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Abstract: Fusarium verticillioides, F. proliferatum, and F. meridionale were identified as the predominant
fungi among 116 Fusarium isolates causing maize ear and kernel rot, a destructive disease in
Chongqing areas, China. The toxigenic capability and genotype were determined by molecular
amplification and toxin assay. The results showed that the key toxigenic gene FUM1 was detected
in 47 F. verticillioides and 19 F. proliferatum isolates. Among these, F. verticillioides and F. proliferatum
isolates mainly produced fumonisin B1, ranging from 3.17 to 1566.44, and 97.74 to 11,100.99 µg/g for
each gram of dry hyphal weight, with the averages of 263.94 and 3632.88 µg/g, respectively, indicating
the F. proliferatum isolates on average produced about an order of magnitude more fumonisins than
F. verticillioides did in these areas, in vitro. Only NIV genotype was detected among 16 F. meridionale
and three F. asiaticum isolates. Among these, 11 F. meridionale isolates produced NIV, varying from
17.40 to 2597.34 µg/g. ZEA and DON toxins were detected in 11 and 4 F. meridionale isolates,
with the toxin production range of 8.35–78.57 and 3.38–33.41 µg/g, respectively. Three F. asiaticum
isolates produced almost no mycotoxins, except that one isolate produced a small amount of DON.
The findings provide us with insight into the risk of the main pathogenic Fusarium species and a guide
for resistance breeding in these areas.
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Key Contribution: The composition and distribution of Fusarium spp. causing maize ear and kernel
rot were clarified in Chongqing areas. The toxigenicity of the major pathogenic Fusarium species
was determined.

1. Introduction

Fusarium species are the main pathogenic fungi causing maize ear and kernel rot worldwide,
including F. verticillioides, F. graminearum species complex (FGSC), F. oxysporum, F. equiseti,
F. subglutinans [1–4]. These pathogens not only cause grain rot, but also produce a variety of mycotoxins
that are a direct threat to human and animal health [5,6]. Studies have shown that F. verticillioides and
F. proliferatum mainly produce fumonisin B (FB) that contaminate grains and grain products, whereas
members of the FGSC mainly produce trichothecene toxins that contaminate grains. These mycotoxins
act as phytotoxins and virulence factors, interact with their hosts [7].

F. verticillioides and F. proliferatum can produce a variety of secondary metabolites, such as
fumonisins and moniliformin in maize-based products [8]. In Fusarium-infected maize tissues, FB1
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predominates, accounting for 75% of the total FB content [9]. Fumonisins have been associated
with equine leukoencephalomalacia [10], human esophageal cancer [11], and neural tube defects
in newborns [12]. There are several reports on FB contamination in maize in various areas of
China. Fu et al. reported that 50% of the maize grains in Hebei, Inner Mongolia, Yunnan, Guizhou,
Heilongjiang, Liaoning, and Ningxia provinces were contaminated by FBs [13]. Li et al. analyzed
125 maize samples from Hebei province between 2011 and 2013, of which 46.4% of the samples were
contaminated, and the mean contamination levels of FB of the maize samples collected in 2013 reached
706 µg kg−1 [14]. FB accumulation in grains is associated with a number of factors, such as toxin
production capability of strains [15], host species [16], types of crops [17], and various environmental
factors [18].

Currently, 16 phylogenetically distinct species have been identified in the FGSC. The most
predominant species associated with small grains diseases are F. graminearum sensu stricto,
F. meridionale, F. asiaticum, and F. boothii [19–21]. The members of FGSC can produce deoxynivalenol
(DON), nivalenol (NIV), and other toxins [22]. Based on trichothecene profiles and Tri13 gene, the FGSC
can be divided into three different genotypes: NIV genotype, 3-ADON genotype, and 15-ADON
genotype [23]. Previous studies have shown that F. graminearum sensu stricto generally belongs to the
15-ADON or 3-ADON genotype [24,25], most of F. asiaticum strains belong to the NIV genotype [26] or
3-ADON chemotype [27,28], and the majority of F. meridionale strains are of the NIV genotype [29–31],
but a few belong to 15-ADON or 15-ADON+NIV [32].

The high incidence of maize ear and kernel rot in Chongqing and surrounding areas is mainly due
to its special geographical and climatic conditions, as well as cropping systems and resistance level
of the major maize cultivars. The incidence of the maize ear and kernel rot is 20–40%, even reaching
as high as 75%, which significantly decreases thousand-kernel weight. More seriously, mycotoxin
contamination of the affected maize kernels is severe. Up to now, no systematic studies on pathogenic
Fusarium toxins causing maize ear rot in these areas have been conducted. This study aimed to
clarify the composition and distribution of Fusarium spp. causing maize kernel rot in Chongqing
and surrounding areas, as well as the toxigenic chemotypes and their potentiality and capability.
The results will provide effective information on the toxigenic genotype and toxin production capacity
of major pathogenic Fusarium spp. causing maize kernel rot in the Chongqing and surrounding areas,
as well as provide an early warning mechanism for regional maize production.

2. Results

2.1. Identification of Fusarium spp.

Based on morphological and molecular findings, a total of 116 Fusarium isolates and 10 Fusarium
species were obtained and identified, including F. verticillioides, F. proliferatum, FGSC, F. oxysporum,
F. fujikuroi, F. equiseti, F. culmorum, F. incarnatum, F. kyushuense, and F. solani, with the isolation
frequencies of 40.2% (47), 16.4% (19), 16.4% (19), 12.1% (14), 6.9% (8), 3.4% (4), 1.7% (2), 0.9% (1),
0.9% (1), and 0.9% (1), respectively (Table 1 and Figure 1).

There were a few differences in the frequency of Fusarium isolates in different regions of
Chongqing (Table 2). In Southeast Chongqing, the frequency of F. verticillioides, F. proliferatum, FGSC,
and F. oxysporum was 42.86%, 10.07%, 14.29%, and 25.00%, respectively. Therefore, F. verticillioides and
F. oxysporum were the predominant Fusarium species in Southeast Chongqing. However, F. oxysporum
were not be found in West Chongqing. The conclusion should not be drawn for the Central Chongqing
and the other regions, due to the smaller sample size.

