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Abstract: Rett syndrome (RTT) is a multisystem neurological disorder. Pathogenic changes
in the MECP2 gene that codes for methyl-CpG-binding protein 2 (MeCP2) in RTT lead to
a loss of previously established motor and cognitive skills. Unravelling the mechanisms
of neurological regression in RTT is complex, due to multiple components of the neural
epigenome being affected. Most evidence has primarily focused on deciphering the com-
plexity of transcriptional machinery at the molecular level. Little attention has been paid to
how epigenetic changes across the neural epigenome in RTT lead to neurological regression.
In this narrative review, we examine how pathogenic changes in MECP2 can disrupt the
balance of the RTT neural epigenome and lead to neurological regression. Environmental
and genetic factors can disturb the balance of the neural epigenome in RTT, modifying the
onset of neurological regression. Methylation changes across the RTT neural epigenome
and the consequent genotoxic stress cause neurons to regress into a senescent state. These
changes influence the brain as it matures and lead to the emergence of specific symptoms
at different developmental periods. Future work could focus on epidrugs or epi-editing
approaches that may theoretically help to restore the epigenetic imbalance and thereby
minimise the impact of genotoxic stress on the RTT neural epigenome.

Keywords: neurological regression; Rett syndrome; epigenome; methylation

1. Background
Methylation is a crucial aspect of brain development and maturation [1]. It is an

essential epigenetic mechanism operating at transcriptional and post-transcriptional levels.
Epigenetic mechanisms can include modifications to DNA, i.e., DNA methylation and
modifications to RNA and proteins, and these mechanisms operate across lifespans. The
best-studied epigenetic mechanism is DNA methylation [2]. Proteins that have a methyl-
CpG binding domain (MBD) can ‘read’ methylated DNA and are broadly separated into
three families [3], and one of these is the methyl-CpG-binding protein 2 (MeCP2) [4].
The MeCP2 is an important reader of DNA methylation [5], and pathogenic changes
in readers lead to aberrant DNA methylation, which has been associated with various
neurodevelopment and neurological disorders [6].

Impaired Methylation and Neurological Disorders

The methylation landscape within the brain is dynamic, and readers, writers and
erasers fine-tune DNA methylation. Both genetic and environmental elements can in-
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fluence these processes. Impairments in epigenetic processes have been associated with
various disorders that span across the neurological and neurodevelopmental spectrum [7].
While this narrative review is not an exhaustive list of impaired methylation in all neu-
rological disorders, there are some noteworthy aspects to mention. Defects in de novo
methylation caused by a mutation in the gene coding the DNA methyltransferases (DNMT)
enzyme DNMT3B have been implicated in immunodeficiency-centromeric instability facial
anomalies (ICF) syndrome (OMIM #242860) [8]. In neurodegenerative disorders such as
multiple sclerosis (MS, OMIM #126200), distinct patterns are observed in the methylation
of genes involved in inflammation, myelination and the immune response [9]. In Hunting-
ton’s disease (HD, OMIM #143100), modifications in DNA methylation have been linked
with the expression of mutant huntingtin (HTT) [10], and DNA methylation may also be in
part responsible for the tissue-specific HTT transcription [11]. When viewed through the
lens of neurodevelopmental disorders, DNA methylation may also affect the regulation of
imprinting loci [12]. Prader–Willi syndrome (PWS, OMIM #176270) has been categorised as
a genetic and epigenetic disorder caused by defects in genomic imprinting in the 15q11.2-
q13 locus [13]. Genomic imprinting is a complex process of differential DNA methylation
and gene expression [14]. In PWS, CpG island methylation of the Small nuclear ribonucleo-
protein polypeptide N (SNRPN) gene has been suggested to be the most highly methylated
DNA region in the PWS imprinting centre [6]. Like PWS, Angelman syndrome (AS, OMIM
#105830) is another imprinting disorder caused by genetic or epigenetic anomalies within
the 15q11.2-q13 locus [15]. Some other disorders, such as Rubinstein–Taybi syndrome
(RSTS, OMIM #180849), might not be directly influenced by DNA methylation but have pro-
teins involved in chromatin remodelling that alter DNA methylation patterns [16]. While
disrupted DNA methylation is associated with various disorders, a CpG island methylator
phenotype has also been identified in brain tumours, facilitating tumour classification [17].
Even though some of these disorders, such as Angelman syndrome, HD, PWS, and RSTS,
fall under the rubric of rare disorders, all will have a significant bio-psycho-socio-ecological
impact (Figure 1). The management of these disorders is complex, and treatment requires
input from several specialists. Patients are not adequately supported, resulting in delays in
treatment and consequent deterioration. Families of children with disorders arising from
impaired methylation face an immutable burden and often diagnostic isolation.

