores were significantly associated
with phenotype (SCZ risk score p value= 7.17 × 10−5;
T2D risk score p value= 4.14 × 10−4), with R2 values
lower than those in the single-disease groups (SCZ risk
score R2= 1%; T2D R2= 0.8%).
In the comparison between T2D and SCZ cases, risk

scores for T2D explained 9.3% of variance (p value=
8.04 × 10−28) and risk scores for SCZ explained 3.4% of
variance (p value= 8.06 × 10−12). These R2 values may be
higher than in the case-control analyses due to the fact
that controls are population based and not ascertained for
either SCZ or T2D status; it is therefore plausible that a
subset of controls carries risk alleles for these disorders. In
the comparison of individuals with SCZ to those with SCZ
and T2D, SCZ risk scores and their R2 values were not
significantly associated with disease. This is expected, as
both sample groups are likely to be enriched for SCZ risk
alleles. Interestingly, the R2 estimate of the T2D variant
risk scores in the T2D vs. SCZplusT2D analysis was
intermediate in magnitude to that measured in the SCZ
vs. SCZplusT2D and the SCZ vs T2D analyses. This can
be recapitulated by examining the average T2D scores
across the different sample groups (Fig. 2): the average
score of the SCZplusT2D sample is higher than for the
SCZ-only sample but lower than for the T2D-only sample,
indicating that the comorbid group is enriched for T2D
risk alleles compared to the SCZ-only group.
To determine whether the observed strength of asso-

ciation of the risk scores was influenced by the difference

Table 2 Top variant of genome-wide significant signals in the GOMAP GWAS analyses

Variant GWAS EA NEA EAF OR (95% CI) Info P value

chr6:163319442 SCZplusT2D vs Controls G A 0.91 3.81 (3.32–4.29) 0.56 5.46E-09

rs1449245 SCZplusT2D vs Controls A G 0.79 1.96 (1.71–2.2) 0.85 2.58E-08

rs7903146 T2D vs Controls T C 0.38 1.66 (1.5–1.81) 1.00 3.31E-11

rs7903146 T2D vs SCZ C T 0.61 1.53 (1.39–1.67) 1.00 1.09E-09

rs17616243 SCZ vs Controls T C 0.16 2.03 (1.79–2.27) 0.72 3.26E-09

rs6598475 T2D vs Controls T G 0.36 1.56 (1.4–1.72) 0.93 1.95E-08

EA effect allele, NEA non-effect allele, EAF effect allele frequency, OR odd ratio, CI confidence interval

Table 3 Overlap analysis between DIAGRAM and PGC
summary statistics

Pt value Variants χ2 P value Pperm value

0.5 58504 1.4 2.30E-01 2.32E-01

0.1 6247 39.7 3.00E-10 0.00E+ 00

0.05 2324 40.9 1.60E-10 0.00E+ 00

0.04 1749 53.5 2.50E-13 0.00E+ 00

0.03 1180 49 2.50E-12 0.00E+ 00

0.02 658 32.4 1.30E-08 0.00E+ 00

0.01 287 41.4 1.30E-10 0.00E+ 00

0.005 125 37.7 8.10E-10 0.00E+ 00

0.001 19 14.2 1.70E-04 8.30E-04

5.00E-04 10 13.8 2.00E-04 2.00E-03

For each p value threshold (Pt) the number of independent variants overlapping
at this threshold is given, along with the resulting chi-squared statistic (χ2), p
value (P) and empirical p value obtained by permutations (Pperm).
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in sample size among the single-disease and comorbid
groups, we repeated the risk score analyses with equally-
sized (n= 500), randomly down-sampled T2D- and SCZ-
only cases. Risk scores significantly associated with phe-
notype using the full data set remained significant even
with the decreased sample size (p < 0.05) (Supplementary
Figure 3).

It has been shown that the inclusion of variants not
reaching genome-wide significance can enhance the
power of genetic risk scores36. We constructed polygenic
scores at ten cumulative p value thresholds using the same
base data sets (DIAGRAMv3 and PGC-SCZ) as for the
established variant scores. For the SCZ scores, the most
stringent threshold (p < 5 × 10-8) resulted in lower levels

Fig. 1 Genetic risk scores of established risk variants for SCZ and T2D in GOMAP. For each analysis Nagelkerke’s pseudo R2 values are plotted
and p values for association between score and phenotype are denoted above each bar