Analysis of the sequences of the TEF-1α gene of 19 FGSC isolates and alignment with BLAST
in the Fusarium Center’s database indicated that 19 FGSC isolates contained 16 F. meridionale and 3
F. asiaticum, with the total isolation frequencies of 15.5% and 2.9%. A total of 16 isolates, such as D38,
D46 and others, exhibited 99% to 100% homology with reference strain B2307 (F. meridionale), while
CP5, D57-2 and D99 showed 99% to 100% homology with reference strains HNZZ106 and HBTS484



Toxins 2018, 10, 90 3 of 14

(F. asiaticum). The tree topologies of the TEF-1α gene sequences showed that the classification divided
FGSC into two distinct clades, with high clade support values (Figure 2).

Table 1. Fusarium species isolated from rotted maize ears and kernels in Chongqing areas.

Fusarium spp. Number of Isolates Isolation Frequency Isolate Code

Fusarium verticillioides 47 40.2%

D11, D12-1, D12-2, D13, D15, D17, D22, D25, D30-2, D31, D32,
D33, D34, D40-2, D42, D45, D50, D52, D54, D58-1, D60, D61-2,
D62-2, D63, D64, D68-1, D68-2, D70, D72, D74-1, D77, D78-2,

D79-1, D80-2, D81, D83-1, D83-2, D84, D85-2, D87, D88-1,
D92-1, D93-2, D95-1, D96-1, D98-2, D100

F. proliferatum 19 16.4% D21, D44-2, D56-1, D57-1, D59, D62-1, D65-1, D67, D68-3, D75,
D75-2, D78-1, D79-3, D88-2, D89-2, D90-1, D91, D92-2, D93-1

FGSC 19 16.4% CP1, CP4, CP5, D14, D38, D44-1, D46, D48, D57-2, D58-2,
D59-2, D66, D73, D76-1, D82-1, D85-1, D91-2, D92-3, D99

F. oxysporum 14 12.1% D16, D23, D26, D30-1, D61-1, D61-3, D71-2, D78-3, D79-2,
D82-2, D86-2, D93-3, D95-2, D96-2

F. fujikuroi 8 6.9% CP2AH, CP2AZ, D24, D69-2, D7, D90-22, D94, D97-2

F. equiseti 4 3.4% D56-2, D80-1, D89-1, D98-1

F. culmorum 2 1.7% D55, D95-3

F. incarnatum 1 0.9% D71-3

F. kyushuense 1 0.9% D40-3

F. solani 1 0.9% D69-1
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Figure 1. Molecular identification of Fusarium species (M, DNA marker; (a) PCR amplification of
Fusarium spp., 1–11: CP1, CP4, CP5, D14, D11, D13, D15, D26, D31, D91, Negative control; (b) Specific
PCR amplification of F. verticillioides, 1–11: D11, D13, D17, D22, D25, D31, D50, D52, D77, D87, Negative
control; (c) Specific PCR amplification of F. proliferatum, 1–11: D21, D57-1, D59, D67, D68-3, D75, D75-2,
D79-3, D88-2, D91, Negative control; (d) Specific PCR amplification of the FGSC, 1–11: CP1, CP4, CP5,
D14, D38, D59-2, D66, D73, D76-1, D99, Negative control).

Table 2. The isolation frequency of Fusarium species in different regions.

Fusarium spp. Isolation Frequency

Northeast Chongqing Southeast Chongqing Central Chongqing West Chongqing The Others

F. verticillioides 28.57% 42.86% 40.00% 35.48% 91.67%
FGSC 20.00% 14.29% 10.00% 22.58% 0.00%

F. proliferatum 20.00% 10.71% 20.00% 19.35% 0.00%
F. oxysporum 14.14% 25.00% 20.00% 0.00% 8.33%

F. fujikuroi 5.71% 7.14% 10.00% 9.68% 0.00%
F. equiseti 5.71% 3.57% 0.00% 3.22% 0.00%

F. culmorum 2.86% 0.00% 0.00% 3.22% 0.00%
F. kyushuense 0.00% 0.00% 0.00% 3.22% 0.00%
F. incarnatum 0.00% 3.57% 0.00% 0.00% 0.00%

Northeast Chongqing: Chengkou, Wuxi, Kaixian, Yunyang, Wanzhou, Zhongxian, Fengdu, Dianjiang; Southeast
Chongqing: Shizhu, Wulong, Pengshui, Qianjiang, Jiuyang, Xiushan; Central Chongqing: Beibei, Jiulongpo, Fuling,
Changshou; West Chongqing: Tongnan, Hechuan, Tongliang, Dazhu, Rongchang, Yongchuang, Jiangjin, Wansheng,
Nanchuan, Qijiang; the others: Bazhong, Neijiang, Yibin, Ziyang, Chengdu, Xichang.
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2.2. Detection of Toxigenic Genes and Chemotypes

Using the specific primers, the FUM1 gene was detected in 47 F. verticillioides and 19 F. proliferatum
isolates (Figures 3 and 4). The results showed that these isolates theoretically possessed the capacity to
synthesize FBs.

The Tri13 gene-specific primer Tri13P1/Tri13P2 was used to conduct the PCR amplification
of 19 members of the FGSC in Figure 5. A single 859 bp fragment was stably amplified in 16
F. meridionale isolates and three F. asiaticum isolates, indicating that all 19 members of the FGSC
were of the NIV chemotype.
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Figure 3. Detection of the key toxigenic gene FUM1 in F. verticillioides isolates using primers
Fum5F/Fum5R and Rp32/Rp33 (M, DNA marker; 1–6: D11, D12-1, D12-2, D13, D15, D17; 7–13:
D11, D12-1, D12-2, D13, D15, D17, Negative control).



Toxins 2018, 10, 90 5 of 14
Toxins 2018, 10, x FOR PEER REVIEW  5 of 14 

 
Figure 4. Detection of the gene FUM1 in F. proliferatum isolates using primer Rp32/Rp33 (M, DNA 
marker; 1–11: D21, D44-2, D56-1, D57-1, D59, D62-1, D65-1, D67, D75, D91, Negative control). 

The Tri13 gene-specific primer Tri13P1/Tri13P2 was used to conduct the PCR amplification of 
19 members of the FGSC in Figure 5. A single 859 bp fragment was stably amplified in 16 F. meridionale 
isolates and three F. asiaticum isolates, indicating that all 19 members of the FGSC were of the NIV 
chemotype. 