Previous studies have shown that MeCP2 can repress gene transcription by inter-
acting with histone deacetylase complex [18]. A more recent study in murine brains has
shown that MeCP2 is an important component of heterochromatin condensates in cells
and may facilitate the separation of heterochromatin and euchromatin [19]. Changes in
heterochromatin condensates caused by pathogenic changes in MECP2 are one of the
disease drivers in Rett syndrome (RTT) (OMIM #312750) [19]. MeCP2 is a critical focal
point for various molecular processes, and impairments mainly caused by pathogenic
variants in the MECP2 gene give rise to RTT [20], a systemic disorder impacting several
different organ systems, that leads to a wide range of autonomic, cardiac, gastrointestinal,
neurological, respiratory, sleep, and skeletal problems. However, clinical severity is vari-
able and genotype–phenotype relationships in individuals with RTT may have a limited
prognostic value [21–23], so the diagnosis remains clinical [24]. Loss (partial/complete) of
acquired spoken language and purposeful hand skills, stereotypic hand movements and
gait problems are RTT’s core clinical diagnostic criteria [24]. It can be broadly characterised
into four stages: (I) symptom onset stage (onset age: 6 months to 1.5 years), (II) neurological
regression (onset age: 1–4 years), (III) plateau or pseudostationary stage where symptoms
appear to stabilize (onset: 4 to 10 years), and (IV) late-stage motor decline (onset: 10 to
30 years) [24,25]. In RTT, regression duration can be months to a few years [25]. One of
the cardinal features of RTT is a regression of skills such as hand use and communication.
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However, the mechanisms of neurological regression from the gene to the symptom level
have not been adequately described in RTT. In this narrative review, we first summarise key
information associated with neurological regression in different disorders. We then provide
an overview of neurological regression in RTT by (I) describing the impact of MECP2 on
the genomic landscape and (II) describing how adverse events caused by disruption in the
MECP2 gene can imbalance the epigenome, leading to neurological regression in RTT.

Figure 1. Epigenetics and onset of neurological disease. To maintain normal brain function, methy-
lated DNA can influence DNA’s higher-order structure, i.e., chromatin packaging. When DNA
methylation is not impaired, the kinetics of gene transcription can operate normally. However,
disrupted DNA methylation alters the kinetics of gene transcription, changing the rates of different
transcriptional mechanisms. A pathogenic/likely pathogenic change in the methyl-CpG-binding
protein 2 (MECP2) gene results in a failure of MeCP2 to recruit co-repressors, resulting in an open
chromatin configuration. For simplicity, the recruitment of co-repressors and transcription repression
are shown. However, other kinetics of transcription could also be altered. Methylation impairment,
in turn, leads to the manifestation of different neurological disorders. The impact of these disorders is
far-reaching and has a significant biological (severity of the disease), ecological (burden on healthcare
systems), psychological (mental health) and social (social support) impact. This figure was created
using images from BioRender (https://biorender.com/).

2. Methods
2.1. Search Strategy

The search strategy for the narrative review was performed as previously de-
scribed [26] and was based on the Preferred Reporting Items for Systematic Reviews
and Meta Analyses (PRISMA) guidelines [27]. The narrative literature review flowchart
is provided in Figure 2. For this narrative review, the PubMed database was searched
using the search terms from December 2024 and restricted to the last 10 years. A follow-up

https://biorender.com/


Int. J. Mol. Sci. 2025, 26, 5361 4 of 18

PubMed database search was also performed in May 2025. Boolean operators were used to
link search terms, and a truncation symbol (*) were used to facilitate the search.

 

Figure 2. Narrative literature review flow chart.

2.2. Search Terms

The following search terms were used:
Neurological regression AND child* disorders AND genetics
Epigenetics AND Rett syndrome
Regression AND Rett syndrome

2.3. Secondary Searching

To enrich the primary search, a snowballing approach was used [28] for secondary
searching. This strategy allowed further searching of the literature evidence relevant to
the subject matter, such as tracing articles on neurological regression in other childhood
disorders and further information on the epigenetics of RTT.