Fig. 2 Mean and 95% confidence intervals of standardised risk scores for established SCZ and T2D loci in each sample group in GOMAP.
Risk scores were constructed based on the effect sizes of 73 and 125 variants from DIAGRAMv3 and PGC-SCZ, respectively.
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of association and pseudo-R2 estimates than the estab-
lished variant score, due to the fact that some of the
variants included in the latter had p > 5 × 10-8 in the PGC-
SCZ discovery data, which was used here, and were
therefore excluded. At more permissive p value thresholds
the strength of association increased by several orders of
magnitude compared to the established variant scores for
all but the SCZ vs SCZplusT2D and T2D vs Controls
analyses (Supplementary Figure 4). While pseudo-R2 also
increased at the first increments variant inclusion, they
plateaued or even decreased slightly for thresholds with p
> 0.005. While more relaxed thresholds will include more
variants with true effects, they will inevitably also add
more null variants contributing to noise.
Unlike the SCZ score, T2D scores demonstrated

decreasing levels of association as more variants were
included in the risk score (Supplementary Figure 5). This
can be explained by the fact that only 21 of the 73 variants
used for the established loci score were retained after LD
clumping, again due to their strength of association in the
DIAGRAMv3 discovery data. In total, only 15 variants
were included at the most stringent p value threshold,
whereas over 1,000 were used at p < 0.001. As a result, the
‘signal-to-noise’ ratio will have increased drastically,
explaining the sharp drop in pseudo-R2 values.

Summary statistics-based overlap analyses
We investigated the genetic overlap between summary

data from the DIAGRAMv3 meta-analysis for T2D17 and
the PGC meta-analysis for SCZ19 using both genome-
wide and regional approaches.

LD score regression
There was no significant correlation between these data

sets on a genome-wide scale (r2=−0.01, SE= 0.04, p
value= 0.82; Supplementary Methods), as previously
reported elsewhere38.

Colocalisation analysis
We employed a Bayesian colocalisation analysis to

search for genomic regions that potentially exert pleio-
tropic effects. For each region, the method returns pos-
terior probabilities for the five tested hypotheses, as well
as the maximum absolute Z-scores found in each of the
two input data sets; in some cases, there is more than one
variant with the same Z-score (i.e. effect estimate) in a
region.
There were no regions with a high posterior probability

(>0.9) of containing one causal variant common to both
diseases. However, five regions had a high posterior
probability of harbouring two distinct causal variants
(Supplementary Table 3).
The first of these regions is located on chromosome 2

and includes nominally significant SCZ variant (top

variant in PGC: rs10189857, p= 5.14 × 10−7)19 in an
intron of BCL11A, and a T2D risk locus upstream of the
same gene (top variant in DIAGRAMv3: rs243021, p=
3 × 10−15)46.
The second region falls within the major histocompat-

ibility complex on chromosome 6, which is known to
harbour several SCZ and T2D loci17,19. There were three
variants with the same effect size for T2D, one of which
lies in an intron of SLC44A (rs9267658, OR 0.89, 95% CI
0.85-0.94, p= 2.2 × 10-5). The strongest SCZ signal
occurred at rs3117574 (OR 0.85, 95% CI 0.82-0.89, p=
6.71 × 10−19), a variant in the 5’ untranslated region of
MSH5, a protein involved in meiotic recombination and
DNA mismatch repair.
The third region resides on chromosome 7, harbouring

both a known T2D locus downstream of KLF14 (top
variant in DIAGRAMv3: rs10954284, p= 1.20 × 10−8) and
a known SCZ variant at rs7801375 (PGC p= 2.26 ×
10−8)19.
The fourth region, identified on chromosome 8, does

not contain any known T2D or SCZ associated variants.
The strongest signals in that region occur at rs11993663
for SCZ (PGC p= 1.46 × 10−7) and rs17150816 for T2D
(DIAGRAMv3 p= 1.60 × 10−5).
Finally, a region identified on chromosome 15 encom-

passes a known SCZ locus in the VPS13C gene (top var-
iant in PGC: rs12903146, p= 3.00 × 10−10), as well as the
C2CD4A-C2CD4B locus, which has been associated with
T2D in East Asian populations and also replicated in
Europeans (top variant in DIAGRAMv3: rs8026735, p=
2.50 × 10−7)47.

Extent of shared signals
We assessed the extent of shared association signals

between DIAGRAMv3 and PGC-SCZ at ten different p-
value thresholds (Pt) and found significant evidence for
overlap (pperm < 0.05) at all but one Pt (Table 2). Of the 19
variants overlapping at Pt= 0.001, five are located in
known T2D loci, and four within known SCZ loci. One of
the variants identified at this Pt, rs6488868, is a synon-
ymous SNP in SBNO1, and in partial LD with both a
known T2D (rs1727313, r2= 0.53) and a known SCZ
(rs2851447, r2= 0.45) risk variant. The two risk variants
lie in the 3’UTR and in an intron of MPHOSPH9,
respectively, and are also in LD with each other (r2=
0.79). Other variants fall within or around several genes
previously linked to SCZ or T2D, such as CACNA1, HLA-
B, PROX1 and BCL11A17,19 (Supplementary Table 4).