 
Figure 5. Detection of toxigenic chemotype among FGSC isolates using primer Tri13P1/Tri13P2 (M, 
DNA marker; 1–9: Fusarium spp. CP1, CP5, D38, D66, D66, D73, D76-1, D99, Negative control). 

2.3. Analysis of FBs 

Mycotoxin assays showed that all F. verticillioides and F. proliferatum isolates could produce 
toxins FB1, FB2, and FB3. Except for F. verticillioides isolates D61-1 and D63, the other isolates exhibited 
a significantly higher FB1 yield than that of FB2 and FB3 (Tables 3 and 4). In the F. verticillioides isolates, 
FB production (all toxin production expressed in micrograms per gram of mycelial dry weight in this 
paper) was 5.76–2015.19 µg/g, with an average of 344.81 µg/g. Among these, the production of toxin 
FB1 ranged from 3.17 to 1566.44 µg/g, with an average of 263.94 µg/g; the production of FB2 toxin was 
between 1.07 and 156.52 µg/g, with an average of 24.70 µg/g; and the production of FB3 toxin varied 
from 1.52 to 356.15 µg/g, with an average of 56.17 µg/g (Table 3).  

Among the F. proliferatum isolates, the production of FB1, FB2, and FB3 was within the ranges of 
97.74–11,100.99 µg/g, 16.01–1554.83 µg/g, and 9.11–381.4 µg/g, with the corresponding averages of 
3632.88, 402.31, and 177.78 µg/g, respectively (Table 4). 

Tables 3 and 4 showed the significant differences in FB production among various isolates. For 
the F. verticillioides isolates, 42.6% of the isolates had <100.00 µg/g toxin production, whereas 68.4% 
of the F. proliferatum isolates exhibited >1000.00 µg/g toxin production, indicating that the toxigenicity 
of F. proliferatum in these areas was higher than that of F. verticillioides (Table 5). 

Table 3. Mycotoxin production of F. verticillioides isolates in Chongqing areas 1. 

No. Origin of Isolate  FB1 (µg/g) FB2 (µg/g) FB3 (µg/g) FBs (µg/g) 
D100 Jiulongpo 148.56 ± 3.51 15.32 ± 2.53 24.51 ± 2.01 188.39 ± 8.33 
D11 Hechuan 21.13 ± 1.32 5.47 ± 1.12 7.71 ± 1.56 34.31 ± 4.01 

D12-1 Longyu 18.33 ± 1.41 2.58 ± 0.28 3.22 ± 0.69 24.13 ± 2.11 
D12-2 Longyu 584.06 ± 8.53 81.22 ± 0.89 69.98 ± 3.21 735.26 ± 10.35 
D13 Suzhou 35.30 ± 2.30 7.88 ± 1.03 10.32 ± 1.11 53.50 ± 2.36 
D15 Changping 122.84 ± 4.58 10.25 ± 1.55 26.13 ± 3.28 159.22 ± 5.78 
D17 Bazhong 20.07 ± 1.11 3.72 ± 0.56 6.21 ± 0.34 30.01 ± 2.15 
D22 Bijie 211.83 ± 2.12 19.45 ± 2.58 39.82 ± 2.01 271.10 ± 5.38 
D25 Xifeng 56.23 ± 1.56 6.86 ± 1.13 15.37 ± 0.88 78.46 ± 4.56 

D30-2 Pujiang 13.20 ± 0.89 3.41 ± 0.77 6.79 ± 0.67 23.40 ± 1.81 

Figure 4. Detection of the gene FUM1 in F. proliferatum isolates using primer Rp32/Rp33 (M, DNA
marker; 1–11: D21, D44-2, D56-1, D57-1, D59, D62-1, D65-1, D67, D75, D91, Negative control).

Toxins 2018, 10, x FOR PEER REVIEW  5 of 14 

 
Figure 4. Detection of the gene FUM1 in F. proliferatum isolates using primer Rp32/Rp33 (M, DNA 
marker; 1–11: D21, D44-2, D56-1, D57-1, D59, D62-1, D65-1, D67, D75, D91, Negative control). 

The Tri13 gene-specific primer Tri13P1/Tri13P2 was used to conduct the PCR amplification of 
19 members of the FGSC in Figure 5. A single 859 bp fragment was stably amplified in 16 F. meridionale 
isolates and three F. asiaticum isolates, indicating that all 19 members of the FGSC were of the NIV 
chemotype. 

 
Figure 5. Detection of toxigenic chemotype among FGSC isolates using primer Tri13P1/Tri13P2 (M, 
DNA marker; 1–9: Fusarium spp. CP1, CP5, D38, D66, D66, D73, D76-1, D99, Negative control). 

2.3. Analysis of FBs 

Mycotoxin assays showed that all F. verticillioides and F. proliferatum isolates could produce 
toxins FB1, FB2, and FB3. Except for F. verticillioides isolates D61-1 and D63, the other isolates exhibited 
a significantly higher FB1 yield than that of FB2 and FB3 (Tables 3 and 4). In the F. verticillioides isolates, 
FB production (all toxin production expressed in micrograms per gram of mycelial dry weight in this 
paper) was 5.76–2015.19 µg/g, with an average of 344.81 µg/g. Among these, the production of toxin 
FB1 ranged from 3.17 to 1566.44 µg/g, with an average of 263.94 µg/g; the production of FB2 toxin was 
between 1.07 and 156.52 µg/g, with an average of 24.70 µg/g; and the production of FB3 toxin varied 
from 1.52 to 356.15 µg/g, with an average of 56.17 µg/g (Table 3).  

Among the F. proliferatum isolates, the production of FB1, FB2, and FB3 was within the ranges of 
97.74–11,100.99 µg/g, 16.01–1554.83 µg/g, and 9.11–381.4 µg/g, with the corresponding averages of 
3632.88, 402.31, and 177.78 µg/g, respectively (Table 4). 

Tables 3 and 4 showed the significant differences in FB production among various isolates. For 
the F. verticillioides isolates, 42.6% of the isolates had <100.00 µg/g toxin production, whereas 68.4% 
of the F. proliferatum isolates exhibited >1000.00 µg/g toxin production, indicating that the toxigenicity 
of F. proliferatum in these areas was higher than that of F. verticillioides (Table 5). 