2.4. Eligibility Criteria
2.4.1. Inclusion Criteria

Articles, including case studies and reviews.
Studies done in humans and animal model.

2.4.2. Exclusion Criteria

Articles not available electronically.
Not available in the English language.
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3. Key Findings
Following the PubMed search, 948 articles were screened and assessed for eligibility.

After removing duplicates, preprints and non-relevant articles, 25 articles remained. Eight
articles were reviews on DNA methylation, epigenetics and MECP2 in RTT [2,3,6,20,29–32].
Another was a demographic study of RTT in Ireland that showed a higher regression fre-
quency in the Irish RTT population [33]. Other articles examined developmental pathways
of regression [34] and other aspects of regression in RTT [35–37], including the role of redox
imbalances in developmental regression [38] and a review of studies examining behaviour
and educational intervention studies in developmental regression [39]. Some other articles
explored limitations in NextGen sequencing in RTT [23] or compared developmental en-
cephalopathies from the RTT natural history study [40] or MECP2-allelic disorders [41].
Another study in an animal model showed that cortical defects may emerge before be-
havioural regression in RTT [42] while another assessed transcriptomic signatures [43].
Other aspects of neurological regression were also identified, such as the impact on the
caregiver [44], early developmental delay and neurological regression in metachromatic
leukodystrophy [45] and genetic findings in other disorders [46–48].

Neurological Regression

While developmental regression can be viewed as a loss of skills, it has a varied aetiol-
ogy. There is no consensus on how regression should be managed and how it is captured,
which has led others to propose that to understand the nature of regression better, cross-
disciplinary efforts are needed to disentangle the complex interplay between the biological
and environmental factors of regression [39,49]. Regression is seen in a variety of neu-
rodevelopmental disorders such as Autism Spectrum Disorder (ASD), Phelan McDermid
syndrome (PHMDS, OMIM #606232), Childhood Disintegrative Disorder (CDD, Heller’s
syndrome), RTT, developmental epileptic encephalopathies such as Landau–Kleffner syn-
drome (LKS; OMIM #245570) and Continuous Slow Wave Sleep disorder (CSWS) but may
also be part of other conditions such as Progressive Intellectual and Neurological Deterio-
ration (PIND) or childhood dementia [50]. Neurological regression characterised as Down
Syndrome Regression Disorder (DSRD) has also been identified in Down syndrome [51].
Some evidence also points towards regression in childhood-onset schizophrenia [52] and
post-traumatic stress disorder [53].

Trajectories of regression vary across disorders. In CDD, the onset of regression
was 3 years 2 months (±1 year 1 month) [54], while in PHMDS, one study found that
regression occurred in 43% of patients [55] with an onset of 6 years [50]. Regression may
also manifest at different stages in PHMDS [56]. A case report has also shown a rapid
onset of developmental regression in PHMDS due to a dual diagnosis [46]. In PHMDS,
those with class I deletions have more regression in skills [47]. Moreover, while evidence
suggests that the onset of regression in CDD emerges gradually between 6–12 months [57],
the trajectory of regression in CDD may be quicker than typically seen in ASD [54]. In
ASD, prevalence rates or regression range between 32.1% [58] and 30% [59], with a mean
onset age of 19.8 months [59]. In ASD, there are two patterns of regression: (I) a pattern of
gradual regression during the first two years with seemingly typical socio-communicative
development and (II) a pattern of socio-communication impairments before regression,
which contrasts with CDD, which has typical development in the first 2 years of life [54].
However, CDD has been added to the diagnostic category of ASD in both DSM-V and ICD-
11 and is considered a subtype of ASD. Diagnostic challenges regarding CDD and autistic
regression have been raised previously [54]. Although questions remain on the diagnostic
validity of CDD, the evidence does point towards distinct characteristics between CDD
and ASD [60–62]. Evidence of DSRD is limited. The main criteria are the sudden onset
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of new neurological, psychiatric or mixed symptoms during a period of <12 weeks in
an otherwise healthy person with Down syndrome and between 3–6 symptom clusters
across eight clinical domains [51]. It often manifests in late adolescence [63], and the
majority (90%) of patients with DSRD have language regression, followed by psychiatric
symptoms such as mood dysregulation (42%), social withdrawal (34%) and anxiety (16%).
Caregivers looking after those with DSRD also experience a higher burden when compared
to those caring for individuals with Down syndrome [44]. Females are more affected [63],
and features of catatonia and sleep disorders [64] have also been described in DSRD. In
LKS, the onset ranges from 3 to 7 years [50], while in CDKL5-deficiency disorder (OMIM
#300203) and FOXG1 disorder (OMIM #164874), the median onset of regression was 6.5 and
12 months, respectively [40]. Unlike RTT, in CDKL5-deficiency disorder, developmental
delay is present from birth, and the seizures begin far earlier (<3 months) [65]. In MECP2
duplication syndrome (MDS), regression has a later onset when compared to male RTT-like
individuals [41], and regression in MDS affects about 40% of individuals [66].