Gene and pathway analysis
We tested for enrichment of association signals in genes

and pathways in the DIAGRAM and PGC summary sta-
tistics. We did not identify any pathways that were sig-
nificantly associated (q value < 0.05) with both SCZ and
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T2D. In the gene-level analysis, 29 genes had a q value <
0.05 in both data sets (Supplementary Table 5). Ten of the
genes have been previously associated with SCZ and/or
T2D. Of note, variants in or in close proximity to
ZFAND6, PROX1, and HLA-B were also found to overlap
at Pt= 0.001. SLC44A4, which is strongly associated with
SCZ (q value= 4.73 × 10−11), falls within the region on
chromosome 6 identified in the colocalisation analysis.

Discussion
We investigated the genetic overlap between SCZ and

T2D, using summary statistics from large-scale meta-
analyses and genome-wide genotype data from a dedi-
cated collection of individuals with SCZ, T2D or both
disorders. The work presented here benefits from clini-
cally ascertained diagnoses and robust base data sets used
to construct the risk scores. Due to the limited sample size
and, consequently, low power to detect genetic associa-
tions in GOMAP, we did not expect to identify novel
genome-wide significant loci, but rather to harness the
comorbid patient group for risk score analyses. The two
genome-wide significant signals identified in the
SCZplusT2D vs controls GWAS map to introns of
PACRG and RP11-587H10.2. PACRG has been associated
with the risk of leprosy48, while RP11-587H10.2, a long
non-coding RNA, is of unknown function. Replication of
these signals in independent data sets is required to
establish or refute them as novel associations.
Our main finding arises from the risk score analyses,

which demonstrated that the SCZplusT2D sample is
enriched for both SCZ and T2D risk alleles compared to
controls, in line with the increased prevalence of T2D
among schizophrenia patients being at least partly due to
genetic predisposition2,3. Patients suffering from both
diseases had SCZ risk scores comparable to the SCZ-only
group but fell between the SCZ-only and T2D-only
groups for T2D risk scores. This implies that patients with
comorbid SCZ and T2D carry almost the same SCZ risk
allele profile as SCZ patients without T2D but have fewer
of risk-increasing variants for T2D than T2D patients
without comorbid SCZ. Two conclusions might be drawn
from this: first, at least part of the risk for T2D in SCZ
patients is driven by genetic predisposition to T2D, rather
than antipsychotic use alone; and second, the comorbid
group appear to have a less strong T2D genetic risk profile
compared to T2D-only patients. This is in line with
environmental factors, including response to anti-
psychotic treatment and sedentary lifestyle, contributing
to T2D risk. Such factors might exacerbate an otherwise
moderate genetic predisposition to T2D.
To our knowledge, three other studies have to date

compared risk scores for T2D and SCZ36,49,50. Purcell
et al. first performed SCZ risk scores analysis in a T2D
sample but did not identify a significant correlation

between scores and phenotype36, potentially due to the
relatively low sample sizes available at the time (~3300
cases for SCZ; ~1900 cases for T2D). More recently, a
study investigating the genetic liability to SCZ in immune-
related disorders found a weak association between SCZ
risk scores and T2D50. The investigators used an earlier
release of the PGC-SCZ summary data20 with lower
sample numbers than currently available. One study has
previously reported an association between T2D risk
scores based on DIAGRAM summary statistics and self-
reported diabetes (any type) in individuals with psychosis,
but did not detect an association when repeating the
analysis for SCZ risk scores52.
The SNP-based overlap analysis highlighted one region

where a known T2D and a known SCZ signal map to the
same locus in the MPHOSPH9 gene15,19, which encodes a
phosphoprotein highly expressed in the cerebellum. This
gene has been previously associated with multiple
sclerosis;51 however, its function is not well understood.
We also identify PROX1 as a potentially pleiotropic locus
based on the gene analysis and the SNP-based overlap
test. PROX1 has been previously implicated in each of
T2D and SCZ, and acts both as a transcriptional activator
and repressor depending on the cellular context. It has
been implicated in murine beta-cell development52, as
well as in neurogenesis in humans53. One possible
explanation for the cross-phenotype associations of these
loci might be that they influence T2D and SCZ by acting
in different biological pathways. However, follow-up in
functional (e.g. expression or proteomic) data is needed in
order to evaluate this hypothesis.
In this study, we have shown that genetic predisposition

to SCZ and genetic predisposition to T2D are both
associated with comorbidity. Future studies with larger
sample sizes and detailed phenotype information (ideally
including longitudinal medication data) will be necessary
to precisely disentangle the shared genetic basis of SCZ
and T2D.

Data availability
Genetic data for the GOMAP study has been deposited at the European
Genome-Phenome Archive (EGA) which is hosted at the EBI and the CRG,
under accession number EGAS00001002723.
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