Table 3. Mycotoxin production of F. verticillioides isolates in Chongqing areas 1. 

No. Origin of Isolate  FB1 (µg/g) FB2 (µg/g) FB3 (µg/g) FBs (µg/g) 
D100 Jiulongpo 148.56 ± 3.51 15.32 ± 2.53 24.51 ± 2.01 188.39 ± 8.33 
D11 Hechuan 21.13 ± 1.32 5.47 ± 1.12 7.71 ± 1.56 34.31 ± 4.01 

D12-1 Longyu 18.33 ± 1.41 2.58 ± 0.28 3.22 ± 0.69 24.13 ± 2.11 
D12-2 Longyu 584.06 ± 8.53 81.22 ± 0.89 69.98 ± 3.21 735.26 ± 10.35 
D13 Suzhou 35.30 ± 2.30 7.88 ± 1.03 10.32 ± 1.11 53.50 ± 2.36 
D15 Changping 122.84 ± 4.58 10.25 ± 1.55 26.13 ± 3.28 159.22 ± 5.78 
D17 Bazhong 20.07 ± 1.11 3.72 ± 0.56 6.21 ± 0.34 30.01 ± 2.15 
D22 Bijie 211.83 ± 2.12 19.45 ± 2.58 39.82 ± 2.01 271.10 ± 5.38 
D25 Xifeng 56.23 ± 1.56 6.86 ± 1.13 15.37 ± 0.88 78.46 ± 4.56 

D30-2 Pujiang 13.20 ± 0.89 3.41 ± 0.77 6.79 ± 0.67 23.40 ± 1.81 

Figure 5. Detection of toxigenic chemotype among FGSC isolates using primer Tri13P1/Tri13P2
(M, DNA marker; 1–9: Fusarium spp. CP1, CP5, D38, D66, D66, D73, D76-1, D99, Negative control).

2.3. Analysis of FBs

Mycotoxin assays showed that all F. verticillioides and F. proliferatum isolates could produce toxins
FB1, FB2, and FB3. Except for F. verticillioides isolates D61-1 and D63, the other isolates exhibited
a significantly higher FB1 yield than that of FB2 and FB3 (Tables 3 and 4). In the F. verticillioides isolates,
FB production (all toxin production expressed in micrograms per gram of mycelial dry weight in this
paper) was 5.76–2015.19 µg/g, with an average of 344.81 µg/g. Among these, the production of toxin
FB1 ranged from 3.17 to 1566.44 µg/g, with an average of 263.94 µg/g; the production of FB2 toxin
was between 1.07 and 156.52 µg/g, with an average of 24.70 µg/g; and the production of FB3 toxin
varied from 1.52 to 356.15 µg/g, with an average of 56.17 µg/g (Table 3).

Among the F. proliferatum isolates, the production of FB1, FB2, and FB3 was within the ranges of
97.74–11,100.99 µg/g, 16.01–1554.83 µg/g, and 9.11–381.4 µg/g, with the corresponding averages of
3632.88, 402.31, and 177.78 µg/g, respectively (Table 4).

Tables 3 and 4 showed the significant differences in FB production among various isolates. For the
F. verticillioides isolates, 42.6% of the isolates had <100.00 µg/g toxin production, whereas 68.4% of the
F. proliferatum isolates exhibited >1000.00 µg/g toxin production, indicating that the toxigenicity of
F. proliferatum in these areas was higher than that of F. verticillioides (Table 5).

Table 3. Mycotoxin production of F. verticillioides isolates in Chongqing areas 1.

No. Origin of Isolate FB1 (µg/g) FB2 (µg/g) FB3 (µg/g) FBs (µg/g)

D100 Jiulongpo 148.56 ± 3.51 15.32 ± 2.53 24.51 ± 2.01 188.39 ± 8.33
D11 Hechuan 21.13 ± 1.32 5.47 ± 1.12 7.71 ± 1.56 34.31 ± 4.01

D12-1 Longyu 18.33 ± 1.41 2.58 ± 0.28 3.22 ± 0.69 24.13 ± 2.11
D12-2 Longyu 584.06 ± 8.53 81.22 ± 0.89 69.98 ± 3.21 735.26 ± 10.35
D13 Suzhou 35.30 ± 2.30 7.88 ± 1.03 10.32 ± 1.11 53.50 ± 2.36
D15 Changping 122.84 ± 4.58 10.25 ± 1.55 26.13 ± 3.28 159.22 ± 5.78
D17 Bazhong 20.07 ± 1.11 3.72 ± 0.56 6.21 ± 0.34 30.01 ± 2.15
D22 Bijie 211.83 ± 2.12 19.45 ± 2.58 39.82 ± 2.01 271.10 ± 5.38
D25 Xifeng 56.23 ± 1.56 6.86 ± 1.13 15.37 ± 0.88 78.46 ± 4.56

D30-2 Pujiang 13.20 ± 0.89 3.41 ± 0.77 6.79 ± 0.67 23.40 ± 1.81
D31 Pujiang 11.49 ± 1.13 2.51 ± 0.56 5.82 ± 0.87 19.82 ± 1.87
D32 Pujiang 3.17 ± 0.33 1.07 ± 0.39 1.52 ± 0.30 5.76 ± 0.68
D33 Pujiang 209.67 ± 4.55 17.93 ± 2.57 47.14 ± 2.56 274.74 ± 6.30
D34 Zizhong 26.86 ± 1.20 4.78 ± 0.46 12.28 ± 1.89 43.92 ± 2.51



Toxins 2018, 10, 90 6 of 14

Table 3. Cont.