Regression can be exacerbated by different factors (Figure 3), such as epilepsy. In
MDS, regression was observed in 39% (12/31) of patients following seizure onset, of which
11 had treatment-resistant epilepsy [67]. Another study in MDS showed that regression
was associated with the onset of epilepsy in 91% of patients but only 20% in those with
spontaneous regression without epilepsy [68]. In those with generalised seizures, 69% had
developmental regression in PHMDS in comparison to 33% that did not report generalised
seizures [48]. Some other evidence has shed light on typical symptoms that may manifest
before the onset of developmental regression [50], for example, loss of bladder or bowel
function in CDD [50,54] or hypotonia and feeding difficulties in PHMDS [50]. In metachro-
matic leukodystrophy, in a subset of children, early developmental delay may also precede
regression [45]. Table 1 summarises different aspects of regression. In the next section, we
describe how MECP2 interacts with the epigenome and how its dysfunction affects the
neural epigenome, leading to neurological regression.

 

Figure 3. Contributing factors in neurological regression. Different factors can precipitate neurological
regression. Pre/perinatal complications such as hypoxia at birth can activate pathways involving
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hypoxia-inducible factors (HIF 1 alpha and beta). Prolonged stimulation of these pathways can
alter gene expression through hypoxia-responsive elements (HREs) and lead to neuronal cell death.
The onset of regression may also be associated with epilepsy, as observed in some individuals with
MECP2 duplication syndrome. Infections of the brain can lead to changes in brain homeostasis.
Infectious agents may lead to changes in brain development and longer-term neurological sequelae in
the foetal brain. Neuroimmune dysfunction can lead to increases in pro-inflammatory cytokines, and
the resulting cytokine storm can affect a variety of neuro-immune signalling cascades. These changes
can lead to aberrant microglial activation, neurological deterioration and behavioural abnormalities.
Deficiency in folate leads to remethylation disorders. Severe folate deficiency in childhood can lead
to hyperhomocysteinemia, characterised by failure to thrive, developmental delay and epilepsy. This
figure was created using images from BioRender (https://biorender.com/).

Table 1. Key features of neurological regression in different disorders.

Condition
Comments Referencea. Age of Onset

b. % Having Regression

Autism Spectrum Disorder (ASD)
a. 19.8 months.
b. 32.1% to 30%.

• Two patterns of regression (I) gradual regression
during the first 2 years of life with typical
socio-communicative development and (II)
socio-communication deficits before regression.

• Regression is more gradual than observed in CDD.

[54,58,59]

Childhood Disintegrative
Disorder (CDD)
a. >24 months.
b. Around 90% of individuals have

some form of regression.

• Loss of adaptive skills, i.e., bladder or bowel
function appear before regression onset.

• Emerges gradually (6–12 months) but regression
onset is quicker than seen in ASD.

[50,54,57]

Down Syndrome Regression
Disorder (DSRD)
a. Late adolescence.
b. 90% have language regression.

• Sudden onset over a period of less than 12 weeks.
• Catatonic symptoms and sleep disturbances

frequently described.
• Females may be more affected.

[51,63,64]

CDKL5-deficiency disorder
a. 6.5 months.
b. ~37%.

• Median age of seizure onset (~2 months) is quicker
than other developmental encephalopathies.

• Developmental delay is from birth.
[40,65]

FOXG1 disorder
a. 12 months.
b. ~36%.

• Median age of seizure onset is 11.5 months. [40]

Landa–Kleffner syndrome
a. ~3–7 years.
b. Most will have regression.

• Seizures may appear before regression onset. [50]

MECP2 Duplication syndrome
a. ~3–11.5 years (regression coincides

with seizure onset/worsening).
b. About 40% of individuals

have regression.