No. Origin of Isolate FB1 (µg/g) FB2 (µg/g) FB3 (µg/g) FBs (µg/g)

D40-2 Handan 968.68 ± 6.38 74.51 ± 5.48 105.01 ± 5.11 1148.19 ± 13.15
D42 Qinhuangdao 19.25 ± 1.09 5.00 ± 0.77 6.34 ± 0.55 30.60 ± 2.33
D45 Luanxian 9.44 ± 0.55 2.17 ± 0.69 2.63 ± 0.51 14.24 ± 1.26
D50 Yibin 90.53 ± 2.37 7.91 ± 0.88 13.93 ± 2.14 112.36 ± 4.23
D52 Yibin 35.91 ± 1.22 1.80 ± 0.20 16.38 ± 1.89 54.10 ± 3.18
D54 Yibin 1076.93 ± 16.78 51.51 ± 4.26 356.15 ± 15.11 1484.59 ± 17.33

D58-1 Qijiang 502.83 ± 6.56 51.41 ± 2.21 200.92 ± 10.23 755.16 ± 7.36
D60 Dianjiang 63.20 ± 2.59 6.14 ± 0.58 10.60 ± 0.95 79.95 ± 3.56

D61-1 Dianjiang 22.22 ± 1.08 8.98 ± 0.39 16.02 ± 1.08 47.21 ± 2.88
D62-2 Nanchuan 270.12 ± 5.02 21.35 ± 2.56 46.02 ± 2.58 337.49 ± 7.77
D63 Nanchuan 10.28 ± 0.56 8.20 ± 0.77 6.83 ± 0.86 25.32 ± 2.03
D64 Changshou 167.70 ± 4.56 8.58 ± 0.95 53.40 ± 3.33 229.68 ± 5.08

D68-1 Rongchang 8.90 ± 0.63 1.62 ± 0.19 4.88 ± 0.88 15.40 ± 1.26
D68-2 Rongchang 283.87 ± 5.17 32.87 ± 2.15 72.44 ± 5.69 389.18 ± 7.02
D70 Rongchang 233.19 ± 5.31 42.68 ± 2.33 145.60 ± 8.12 421.47 ± 5.59
D72 Xiushan 26.26 ± 1.09 3.72 ± 0.69 14.35 ± 2.99 44.33 ± 2.03

D74-1 Shizhu 112.39 ± 4.26 15.73 ± 0.97 57.14 ± 3.11 185.26 ± 5.69
D77 Dazhu 261.92 ± 4.63 25.38 ± 3.33 80.67 ± 4.23 367.98 ± 5.78

D78-2 Youyang 353.08 ± 7.89 22.778 ± 2.68 129.00 ± 5.55 504.86 ± 8.26
D79-1 Youyang 848.51 ± 9.97 42.33 ± 3.15 167.50 ± 6.42 1058.35 ± 10.89
D80-2 Xiushan 1005.51 ± 10.36 86.65 ± 4.13 128.81 ± 5.43 1220.98 ± 10.29
D81 Qianjiang 206.21 ± 5.12 19.69 ± 1.22 30.37 ± 2.33 256.26 ± 5.96

D83-1 Penshui 36.09 ± 2.01 8.24 ± 0.57 10.88 ± 1.46 55.20 ± 2.39
D83-2 Penshui 44.05 ± 2.25 6.39 ± 0.88 12.21 ± 1.39 62.65 ± 2.54
D84 Fumeng 100.87 ± 3.87 8.96 ± 1.09 31.28 ± 3.11 141.11 ± 4.37

D85-2 Pengshui 1566.44 ± 12.66 156.52 ± 5.55 292.22 ± 6.47 2015.19 ± 13.89
D87 Wulong 215.51 ± 7.01 20.83 ± 2.07 47.24 ± 2.11 283.58 ± 8.09

D88-1 Tongnan 37.15 ± 1.17 6.62 ± 0.89 12.51 ± 1.03 56.27 ± 2.15
D92-1 Chengkou 206.02 ± 3.56 6.37 ± 1.22 11.15 ± 1.35 223.54 ± 4.23
D93-2 Chengkou 89.92 ± 3.43 9.18 ± 0.91 25.29 ± 2.10 124.38 ± 3.89
D95-1 Wuxi 749.74 ± 8.01 77.64 ± 3.87 122.98 ± 5.88 950.36 ± 9.52
D96-1 Yunyang 968.97 ± 11.12 95.69 ± 3.60 97.01 ± 4.53 1161.67 ± 13.52
D98-2 Wanzhou 330.59 ± 5.23 41.03 ± 2.11 35.68 ± 3.68 407.30 ± 6.56

1 Values are means ± SE.

Table 4. Mycotoxin production of F. proliferatum isolates in Chongqing 1.

No. Origin of Isolate FB1 (µg/g) FB2 (µg/g) FB3 (µg/g) FBs (µg/g)

D21 Beibe 3082.95 ± 30.78 231.44 ± 5.22 155.25 ± 5.36 3469.64 ± 33.69
D44-2 Fengdu 5331.14 ± 45.36 463.27 ± 5.68 204.95 ± 5.21 5999.36 ± 47.23
D56-1 Yongchuan 157.23 ± 5.23 31.16 ± 2.11 25.14 ± 1.01 213.52 ± 5.89
D57-1 Qijiang 194.99 ± 6.12 16.01 ± 0.89 18.59 ± 1.53 229.59 ± 6.57
D59 Dianjiang 5947.56 ± 38.12 866.02 ± 9.45 308.96 ± 9.31 7122.54 ± 40.12

D62-1 Nanchuan 5666.14 ± 46.25 229.35 ± 7.36 124.29 ± 5.23 6019.77 ± 47.76
D65-1 Changshou 4578.41 ± 23.39 800.77 ± 9.12 316.49 ± 8.01 5695.67 ± 26.59
D67 Wansheng 1284.52 ± 15.23 101.54 ± 2.89 231.50 ± 5.34 1617.55 ± 17.25

D68-3 Rongchan 366.54 ± 6.55 34.09 ± 3.11 75.35 ± 2.59 475.97 ± 7.67
D75 Zhongxian 9130.53 ± 52.47 867.38 ± 18.12 317.26 ± 7.21 10,315.17 ± 54.28

D75-2 Zhongxian 6357.95 ± 39.58 534.06 ± 6.39 200.89 ± 6.33 7092.89 ± 41.26
D78-1 Youyang 5579.13 ± 37.45 390.65 ± 8.88 258.46 ± 8.77 6228.24 ± 38.97
D79-3 Youyang 632.89 ± 10.24 90.55 ± 3.69 141.27 ± 6.37 864.71 ± 11.25
D88-2 Tongnan 97.74 ± 4.63 16.48 ± 1.10 9.11 ± 0.78 123.33 ± 4.99
D89-2 Kaixian 299.31 ± 6.11 36.92 ± 3.55 19.66 ± 1.25 355.89 ± 7.21
D90-1 Kaixian 936.56 ± 11.56 66.04 ± 2.01 44.61 ± 3.21 1047.21 ± 14.22
D91 Shizhu 2813.66 ± 22.37 881.77 ± 10.56 250.86 ± 6.78 3946.29 ± 26.85

D92-2 Chenkou 11,100.99 ± 56.79 431.62 ± 9.23 293.84 ± 10.57 11,826.45 ± 58.76
D93-1 Chenkou 5466.50 ± 35.76 1554.83 ± 16.37 381.40 ± 9.78 7402.72 ± 38.83

1 Values are means ± SE.
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Table 5. The comparison of mycotoxin production between by F. verticillioides and F. proliferatum 1.

Fusarium spp. FB1 (µg/g) FB2 (µg/g) FB3 (µg/g) FBs (µg/g)

F. verticillioides 263.94 ± 4.01 A 24.70 ± 3.75 A 56.1 8 ± 2.95 A 344.81 ± 6.51 A
F. proliferatum 3632.88 ± 23.70 B 402.31 ± 6.02 B 177.78 ± 4.51 B 4212.97 ± 25.89 B

1 Values are means ± SE. The values with the different capital letter in the column express extremely significant
difference (p < 0.01), according to Duncan’s multiple range test.

2.4. Determination of the Toxigenicity of FGSC

The DON, ZEN, and NIV assay based on UHPLC-MS/MS were in agreement with the molecular
detection of the Tri13 gene in members of the FGSC. The toxin assay showed that none of the three
F. asiaticum strains produced the toxins NIV and ZEN, but only the CP5 isolate produced DON with
4.50 µg/g of dry hyphal weight, suggesting that the F. asiaticum produces almost no mycotoxins in
Chongqing (Table 6).

Table 6. Mycotoxin chemotype and production of FGSC isolates in Chongqing 1.

No. Species 2 Origin Genotype NIV (µg/g) DON (µg/g) 15-ADON (µg/g) 3-ADON (µg/g) ZEN (µg/g)

CP1 F. m. Fuling NIV 699.55 ± 11.23 19.43 ± 1.56 0.00 0.00 0.00
CP4 F. m. Jiangjin NIV 1254.86 ± 18.68 3.77 ± 0.38 0.00 0.00 0.00
D14 F. m. Wanzhou NIV 2597.34 ± 25.48 33.41 ± 2.69 0.00 0.00 8.35 ± 0.67
D38 F. m. Jiangjin NIV 143.52 ± 5.36 0.00 7.90 ± 0.89 7.81 ± 0.57 12.72 ± 1.03

D44-1 F. m. Fengdu NIV 1004.84 ± 13.89 0.00 0.00 0.00 14.57 ± 1.25
D46 F. m. Chengkou NIV 450.11 ± 8.37 3.38 ± 0.56 0.00 0.00 0.00
D48 F. m. Chengkou NIV 89.25 ± 3.21 0.00 0.00 0.00 78.57 ± 3.89

D58-2 F. m. Qijiang NIV 0.00 0.00 0.00 5.83 ± 0.67 56.40 ± 4.25
D59-2 F. m. Dianjiang NIV 123.29 ± 5.87 0.00 0.00 0.00 0.00
D66 F. m. Wansheng NIV 0.00 0.00 0.00 0.00 0.00
D73 F. m. Shizhu NIV 0.00 0.00 0.00 0.00 49.06 ± 3.58

D76-1 F. m. Dazhu NIV 90.89 ± 4.21 0.00 0.00 0.00 71.68 ± 3.79
D82-1 F. m. Qianjiang NIV 17.40 ± 1.56 0.00 0.00 0.00 51.65 ± 2.87
D85-1 F. m. Wulong NIV 0.00 0.00 0.00 3.10 ± 0.22 38.95 ± 3.19
D91-2 F. m. Shizhu NIV 0.00 0.00 0.00 0.00 31.57 ± 2.45
D92-3 F. m. Chengkou NIV 61.87 ± 3.05 0.00 0.00 0.00 42.38 ± 2.71
D99 F. a. Wanzhou NIV 0.00 0.00 0.00 0.00 0.00
CP5 F. a. Tongliang NIV 0.00 4.50 ± 0.55 0.00 0.00 0.00

D57-2 F. a. Qijiang NIV 0.00 0.00 0.00 0.00 0.00
1 Values are means ± SE; 2 F. m. = F. meridionale; F. a. = F. asiaticum.

NIV was detected in 11 out of the 16 F. meridionale isolates, which showed a mycotoxin-producing
range of 17.40–2597.34 µg/g of dry hyphal weight. ZEN was detected in 11 isolates, and toxin
production ranged from 8.35 to 78.57 µg/g. DON was detected in four isolates, i.e., CP1, CP4, D14,
and D46, with the toxin production range of 3.38–33.41 µg/g. Isolates D38, D58-2, and D85-1 expressed
3-AcDON toxin, with the corresponding productions of 7.81, 5.83, and 3.10 µg/g, respectively.
15-AcDON was only detected in D38 isolate, with toxin production of 7.90 µg/g. The results show that
F. meridionale mainly produces NIV, but weakly does ZEN, DON, 3-AcDON or 15-AcDON.

3. Discussion

Maize is an important food crop in China, and it is also a significant energy crop and industrial
material. Numerous studies have shown that in most countries and regions, Fusarium spp. are the
main causative pathogens for maize kernel rot. F. verticillioides and F. graminearum sensu stricto are the
predominant species in Huang-Huai-Hai and northeast China [2,33]. However, our study indicated
that besides F. verticillioides, F. proliferatum, and F. meridionale were also the predominant pathogens
that caused maize ear rot in Chongqing areas, indicating the characteristic composition of pathogenic
Fusarium species causing maize ear rot in these areas. These discrepancies may be caused by particular
environmental conditions. Chongqing is located in the southwest maize growing area of China, and the
area is hilly and mountainous, with the highest elevation reaching up to 2800 m. Different ecological
zones are present, thereby forming the unique pathogen community.
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The warm, rainy, and humid weather conditions are suitable for infection, growth, and
reproduction of Fusarium spp. in these areas. It is an important factor contributing to the serious maize
ear rot. Besides, cropping system is probably also a major factor. In Chongqing areas, crop planting
patterns usually incude corn monoculture, wheat and corn rotation, and rice and corn rotation, and so
on. Undoubtedly, inoculum production increases with corn monoculture. In addition, F. verticillioides,
F. proliferatum, FGSC, and F. oxysporum are also important pathogenic fungi in wheat and rice. Therefore,
corn rotation with wheat or rice hardly reduces the prevalence of these fungi, even leading to the
accumulation of the above Fusarium species in these areas.