• Regression is more common in those with
treatment-resistant epilepsy.

• Seizure onset is later than other
developmental encephalopathies.

[41,67,68]

https://biorender.com/
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Table 1. Cont.

Condition
Comments Referencea. Age of Onset

b. % Having Regression

Phelan–McDermid syndrome
a. About 6 years of age.
b. Seen in 43% of individuals.

• Hypotonia and feeding difficulties may manifest
before regression onset.

• Seizures could be a risk factor for regression.
• Regression can appear in four stages:

➢ Stage 1: Early-onset language regression
(around 7 years).

➢ Stage II: Plateau stage (can last up to
10 years).

➢ Stage III: Neuropsychiatric decompensation
with a mean onset of 20 years.

➢ This is followed by Stage (IV): Late motor
decline with an average onset age of
26 years.

[48,50,55,56]

4. What Causes Neurological Regression in RTT?
4.1. Impact of MECP2 Across the Genomic Landscape

De novo pathogenic/likely pathogenic changes in the MECP2 gene within the long
(q) arm of the X chromosome (Xq28) are the primary cause in 95% of cases with typical
(classical) RTT. It has a global prevalence of 5–10 cases per 100,000 females [69], and RTT
predominantly affects females; however, males can also have MECP2 pathogenic changes,
but the incidence is rare. Males with MECP2 pathogenic/likely pathogenic variants usually
die within the first two years of birth [29], and those that do survive post-birth have a
range of clinical phenotypes [30,70]. There are several ways that MECP2 may impact
the genomic landscape. It can interact with histone deacetylase complexes [18], regulate
RNA splicing [71], and assist RNA polymerase II to start transcription [72]. Two further
mechanisms have been proposed that can shed light on the molecular pathogenesis of
RTT. First, MeCP2 has condensate-partitioning properties that influence the separation of
heterochromatin and euchromatin [19]. Pathogenic changes in MECP2 can disrupt MeCP2
condensate-partitioning properties, implicating this mechanism in the pathogenesis of RTT.
Second, co-repressors such as NCoR and SMRT can modulate chromatin by providing a
docking platform or scaffold for transcription factors [73], and this leads to another molec-
ular mechanism because MECP2 mutations can disrupt the link between NCoR/SMRT
co-repressors and chromatin [74]. Longer genes (>100 kb) are suggested to have a higher
level of gene-body methylation when compared to shorter genes, and it has been shown
that long genes are associated with neuronal development [75,76]. Long genes encode
essential neuronal proteins and are selectively expressed in the brain [77], and MeCP2 cell-
specific repression is biased for long genes [78]. Furthermore, MeCP2 is highly expressed
in neuronal cells (16 × 106 molecules per nucleus) [79]. These findings confirm that MeCP2
is an essential reader of methylated DNA in long genes and positions itself as an important
protein laying down critical epigenetic marks across the genomic landscape. The epigenetic
balance can be severely disrupted because of MECP2 pathogenic variants.

The imbalance of the epigenome due to pathogenic changes in the MECP2 gene does
not provide the complete clinical picture of RTT pathophysiology, because individuals can
have a pathogenic/likely pathogenic MECP2 variant but have no obvious clinical signs
or symptoms of RTT [80]. A translational cohort study has also identified rare MECP2
variants in girls with precocious puberty without neurodevelopment problems [81]. More-
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over, MECP2 pathogenic variants are only found in about 95% of those with classic RTT
and about 75% with atypical RTT [30,82]. More than 80 genes have been identified, and
the changes lead to similar clinical characteristics seen in RTT that can be considered
RTT/RTT-like [32]. However, no consensus exists for gene profiling studies regarding
biological functions and variants of unknown significance. These findings demonstrate
that MECP2 pathogenic/likely pathogenic variants only support a diagnosis and are not
confirmatory [22,30]. The diagnosis of RTT is independent of genetic profiles [24,83]. Most
individuals with RTT who have a clinical diagnosis do have an MECP2 pathogenic variant,
and evidence from the natural history study has shown that 98% of individuals with a clinical
diagnosis of classic RTT and 86% with a clinical diagnosis of atypical RTT had a pathogenic
MECP2 variant [84]. While other genes may be involved in RTT aside from MECP2, the next
section will focus on neurological regression due to a pathogenic MECP2 variant.