FBs, DON, NIV, ZEA, and other mycotoxins are the major causes of toxin contamination by
Fusarium species. However, both F. verticillioides and F. proliferatum produce FBs, the former can cause
FB contamination mainly in maize, whereas the latter can cause toxin contamination in a variety of
crops. Mycotoxin assays showed that all F. proliferatum and F. verticillioides isolates could produce
toxins the FB1, FB2, and FB3, with FB1 as the predominant mycotoxin. However, the average toxin
production of F. proliferatum isolates was 12.22-fold higher than that of F. verticillioides, and hence,
potential contamination with F. proliferatum should always be fully considered. In the present study,
PDB liquid medium was used in culturing the Fusarium strains, and whether the toxin production
of F. proliferatum was the highest in vivo will be investigated in our future study. In the field or in
storage, mycotoxin contamination from maize ears and kernels is heavily influenced by multiple
factors, such as pathogens, environmental conditions (temperature, humidity, pH, and lighting), host
resistance, and so on. Therefore, mycotoxin production from these isolates in the laboratory primarily
represents their toxigenic potential.

In this study, the results of the Tri13P1/Tri13P2 specific primer assay and toxin detection indicated
that 16 F. meridionale and 3 F. asiaticum isolates were of the NIV chemotype, thereby representing
geographical characteristics. Kuppler et al. reported that among 63 FGSC strains from Germany,
only two belonged to NIV type, and the remaining were of the DON type [34]. In France, only 14.6%
of the members of the FGSC were of the NIV type, and the remaining 85.4% belonged to the 15-ADON
type [35]. In Brazil, among the 92 strains of the FGSC isolated from barley, 61 (66.3%), 4 (4.4%) and
27 (29.3%) belonged to 15-ADON, 3-ADON, and NIV chemotype, respectively [31].

In China, studies on the population structure and toxigenicity of the FGSC have mostly focused
on wheat and rice, whereas studies on maize are very limited. Shen et al. found that among 530 FGSC
strains isolated from the main winter wheat-producing areas of China, 182 F. graminearum sensu stricto
strains were mainly distributed in North China, and 348 F. asiaticum strains were mainly distributed in
South China. Among these, a high isolation frequency of the 15-ADON strains was observed in North
China, and the NIV and 3-ADON strains were more common in South China [28]. Similar studies
also have proven that the NIV and 3-ADON strains are mostly distributed in warmer regions [36,37].
Our findings that FGSC isolates causing maize ear rot in Chongqing areas were of the NIV genotype
also support the above conclusions.

Studies have shown that various mycotoxins have different toxicological properties. Compared
to the toxin DON, NIV poses a more serious threat to humans and animals health, which requires
a more stringent limit of daily intake [38,39]. NIV was detected in 57.9% of the FGSC, and three isolates
had a relatively high NIV-producing capacity (>1000 µg/g of dry hyphal weight) were F. meridionale.
Compared to NIV, these isolates produced a small amount of ZEA and DON toxins. These findings
indicate that NIV is likely to be the predominant trichothecene contaminant in Chongqing areas.

In the present study, we found that several F. meridionale isolates, such as D58-2, D66, D73,
D85-1, and D91-2, and F. asiaticum strains D99, CP5, and D57-2 harbored the gene responsible for
NIV-production but did not secrete NIV toxin. These phenotypes could be explained by a mutation
in the NIV producing gene sequences, or by altered expression of the NIV producing genes. Also,
the amount of NIV toxin produced by these isolates is probably beyond the detection limit of our
assays. In addition, the lack of NIV in these isolates may also be due to the growth medium used.
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Based on our study, various Fusarium species show distinct differences in their toxigenicity.
Therefore, in Chongqing areas, the potential maize food and feed safety threat caused by F. proliferatum
and F. meridionale is probably more serious than that by F. verticillioides, and F. asiaticum, respectively.
However, maize germplasm and varieties are usually merely screened for resistance to ear rot caused
by F. verticillioides and F. graminearum sensu stricto in China. Therefore, the risk of growing the selected
“resistant” varieties remains. Although F. proliferatum is not the firstly major causal pathogen of ear
and kernel rot, this species should also be included in germplasm screening for resistance and crop
breeding for disease resistance, particularly in Chongqing areas. Also, maize ear and kernel rot caused
by F. meridionale deserves attention. The maize germplasm resistant to F. meridionale should be selected
for cultivation in these areas. In addition, F. proliferatum contamination may be utilized as an important
indicator of the quality and safety of grains produced in these particular areas.

4. Materials and Methods

4.1. Sample Collection and Isolation and Identification of Pathogenic Fungi

A total of 103 maize ear or kernel samples (five symptomatic maize ears or 500 g of kernels for
each sample) were collected from production fields at harvest in 103 towns of 34 counties in Chongqing
and surrounding areas in 2014 and 2015 (Figure 6 and Table S1). About 30 seeds collected from each
sample were soaked in 20% sodium hypochlorite solution for 3 min, and rinsed with sterile water
thrice. These seeds were dried with sterile filter paper and placed on a potato dextrose agar (PDA)
(potato infusion 200 g, dextrose 20 g, agar 20 g, distilled water 1000 mL) plate for culture for 3 days at
25 ◦C. Hyphae from typical Fusarium colonies on PDA were transferred to a fresh poor-nutrient potato
dextrose agar (half-PDA) (potato infusion 100 g, dextrose 20 g, agar 20 g, distilled water 1000 mL) plate
and the culture was grown for 5 to 7 days. Upon emergence of conidia, a single spore was isolated
on PDA by the plate dilution method. Finally, the single spore was transplanted onto a PDA plate to
culture single-spore isolates.
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4.2. Identification of Pathogenic Fungi

The morphological identification of fungal cultures was conducted based on general characteristics
and conidial morphology [40]. In order to confirm the morphological identification, genomic DNA was
extracted from collected aerial mycelia using the Rapid Fungi Genomic DNA Isolation Kit (SK8230,
Sangon Biotech, Shanghai, China) according to the manufacturer’s instruction and were validated by
species-specific polymerase chain reaction (PCR) for identification (Table 7).