4.2. Neurological Regression

Regression forms part of the core diagnostic criteria for typical and atypical RTT [24,83].
Even though the epigenetic mechanisms influenced by MeCP2 are likely to be complex [85],
the net effect of epigenome disruption caused by MECP2 pathogenic variants is impaired
neuronal functioning due to changes in the function or expression of neuronal genes.
Even subtle changes to MeCP2 within GABA-releasing neurons can result in an RTT
phenotype [86]. As mentioned by others [30], a key target gene modified by MeCP2 is brain-
derived neurotrophic factor (BDNF) [87,88] and insulin-like growth factor 1 (IGF-1) [89]. In
humans, the levels of MeCP2 increase during embryonic and post-natal development, sta-
bilising at 10 years [90] (Figure 4). This profile reflects changes in transcriptional regulation
and coincides with modifications in neuronal chromatin, such as size and shape [91,92], and
enables MeCP2 to establish neuronal circuits during early developmental epochs and then
later fine-tune cortical plasticity [93]. There are four stages in RTT [25,94], with neurological
regression occurring after 6–18 months of seemingly normal development. However, the
four stages of the disorder should not be viewed on their own. A personalised approach
to management is needed, given the emergence of different symptom profiles at different
stages of the disorder [30]. In one study, general regression of acquired skills (96%) followed
by loss of hand use (88%), motor regression (84%), speech regression (84%) followed by
behaviour regression (68%) were the most frequent regression forms observed [33]. In
X-linked disorders, because of random X-chromosome inactivation, half of the cells will
have mutated protein, while the other half will have normal (wild-type) protein. While
most cases of classic RTT have balanced patterns of X-chromosome inactivation in the
brain [95], a skewed pattern has also been reported, whereby one X chromosome is more
inactivated than the other [96].

 
Figure 4. Expression levels of MeCP2. A diagram of MeCP2 expression levels across the lifespan.
Expression levels of MeCP2 increase during the embryonic and post-natal period when neurogenesis
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and differentiation have been completed. Levels coincide with neuronal maturation and dendritic
branching and stabilize at 10 years of age, at which point it maintains the functioning of mature
neurons. In most cases of Rett syndrome (RTT), pathogenic/likely pathogenic variants in MECP2
lead to volumetric reductions in brain size. Compared to neurotypical individuals, the effect size
of volume reduction in RTT was the largest in the putamen, hippocampus and corpus callosum.
Neuronal morphology is altered in RTT with less pronounced dendritic trees and fewer branches.
This change leads to impairments in neuronal branching and synaptic connections. This figure was
created using images from BioRender (https://biorender.com/).

4.3. Genotoxic Stress and Neurological Regression

The manifestation of neurological regression due to impairments in the RTT neural
epigenome is complex. Evidence has revealed some critical molecular insights into its
mechanism. When viewing the pattern of MECP2 dysfunction in an animal model, at
the molecular level, Mecp2 impairments in female mice show different patterns of stage-
specific and transcriptional changes compared to males [43]. Disease progression of the
disorder may, therefore, not be due to autonomous transcriptional changes in specific
cells but a failure of normal MECP2-expressing cells to counteract the changes caused
by cells expressing mutant MECP2 [43]. The suggestion that patterns of transcriptional
dysregulation in normal cells are not able to compensate for changes in mutant cells, leading
to staggered regression, could explain why neurological regression is seemingly delayed
in RTT. Evidence suggests that MeCP2 expression is coordinated with central nervous
system maturation, whereby the spinal cord and brainstem show positive expression
before other developmentally newer brain regions, such as the hippocampus and cerebral
cortex [97]. Furthermore, DNA methylation signatures vary in different brain regions,
implying that epigenetic stability could be region-specific [98]. While there could be
regional specialisation in the brain due to different signatures of DNA methylation, the
kinetics of this process are unclear. The temporal stages when the consequences of impaired
MeCP2 activity begin to emerge in different brain regions are unknown.

A DNA methylation atlas of the mouse brain has revealed spatial methylation gra-
dients throughout the mouse brain [99]. While caution is needed in extrapolating this
methylation atlas to the human brain, it is probable that the accumulation of methylated
marks on the RTT epigenomic landscape and the resulting cumulative genotoxic stress
could cause neurons to enter a senescent state and lead to rapid neurological decline [100]
(Figure 5). Different spatial methylated gradients across the brain could influence the
degree of genotoxic stress. For example, the cerebellum could be particularly sensitive
to these gradients. Hence, motor deficits such as hand stereotypies could be the first to
arise when RTT symptoms emerge [101]. Different gradients will influence the brain as it
matures and lead to the emergence of specific symptoms at different developmental epochs.
Recent evidence suggests that a reduction in histone H3 acetylation at downregulated
genes could be one of the first molecular changes in the RTT epigenome before neurological
dysfunction [102]. Most likely, these methylated gradients operate across the lifespan, but
the genomic impact of MeCP2 across the neural epigenome is too small postnatally, and
hence, overt symptoms do not appear. An accumulation of deleterious events across the
epigenome could result in the emergence of RTT pathology [34,103]. There are likely to be
subtle changes occurring at very early post-natal stages [34,35], where temporal changes
due to MeCP2 dysfunction across the neural epigenome have not yet been consolidated
enough for apparent signs of clinical symptoms to emerge. Some recent evidence from
heterozygous Mecp2 rats has also shown that sensory changes due to cortical defects occur
before regression [42]. When viewed together, the concept of neurological regression in
RTT needs to be revisited. Aberrant methylation gradients could be influenced by other

https://biorender.com/
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factors to either speed up or delay neurological regression. As seen in other disorders
that share features with RTT, epilepsy and infections could be precipitating factors [66].
Given that there is evidence of adolescent-onset neurological regression in RTT [104,105],
other unidentified factors can alter methylation gradients to delay the onset of neurological
regression. This may also apply to some other cases of RTT variants characterised by
early-onset seizures (Hanefeld variant) or early regression (Rolando variant) [24,30,106].

Figure 5. Adverse epigenomic events lead to neurological regression in Rett syndrome. The MeCP2
protein has varied roles across the genome. Pathogenic/likely pathogenic changes in MECP2 can lead
to widespread adverse epigenomic changes. Distinct parts of the brain could have region-specific
methylation signatures and be more sensitive to these changes than others. Because MeCP2 expression
coincides with brain maturation, the spinal cord and brainstem could be affected before other regions.
Aberrant MeCP2 expression in the brainstem may, therefore, reflect the symptoms of autonomic
dysregulation typically seen in RTT. The adverse impact of mutated MeCP2 across the epigenome is
too little initially, as apparent symptoms do not appear. However, it is likely that during these initial
stages, the neural epigenome is modified (for example, a decrease in histone H3 acetylation), leading
to subtle prodromal changes. As adverse events accumulate across the epigenome, the build-up
of genotoxic stress causes neurons to enter a senescent state, leading to neurological regression.
Epigenetic stability is region-specific. The anecdotal cases of late-onset regression in RTT imply
that other factors could be in play to counteract the accumulation of deleterious events across the
epigenome and the emergence of early-onset regression typically seen in RTT. This figure was created
using images from BioRender (https://biorender.com/).

4.4. Therapeutic Approaches

Dysfunction in the epigenome results in various epigenetic diseases, ranging from
cancers to brain disorders [107]. While attention has mostly focused on deciphering the
complexity of different events in the neural epigenome, there has been little attention
focused on how these changes might lead to the neurological regression typically observed
in RTT. Spatial methylation patterns could provide clues to how neurological regression
manifests in RTT; however, while progress has been made, there remain questions on the
trajectory of regression and the variability in its presentation. Aminoglycosides such as gen-
tamicin have shown some promise in rare genetic disorders, such as RTT as a readthrough
therapy [108], but their success is limited due to long-term toxicity. While advances have
been made to reduce the dose of gentamicin [109], other strategies can also be considered.
Therapeutic approaches have been tried in RTT with varied results [110]. In 2023, trofine-
tide ((2S)-2-{[(2S)-1-(2-aminoacetyl)-2-methylpyrrolidine-2-carbonyl]amino}pentanedioic
acid) [111] was the first treatment approved by the Food and Drug Administration (FDA)
for RTT [112]. The neuroprotective effects of trofinetide are suggested to be mediated
via the insulin-like growth factor 1 (IGF-1) pathway. Through this pathway, trofinetide
is thought to decrease neuroinflammation and neurotoxicity [112]. A dysregulated redox