Table 7. Specific primer pairs for Fusarium spp.

Fungi Primer Sequences (5′–3′) Product Size (bp) Tm (◦C) Reference

Fusarium spp. ItsF AACTCCCAAACCCCTGTGAACATA
431 58 [41]

ItsR TTTAACGGCGTGGCCGC

FGSC
Fg16NF ACAGATGACAAGATTCAGGCACA

280 57 [42]
Fg16NR TTCTTTGACATCTGTTCAACCCA

F. oxysporum FoF1 ACATACCACTTGTTGCCTCG
340 58 [43]

FoR1 CGCCAATCAATTTGAGGAACG

F. verticillioides
VER1 CTTCCTGCGATGTTTCTCC

578 56 [44]
VER2 AATTGGCCATTGGTATTATATATCTA

F. proliferatum PRO1 CTTTCCGCCAAGTTTCTTC
585 56 [44]

PRO2 TGTCAGTAACTCGACGTTGTTG

Each PCR reaction system (20 µL) consisted of a DNA template (2.0 µL), upstream and
downstream primers (1.0 µL each), 2× Taq PCR Master Mix (10.0 µL), and ddH2O (6.0 µL).

Reactions were performed using a GeneAmp PCR System 9700 thermal cycler (ABI, Norwalk,
CT, USA) programmed for 94 ◦C for 5 min; followed by 35 cycles of 95 ◦C for 50 s, 58–60 ◦C for
50 s, and 72 ◦C for 60 s; and a final extension at 72 ◦C for 10 min. Electrophoretic analysis of the
PCR-amplified products was performed on a 1% agarose gel.

The other Fusarium species that could not be determined by species-specific PCR were analyzed
using the translation elongation factor (TEF)-1α gene sequences. TEF-F/R: 5′-ATGGGTAAGGARG
ACAAGAC-3′/5′-GGARGTACCAGTSATCATGTT-3′ [45]. Each PCR reaction system (50.0 µL)
consisted of a DNA template (5.0 µL), upstream and downstream primers (2.5 µL each), 2× Taq
PCR Master Mix (25.0 µL), and ddH2O (15.0 µL). Reactions were performed using a GeneAmp PCR
System 9700 thermal cycler programmed for 94 ◦C for 5 min; followed by 35 cycles of 95 ◦C 50 s,
53 ◦C for 50 s, and 72 ◦C 60 s; and a final extension at 72 ◦C for 10 min. The amplified PCR products
were bi-directionally sequenced by Sangon Biotech, and the sequences were compared with Fusarium
sequences in the Fusarium Center’s database at Penn State. Using MEGA 5.0 software (ASU, Phoenix,
AZ, USA, 2011), a phylogenetic tree was constructed via Test Maximum Likelihood Tree clustering
method based on the TEF-1α gene sequences, and the bootstrap analysis was performed with 1000
replicates for statistical support of branches.

4.3. Molecular Identification of Toxigenic Genes

The detection of the FUM1 gene was conducted using the specific primers: Fum5F/Fum5R
(Fum5F: 5′-GTCGAGTTGTTGACCACTGCG-3′ and Fum5R: 5′-CGTATCGTCAGCATGATGTAGC-3′)
for F. verticillioides isolates and Rp32/Rp33 (Rp32: 5′-ACAAGTGTCCTTGGGGTCCAGG-3′ and Rp33:
5′-GATGCTCTTGGAAGTGGCCTACG-3′) for all F. verticillioides and F. proliferatum strains, with
an annealing temperature of 60 ◦C [41,46]. The size of amplified fragments was 890 and 680 bp,
respectively. The molecular detection of the toxigenic chemotypes of the FGSC was conducted
using specific primers, Tri13P1/Tri13P2 (Tri13P1: 5′-CTCSACCGCATCGAAGASTCTC-3′ and Tri13P2:
5′-GAASGTCGCARGACCTTGTTTC-3′), at an annealing temperature of 58 ◦C [47]. The sizes of
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amplified fragments of the NIV, 3-AcDON, and 15-AcDON strains were 859, 644, and 583 bp,
respectively. PCR reaction system was earlier described. Electrophoretic analysis of the PCR-amplified
products was performed on a 1% agarose gel.

4.4. Detection of Mycotoxin Production

Equivalent Fusarium spp. were cut from half-PDA and placed in a sterilized conical flask
containing 150 mL of potato dextrose broth (PDB). Each fungal isolate was cultured in triplicate,
and the sterile liquid medium with no inoculant was used as control. F. verticillioides and F. proliferatum
were grown in a 15 day static culture in PDB with pH 8.0 at 25 ◦C, and FGSC was grown in a 15 day
shaking culture (100g) in PDB with pH 3.0 at 25 ◦C [32]. The inoculated culture medium was filtered
with a Whatman GF/A glass fiber filter paper, the filtrate was then stored at −80 ◦C or sterilized under
high pressure, and the hyphae were collected, dried, and weighed.

For all Fusarium isolates, 20 mL of the filtrate was collected and used in the toxin assays.
Immunoaffinity column purification and HPLC analysis of F. verticillioides and F. proliferatum
were performed to measure FB production [48]. The eluent was dried with nitrogen and
dissolved in 1.5 mL of 80% methanol solution. FBs were tested using a C18 reverse-phase liquid
chromatography/fluorescence detector after O-phthaldialdehyde (OPA) derivation and quantified
via an external standard method. DON, ZEN, and NIV production of FGSC was determined using
UHPLC-MS/MS [49]. Samples were extracted with an 80% acetonitrile water solution, purified
via a multifunction decontamination column, isolated via a Waters ACQUITY UPLC BEH C18
chromatographic column, tested by multireaction ion monitoring of quadrupole mass spectrometry,
and quantified by an external standard method. Statistical analysis was performed with SPSS 10.0
software (SPSS Inc., Chicago, IL, USA, 2007).

Supplementary Materials: The following are available online at www.mdpi.com/2072-6651/10/2/90/s1,
Table S1: Sampling information.
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