https://biorender.com/
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imbalance has been suggested to have a role in developmental regression in RTT [38],
and a neuroinflammatory aetiology has been proposed for DSRD [113]. It is, therefore,
conceivable that trofinetide, in theory, may help to reduce the deleterious events caused
by neuroinflammation and neurotoxicity. To reduce the impact of regression in RTT, a
personalised treatment approach would be required using biomarker-specific and neuro-
protectant strategies. Future research could be directed towards restoring the balance of the
neural epigenome in RTT. Epidrugs that target enzymes involved in epigenetic regulation
may theoretically mitigate the effects of aberrant epigenetic changes across the RTT neural
epigenome. Alternatively, epi-editing approaches using CRISPR-dCas9 may be used to
precisely correct epigenetic defects in the RTT neural epigenome. These strategies have
been suggested for autism spectrum disorder [114] and theoretically could also be feasible
in individuals with RTT.

5. Summary
Given the widespread differences in genes and symptoms, RTT remains a clinical

diagnosis. Identifying the genes responsible can help support the clinical diagnosis. In
most cases of RTT, the MECP2 gene is implicated, and dissecting interactions between
MECP2 and DNA/chromatin has provided further understanding of the disorder at the
molecular level. While disruptions in epigenetic marks through methylation-dependent
and independent mechanisms have provided clues on how MECP2 alters transcriptional
kinetics, its multifaceted role across the epigenome underscores its importance as an epi-
genetic modifier. Identifying that MeCP2 forms a liquid-like heterochromatin condensate
when associated with DNA was an important milestone in furthering our understanding
of the disorder [19]. Our narrative review has synthesised information on how MeCP2
operates at the molecular level and how MECP2 pathogenic/likely pathogenic variants can
lead to neurological regression.

Limitations

The narrative review aimed to provide broader perspectives into neurological re-
gression with a focus on RTT and was restricted to one search database. However, the
broad nature of the present review means that some relevant articles in the literature
could have been omitted. While the current review did not strictly meet the more rigor-
ous PRISMA reporting guidelines for systematic reviews, the narrative literature review
flowchart adopted PRISMA guidance to make the search strategy as robust as possible. The
search strategy followed a defined structure, which included information on search terms,
eligibility criteria and secondary searching. In summary, the narrative review synthesised
the literature on how adverse events caused by pathogenic/likely pathogenic variants in
MECP2 impact the epigenome and provided meaningful insights on how this imbalance
can lead to neurological regression in RTT.

6. Concluding Remarks
Rett syndrome (RTT) is an epigenetic disorder mainly affecting females and is asso-

ciated with multisystem morbidity. There is no cure, and regular management of RTT
symptoms requires a multidisciplinary approach. The symptoms of RTT reside on a broad
clinical spectrum. Some prominent clinical signs are hand stereotypies and neurological
regression between 6 and 18 months of age, following seemingly normal development.
Pathogenic variants in MECP2 lead to changes in the function or expression of neuronal
genes. Due to the protective effect of X-inactivation, each cell in RTT has a mutated and
healthy MeCP2 protein, implying that each cell has its specific epigenetic profile that to-
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gether makes up the RTT epigenome. When the evidence is viewed together, the following
findings emerge from this narrative review:

• Expression patterns of MeCP2 coincide with brain maturation, and MECP2
pathogenic/likely pathogenic variants result in adverse epigenetic events that ac-
cumulate across the RTT neural epigenome. This accumulation of genotoxic stress
depends on different spatial methylated gradients across the brain. Some brain regions
could be more sensitive to the aberrant gradients. The cerebellum is particularly
vulnerable, and motor deficits such as hand stereotypies are the first symptoms.

• These gradients operate across the disorder’s lifespan, but MeCP2’s genotoxic impact
on the epigenome is too small postnatally for obvious clinical symptoms to appear.
Nevertheless, deleterious changes in the neural epigenome have already started, and
the concept of a seemingly typical neurodevelopmental period before 6 months in RTT
should be reframed.

• Epilepsy and recurrent infections could lead to the onset of regression in RTT; however,
the trajectory of regression in this population is variable. The epigenetic factors that
modify the onset (very early or adolescent onset) of neurological regression in RTT
remain to be identified.

• A phased treatment approach would be needed. Neuroprotectants could be used at
the early stages of regression. During progression, treatments that target symptom
reduction and maintenance of function can be used. Biomarker-specific treatment
personalisation may be required during regression to reduce impact.
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